Schizosaccharomyces pombe Grx4 is subject to autophagic degradation under nitrogen- and iron- starvation and ER-stress
Glutaredoxins (Grxs) are small, heat-stable proteins that serve as multi-functional glutathione (GSH)-dependent thiol transferases. Recent studies have elucidated their role in regulating cellular iron and copper homeostases. In Schizosaccharomyces pombe, five Grxs (Grx1-5) have been identified. Amo...
Saved in:
Published in | Archives of biochemistry and biophysics Vol. 764; p. 110227 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Glutaredoxins (Grxs) are small, heat-stable proteins that serve as multi-functional glutathione (GSH)-dependent thiol transferases. Recent studies have elucidated their role in regulating cellular iron and copper homeostases. In Schizosaccharomyces pombe, five Grxs (Grx1-5) have been identified. Among them, Grx4 and its homologs possess a C-terminal glutaredoxin domain (GRX) and an N-terminal thioredoxin-like domain (TRX). The functional roles of the GRX and TRX domains in Grx4 were investigated by constructing strains that express a truncated Grx4 under the regulation of either a constitutive cam1 promoter or its native promoter. Our findings indicated that two autophagy-related (Atg) protein 8 (Atg8)-interacting motifs (AIM), FLKI and FQEI, in the TRX domain of Grx4 are sufficient to induce autophagic degradation under nitrogen- and iron-starvation, respectively. Moreover, the expression level of a vacuolar ferrous iron transporter Pcl1 was altered in Δatg5 or Δatg8 strains under iron starvation,suggesting that autophagy is required for maintaining iron homeostasis in S. pombe. Further investigations revealed that Grx4 is required for cellular survival and endoplasmic reticulum (ER) autophagy (ER-phagy) during dithiothreitol (DTT) treatment, implying a potential correlation between Grxs and ER-stress. Additionally, loss of Grx4 disrupts nuclear integrity during ER stress, highlighting the versatility and importance of further investigations into the functions of Grx4.
[Display omitted]
•Grx4 is degraded via autophagy under nitrogen or iron starvation.•The AIM motifs FLKI and FQEI are responsible for the recognition and binding of Atg8 for autophagy.•Autophagic degradation of Grx4 is essential for maintaining iron homeostasis.•Grx4 is required for cellular survival and ER-phagy during DTT treatment. |
---|---|
AbstractList | Glutaredoxins (Grxs) are small, heat-stable proteins that serve as multi-functional glutathione (GSH)-dependent thiol transferases. Recent studies have elucidated their role in regulating cellular iron and copper homeostases. In Schizosaccharomyces pombe, five Grxs (Grx1-5) have been identified. Among them, Grx4 and its homologs possess a C-terminal glutaredoxin domain (GRX) and an N-terminal thioredoxin-like domain (TRX). The functional roles of the GRX and TRX domains in Grx4 were investigated by constructing strains that express a truncated Grx4 under the regulation of either a constitutive cam1 promoter or its native promoter. Our findings indicated that two autophagy-related (Atg) protein 8 (Atg8)-interacting motifs (AIM), FLKI and FQEI, in the TRX domain of Grx4 are sufficient to induce autophagic degradation under nitrogen- and iron-starvation, respectively. Moreover, the expression level of a vacuolar ferrous iron transporter Pcl1 was altered in Δatg5 or Δatg8 strains under iron starvation,suggesting that autophagy is required for maintaining iron homeostasis in S. pombe. Further investigations revealed that Grx4 is required for cellular survival and endoplasmic reticulum (ER) autophagy (ER-phagy) during dithiothreitol (DTT) treatment, implying a potential correlation between Grxs and ER-stress. Additionally, loss of Grx4 disrupts nuclear integrity during ER stress, highlighting the versatility and importance of further investigations into the functions of Grx4.Glutaredoxins (Grxs) are small, heat-stable proteins that serve as multi-functional glutathione (GSH)-dependent thiol transferases. Recent studies have elucidated their role in regulating cellular iron and copper homeostases. In Schizosaccharomyces pombe, five Grxs (Grx1-5) have been identified. Among them, Grx4 and its homologs possess a C-terminal glutaredoxin domain (GRX) and an N-terminal thioredoxin-like domain (TRX). The functional roles of the GRX and TRX domains in Grx4 were investigated by constructing strains that express a truncated Grx4 under the regulation of either a constitutive cam1 promoter or its native promoter. Our findings indicated that two autophagy-related (Atg) protein 8 (Atg8)-interacting motifs (AIM), FLKI and FQEI, in the TRX domain of Grx4 are sufficient to induce autophagic degradation under nitrogen- and iron-starvation, respectively. Moreover, the expression level of a vacuolar ferrous iron transporter Pcl1 was altered in Δatg5 or Δatg8 strains under iron starvation,suggesting that autophagy is required for maintaining iron homeostasis in S. pombe. Further investigations revealed that Grx4 is required for cellular survival and endoplasmic reticulum (ER) autophagy (ER-phagy) during dithiothreitol (DTT) treatment, implying a potential correlation between Grxs and ER-stress. Additionally, loss of Grx4 disrupts nuclear integrity during ER stress, highlighting the versatility and importance of further investigations into the functions of Grx4. Glutaredoxins (Grxs) are small, heat-stable proteins that serve as multi-functional glutathione (GSH)-dependent thiol transferases. Recent studies have elucidated their role in regulating cellular iron and copper homeostases. In Schizosaccharomyces pombe, five Grxs (Grx1-5) have been identified. Among them, Grx4 and its homologs possess a C-terminal glutaredoxin domain (GRX) and an N-terminal thioredoxin-like domain (TRX). The functional roles of the GRX and TRX domains in Grx4 were investigated by constructing strains that express a truncated Grx4 under the regulation of either a constitutive cam1 promoter or its native promoter. Our findings indicated that two autophagy-related (Atg) protein 8 (Atg8)-interacting motifs (AIM), FLKI and FQEI, in the TRX domain of Grx4 are sufficient to induce autophagic degradation under nitrogen- and iron-starvation, respectively. Moreover, the expression level of a vacuolar ferrous iron transporter Pcl1 was altered in Δatg5 or Δatg8 strains under iron starvation,suggesting that autophagy is required for maintaining iron homeostasis in S. pombe. Further investigations revealed that Grx4 is required for cellular survival and endoplasmic reticulum (ER) autophagy (ER-phagy) during dithiothreitol (DTT) treatment, implying a potential correlation between Grxs and ER-stress. Additionally, loss of Grx4 disrupts nuclear integrity during ER stress, highlighting the versatility and importance of further investigations into the functions of Grx4. Glutaredoxins (Grxs) are small, heat-stable proteins that serve as multi-functional glutathione (GSH)-dependent thiol transferases. Recent studies have elucidated their role in regulating cellular iron and copper homeostases. In Schizosaccharomyces pombe, five Grxs (Grx1-5) have been identified. Among them, Grx4 and its homologs possess a C-terminal glutaredoxin domain (GRX) and an N-terminal thioredoxin-like domain (TRX). The functional roles of the GRX and TRX domains in Grx4 were investigated by constructing strains that express a truncated Grx4 under the regulation of either a constitutive cam1 promoter or its native promoter. Our findings indicated that two autophagy-related (Atg) protein 8 (Atg8)-interacting motifs (AIM), FLKI and FQEI, in the TRX domain of Grx4 are sufficient to induce autophagic degradation under nitrogen- and iron-starvation, respectively. Moreover, the expression level of a vacuolar ferrous iron transporter Pcl1 was altered in Δatg5 or Δatg8 strains under iron starvation,suggesting that autophagy is required for maintaining iron homeostasis in S. pombe. Further investigations revealed that Grx4 is required for cellular survival and endoplasmic reticulum (ER) autophagy (ER-phagy) during dithiothreitol (DTT) treatment, implying a potential correlation between Grxs and ER-stress. Additionally, loss of Grx4 disrupts nuclear integrity during ER stress, highlighting the versatility and importance of further investigations into the functions of Grx4. [Display omitted] •Grx4 is degraded via autophagy under nitrogen or iron starvation.•The AIM motifs FLKI and FQEI are responsible for the recognition and binding of Atg8 for autophagy.•Autophagic degradation of Grx4 is essential for maintaining iron homeostasis.•Grx4 is required for cellular survival and ER-phagy during DTT treatment. |
ArticleNumber | 110227 |
Author | Huang, Ying Li, Rong |
Author_xml | – sequence: 1 givenname: Rong surname: Li fullname: Li, Rong – sequence: 2 givenname: Ying surname: Huang fullname: Huang, Ying email: yhuang@njnu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39603377$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1vEzEQhi1URNPCD-CCfOSyYfwR71qcUFUKUiUkPs6W155NHGXtYHsjyq9nwxaOiNOMRs87h-e9IhcxRSTkJYM1A6be7Ne279ccuFwzBpy3T8iKgVYNiE5ekBUAiEZ3il2Sq1L2AIxJxZ-RS6EVCNG2K3L64nbhZyrWuZ3NaXxwWOgxjT3Su_xD0lBomfo9ukpronaq6biz2-Cox2223taQIp2ix0xjqDltMTbURk9DTvNWqs2nBTofbz83pWYs5Tl5OthDwReP85p8e3_79eZDc__p7uPNu_vGCdHVxm-09lz2qrVcsxbQMYdiaB3oje_coCWDwXdWQ6879OA6kEoq2892Ot4O4pq8Xv4ec_o-YalmDMXh4WAjpqkYwTaSS82F_g90NiY26jf66hGd-hG9OeYw2vxg_midAbYALqdSMg5_EQbmXJ3Zm7k6c67OLNXNmbdLBmcfp4DZFBcwOvQhz_qNT-Ef6V_qEaBd |
Cites_doi | 10.1038/sj.cdd.4401765 10.1272/jnms.JNMS.2024_91-102 10.1021/acs.jafc.0c04789 10.1039/C7MT00144D 10.1247/csf.28.49 10.1128/EC.00199-06 10.1089/ars.2008.2089 10.1016/j.jmb.2019.07.016 10.1039/C7SC04416J 10.1002/cfg.406 10.1110/ps.062268106 10.1080/15548627.2016.1217381 10.1007/s00018-009-0054-y 10.3389/fphys.2021.604210 10.1089/ars.2009.2683 10.1089/ars.2017.7132 10.3390/molecules25173860 10.1016/j.bbabio.2020.148317 10.1007/s00018-007-6554-8 10.1242/jcs.259725 10.1186/gb-2011-12-7-226 10.1271/bbb.60087 10.3390/ijms25084368 10.3109/10715762.2015.1120864 10.1042/BJ20101286 10.1093/jxb/erl001 10.1089/ars.2012.5007 10.1016/j.mam.2008.08.006 10.1016/j.bbamcr.2008.01.023 10.1016/j.cbpa.2020.02.008 10.1038/nrm2708 10.1091/mbc.e12-09-0644 10.1093/nar/gks141 10.1186/1471-2148-9-66 10.1091/mbc.e14-06-1137 10.1091/mbc.e07-09-0896 10.1016/j.bbrc.2023.01.095 10.1016/j.bbamcr.2014.09.018 10.1016/j.semcdb.2018.09.013 10.1371/journal.pbio.3002372 10.1091/mbc.e03-07-0479 10.1016/j.bulcan.2020.11.004 10.1111/j.1365-2443.2008.01238.x 10.1111/tpj.16687 10.1016/j.molcel.2020.07.019 10.1128/EC.00133-08 10.1016/j.febslet.2010.01.018 10.1042/BJ20101619 10.1038/s41556-019-0459-2 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. Copyright © 2024 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier Inc. – notice: Copyright © 2024 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.abb.2024.110227 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1096-0384 |
ExternalDocumentID | 39603377 10_1016_j_abb_2024_110227 S0003986124003497 |
Genre | Journal Article |
GroupedDBID | --- --K --M -DZ -~X .55 .GJ .HR .~1 0R~ 1B1 1RT 1~. 1~5 23M 3O- 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABEFU ABFNM ABFRF ABGSF ABJNI ABMAC ABPPZ ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACNCT ACRLP ACRPL ADBBV ADEZE ADFGL ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IH2 IHE J1W K-O KOM L7B LG5 LX2 M41 MO0 MVM N9A NEJ O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBG SDF SDG SDP SES SEW SPCBC SSU SSZ T5K TWZ UQL VH1 WH7 WUQ X7M XOL XPP YYP ZGI ZMT ZXP ~02 ~G- ~KM AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c338t-d599d24b67a29170ec1ce3f7c095d8cf9410fd8a90b98ed0c804646ab016827f3 |
IEDL.DBID | .~1 |
ISSN | 0003-9861 1096-0384 |
IngestDate | Thu Jul 10 17:26:02 EDT 2025 Tue Aug 05 10:56:50 EDT 2025 Mon Jul 21 06:04:15 EDT 2025 Tue Jul 01 01:32:11 EDT 2025 Sat Jan 25 15:59:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Iron homeostasis GSSH Atgs Grxs AIM Glutaredoxins ER stress GRX Autophagy ER ER-phagy S. pombe CMA ROS TRX GSH Trxs |
Language | English |
License | Copyright © 2024 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c338t-d599d24b67a29170ec1ce3f7c095d8cf9410fd8a90b98ed0c804646ab016827f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 39603377 |
PQID | 3133735639 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3154249239 proquest_miscellaneous_3133735639 pubmed_primary_39603377 crossref_primary_10_1016_j_abb_2024_110227 elsevier_sciencedirect_doi_10_1016_j_abb_2024_110227 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Archives of biochemistry and biophysics |
PublicationTitleAlternate | Arch Biochem Biophys |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Yorimitsu, Klionsky (bib15) 2005; 12 Noda, Ohsumi, Inagaki (bib19) 2010; 584 Pan, Bardwell (bib45) 2006; 15 Netto, De Oliveira, Tairum (bib10) 2016; 50 Liaghati, Pileggi, Parmar (bib22) 2021; 12 Perrone, Tan, Dawes (bib7) 2008; 1783 Alves, Vilaprinyo, Sorribas (bib29) 2009; 9 Johansson, Roos, Montano (bib30) 2011; 433 Mesecke, Spang, Deponte (bib42) 2008; 19 Cao, Li, Yang (bib14) 2021; 108 Ukuwela, Bush, Wedd (bib3) 2018; 9 Dlouhy, Beaudoin, Labbé (bib34) 2017; 9 Schuck, Gallagher, Walter (bib37) 2014; 127 Mehrtash, Hochstrasser (bib49) 2019; 93 Cheng, Donelson, Breton (bib21) 2023; 649 Zhao, Zou, Liu (bib24) 2020; 79 Daniel, Faruq, Magdalena (bib39) 2020; 25 Puigpinós, Casas, Herrero (bib47) 2015; 26 Reggiori, Wang, Nair (bib41) 2004; 15 Lee, Wilfling, Ronchi (bib52) 2020; 22 Ahsan, Lekli, Ray (bib1) 2009; 11 Mieyal, Gallogly, Qanungo (bib9) 2008; 10 Couturier, Jacquot, Rouhier (bib5) 2009; 66 Johansen, Lamark (bib20) 2020; 432 Forman, Zhang, Rinna (bib2) 2009; 30 Rouhier, Couturier, Jacquot (bib6) 2006; 57 Shpilka, Weidberg, Pietrokovski (bib18) 2011; 12 Izquierdo, Casas, Mühlenhoff (bib36) 2008; 7 Zou, Ma, Jiang (bib50) 2023; 21 Matsuo, Asakawa, Toda (bib26) 2006; 70 Gupta, Outten (bib35) 2020; 55 Couturier, Przybyla-Toscano, Roret (bib12) 2015; 1853 Nakatogawa, Suzuki, Kamada (bib17) 2009; 10 Del Dedo, Gabrielli, Carmona (bib32) 2015; 11 Berndt, Christ, Rouhier (bib13) 2021; 1862 Yamamoto, Matsui (bib16) 2024; 91 López-Huertas, Palma (bib8) 2020; 68 Lillig, Berndt (bib11) 2013; 18 Vilella, Alves, Rodríguez-Manzaneque (bib28) 2004; 5 Schlösser, Moseler, Bodnar (bib46) 2024; 118 Gan, Yang, Li (bib25) 2011; 435 Luo, Zhao, Song (bib51) 2016; 12 Mercier, Pelletier, Labbé (bib23) 2006; 5 Herrero, De La Torre-Ruiz (bib4) 2007; 64 Uzarska, Dutkiewicz, Freibert (bib31) 2013; 24 Nieto-Torres, Zaretski, Liu (bib33) 2023; 136 Berndt, Lillig (bib43) 2017; 27 Calvo, García, Ayté (bib27) 2012; 40 Noda, Kumeta, Nakatogawa (bib44) 2008; 13 Kapuy (bib48) 2024; 25 Chai, Mieyal (bib38) 2023; 12 Hamasaki, Noda, Ohsumi (bib40) 2003; 28 Herrero (10.1016/j.abb.2024.110227_bib4) 2007; 64 Mercier (10.1016/j.abb.2024.110227_bib23) 2006; 5 Cheng (10.1016/j.abb.2024.110227_bib21) 2023; 649 Dlouhy (10.1016/j.abb.2024.110227_bib34) 2017; 9 Matsuo (10.1016/j.abb.2024.110227_bib26) 2006; 70 Cao (10.1016/j.abb.2024.110227_bib14) 2021; 108 Johansen (10.1016/j.abb.2024.110227_bib20) 2020; 432 Johansson (10.1016/j.abb.2024.110227_bib30) 2011; 433 Noda (10.1016/j.abb.2024.110227_bib44) 2008; 13 Couturier (10.1016/j.abb.2024.110227_bib5) 2009; 66 Mieyal (10.1016/j.abb.2024.110227_bib9) 2008; 10 Lee (10.1016/j.abb.2024.110227_bib52) 2020; 22 Gupta (10.1016/j.abb.2024.110227_bib35) 2020; 55 Netto (10.1016/j.abb.2024.110227_bib10) 2016; 50 Nakatogawa (10.1016/j.abb.2024.110227_bib17) 2009; 10 Daniel (10.1016/j.abb.2024.110227_bib39) 2020; 25 Del Dedo (10.1016/j.abb.2024.110227_bib32) 2015; 11 López-Huertas (10.1016/j.abb.2024.110227_bib8) 2020; 68 Nieto-Torres (10.1016/j.abb.2024.110227_bib33) 2023; 136 Chai (10.1016/j.abb.2024.110227_bib38) 2023; 12 Hamasaki (10.1016/j.abb.2024.110227_bib40) 2003; 28 Vilella (10.1016/j.abb.2024.110227_bib28) 2004; 5 Kapuy (10.1016/j.abb.2024.110227_bib48) 2024; 25 Zhao (10.1016/j.abb.2024.110227_bib24) 2020; 79 Calvo (10.1016/j.abb.2024.110227_bib27) 2012; 40 Yamamoto (10.1016/j.abb.2024.110227_bib16) 2024; 91 Liaghati (10.1016/j.abb.2024.110227_bib22) 2021; 12 Uzarska (10.1016/j.abb.2024.110227_bib31) 2013; 24 Yorimitsu (10.1016/j.abb.2024.110227_bib15) 2005; 12 Noda (10.1016/j.abb.2024.110227_bib19) 2010; 584 Izquierdo (10.1016/j.abb.2024.110227_bib36) 2008; 7 Mesecke (10.1016/j.abb.2024.110227_bib42) 2008; 19 Lillig (10.1016/j.abb.2024.110227_bib11) 2013; 18 Gan (10.1016/j.abb.2024.110227_bib25) 2011; 435 Mehrtash (10.1016/j.abb.2024.110227_bib49) 2019; 93 Berndt (10.1016/j.abb.2024.110227_bib13) 2021; 1862 Luo (10.1016/j.abb.2024.110227_bib51) 2016; 12 Pan (10.1016/j.abb.2024.110227_bib45) 2006; 15 Berndt (10.1016/j.abb.2024.110227_bib43) 2017; 27 Reggiori (10.1016/j.abb.2024.110227_bib41) 2004; 15 Ukuwela (10.1016/j.abb.2024.110227_bib3) 2018; 9 Schuck (10.1016/j.abb.2024.110227_bib37) 2014; 127 Shpilka (10.1016/j.abb.2024.110227_bib18) 2011; 12 Couturier (10.1016/j.abb.2024.110227_bib12) 2015; 1853 Alves (10.1016/j.abb.2024.110227_bib29) 2009; 9 Rouhier (10.1016/j.abb.2024.110227_bib6) 2006; 57 Puigpinós (10.1016/j.abb.2024.110227_bib47) 2015; 26 Forman (10.1016/j.abb.2024.110227_bib2) 2009; 30 Perrone (10.1016/j.abb.2024.110227_bib7) 2008; 1783 Schlösser (10.1016/j.abb.2024.110227_bib46) 2024; 118 Ahsan (10.1016/j.abb.2024.110227_bib1) 2009; 11 Zou (10.1016/j.abb.2024.110227_bib50) 2023; 21 |
References_xml | – volume: 21 year: 2023 ident: bib50 article-title: The ortholog of human REEP1-4 is required for autophagosomal enclosure of ER-phagy/nucleophagy cargos in fission yeast publication-title: PLoS Biol. – volume: 432 start-page: 80 year: 2020 end-page: 103 ident: bib20 article-title: Selective autophagy: ATG8 family proteins, LIR motifs and cargo receptors publication-title: J. Mol. Biol. – volume: 11 start-page: 2741 year: 2009 end-page: 2758 ident: bib1 article-title: Redox regulation of cell survival by the thioredoxin superfamily: an implication of redox gene therapy in the heart publication-title: Antioxidants Redox Signal. – volume: 13 start-page: 1211 year: 2008 end-page: 1218 ident: bib44 article-title: Structural basis of target recognition by Atg8/LC3 during selective autophagy publication-title: Gene Cell. – volume: 12 start-page: 1542 year: 2005 end-page: 1552 ident: bib15 article-title: Autophagy: molecular machinery for self-eating publication-title: Cell Death Differ. – volume: 15 start-page: 2189 year: 2004 end-page: 2204 ident: bib41 article-title: Early stages of the secretory pathway, but not endosomes, are required for cvt vesicle and autophagosome assembly in publication-title: Mol. Biol. Cell – volume: 9 year: 2009 ident: bib29 article-title: Evolution based on domain combinations: the case of glutaredoxins publication-title: BMC Evol. Biol. – volume: 57 start-page: 1685 year: 2006 end-page: 1696 ident: bib6 article-title: Genome-wide analysis of plant glutaredoxin systems publication-title: J. Exp. Bot. – volume: 15 start-page: 2217 year: 2006 end-page: 2227 ident: bib45 article-title: The origami of thioredoxin-like folds publication-title: Protein Sci. – volume: 22 start-page: 159 year: 2020 end-page: 166 ident: bib52 article-title: Selective autophagy degrades nuclear pore complexes publication-title: Nat. Cell Biol. – volume: 91 start-page: 2 year: 2024 end-page: 9 ident: bib16 article-title: Molecular mechanisms of macroautophagy, microautophagy, and chaperone-mediated autophagy publication-title: J. Nippon Med. Sch. – volume: 93 start-page: 111 year: 2019 end-page: 124 ident: bib49 article-title: Ubiquitin-dependent protein degradation at the endoplasmic reticulum and nuclear envelope publication-title: Semin. Cell Dev. Biol. – volume: 55 start-page: 189 year: 2020 end-page: 201 ident: bib35 article-title: Iron-sulfur cluster signaling: the common thread in fungal iron regulation publication-title: Curr. Opin. Chem. Biol. – volume: 27 start-page: 1235 year: 2017 end-page: 1251 ident: bib43 article-title: Glutathione, glutaredoxins, and iron publication-title: Antioxidants Redox Signal. – volume: 12 start-page: 1973 year: 2016 end-page: 1983 ident: bib51 article-title: Nuclear autophagy: an evolutionarily conserved mechanism of nuclear degradation in the cytoplasm publication-title: Autophagy – volume: 24 start-page: 1830 year: 2013 end-page: 1841 ident: bib31 article-title: The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation publication-title: Mol. Biol. Cell – volume: 136 year: 2023 ident: bib33 article-title: Post-translational modifications of ATG8 proteins - an emerging mechanism of autophagy control publication-title: J. Cell Sci. – volume: 9 start-page: 1173 year: 2018 end-page: 1183 ident: bib3 article-title: Glutaredoxins employ parallel monothiol-dithiol mechanisms to catalyze thiol-disulfide exchanges with protein disulfides publication-title: Chem. Sci. – volume: 127 start-page: 4078 year: 2014 end-page: 4088 ident: bib37 article-title: ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery publication-title: J. Cell Sci. – volume: 28 start-page: 49 year: 2003 end-page: 54 ident: bib40 article-title: The early secretory pathway contributes to autophagy in yeast publication-title: Cell Struct. Funct. – volume: 50 start-page: 206 year: 2016 end-page: 245 ident: bib10 article-title: Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions publication-title: Free Radic. Res. – volume: 25 year: 2020 ident: bib39 article-title: Role of GSH and iron-sulfur glutaredoxins in iron metabolism-review publication-title: Molecules – volume: 26 start-page: 104 year: 2015 end-page: 116 ident: bib47 article-title: Altered intracellular calcium homeostasis and endoplasmic reticulum redox state in cells lacking Grx6 glutaredoxin publication-title: Mol. Biol. Cell – volume: 30 start-page: 1 year: 2009 end-page: 12 ident: bib2 article-title: Glutathione: overview of its protective roles, measurement, and biosynthesis publication-title: Mol. Aspect. Med. – volume: 5 start-page: 328 year: 2004 end-page: 341 ident: bib28 article-title: Evolution and cellular function of monothiol glutaredoxins:: involvement in iron-sulphur cluster assembly publication-title: Comp. Funct. Genom. – volume: 108 start-page: 304 year: 2021 end-page: 322 ident: bib14 article-title: An overview of autophagy: mechanism, regulation and research progress publication-title: B Cancer – volume: 1783 start-page: 1354 year: 2008 end-page: 1368 ident: bib7 article-title: Reactive oxygen species and yeast apoptosis publication-title: Biochim. Biophys. Acta Mol. Cell Res. – volume: 435 start-page: 103 year: 2011 end-page: 111 ident: bib25 article-title: The fission yeast has two distinct tRNase Zs encoded by two different genes and differentially targeted to the nucleus and mitochondria publication-title: Biochem. J. – volume: 25 year: 2024 ident: bib48 article-title: Mechanism of decision making between autophagy and apoptosis induction upon endoplasmic reticulum stress publication-title: Int. J. Mol. Sci. – volume: 1853 start-page: 1513 year: 2015 end-page: 1527 ident: bib12 article-title: The roles of glutaredoxins ligating Fe-S clusters: sensing, transfer or repair functions? publication-title: Biochim. Biophys. Acta Mol. Cell Res. – volume: 79 start-page: 963 year: 2020 end-page: 977 ident: bib24 article-title: A UPR-induced soluble ER-phagy receptor acts with VAPs to confer ER stress resistance publication-title: Mol. Cell – volume: 10 start-page: 1941 year: 2008 end-page: 1988 ident: bib9 article-title: Molecular mechanisms and clinical implications of reversible protein-glutathionylation publication-title: Antioxidants Redox Signal. – volume: 19 start-page: 2673 year: 2008 end-page: 2680 ident: bib42 article-title: A novel group of glutaredoxins in the -Golgi critical for oxidative stress resistance publication-title: Mol. Biol. Cell – volume: 5 start-page: 1866 year: 2006 end-page: 1881 ident: bib23 article-title: A transcription factor cascade involving Fep1 and the CCAAT-binding factor Php4 regulates gene expression in response to iron deficiency in the fission yeast publication-title: Eukaryot. Cell – volume: 68 start-page: 12221 year: 2020 end-page: 12228 ident: bib8 article-title: Changes in glutathione, ascorbate, and antioxidant enzymes during olive fruit ripening publication-title: J. Agric. Food Chem. – volume: 70 start-page: 1992 year: 2006 end-page: 1994 ident: bib26 article-title: A rapid method for protein extraction from fission yeast publication-title: Biosc. Biotech. Biochem. – volume: 1862 year: 2021 ident: bib13 article-title: Glutaredoxins with iron-sulphur clusters in eukaryotes - structure, function and impact on disease publication-title: Biochim. Biophys. Acta Bioenerg. – volume: 118 start-page: 1455 year: 2024 end-page: 1474 ident: bib46 article-title: Localization of four class I glutaredoxins in the cytosol and the secretory pathway and characterization of their biochemical diversification publication-title: Plant J. – volume: 9 start-page: 1096 year: 2017 end-page: 1105 ident: bib34 article-title: Grx4 regulates the transcriptional repressor Php4 [2Fe-2S] cluster binding publication-title: Metallomics – volume: 433 start-page: 303 year: 2011 end-page: 311 ident: bib30 article-title: The crystal structure of human GLRX5: iron-sulfur cluster co-ordination, tetrameric assembly and monomer activity publication-title: Biochem. J. – volume: 18 start-page: 1654 year: 2013 end-page: 1665 ident: bib11 article-title: Glutaredoxins in thiol/disulfide exchange publication-title: Antioxidants Redox Signal. – volume: 12 year: 2011 ident: bib18 article-title: Atg8: an autophagy-related ubiquitin-like protein family publication-title: Genome Biol. – volume: 10 start-page: 458 year: 2009 end-page: 467 ident: bib17 article-title: Dynamics and diversity in autophagy mechanisms: lessons from yeast publication-title: Nat. Rev. Mol. Cell Biol. – volume: 7 start-page: 1415 year: 2008 end-page: 1426 ident: bib36 article-title: Grx6 and Grx7 are monothiol glutaredoxins associated with the early secretory pathway publication-title: Eukaryot. Cell – volume: 649 start-page: 39 year: 2023 end-page: 46 ident: bib21 article-title: Liver specific disruption of Glutaredoxin 3 leads to iron accumulation and impaired cellular iron homeostasis publication-title: Biochem. Biophys. Res. Commun. – volume: 12 year: 2021 ident: bib22 article-title: Regulates skeletal muscle mitochondrial structure and autophagy publication-title: Front. Physiol. – volume: 40 start-page: 4816 year: 2012 end-page: 4824 ident: bib27 article-title: The transcription factors Pap1 and Prr1 collaborate to activate antioxidant, but not drug tolerance, genes in response to HO publication-title: Nucleic Acids Res. – volume: 11 year: 2015 ident: bib32 article-title: A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast publication-title: PLoS Genet. – volume: 584 start-page: 1379 year: 2010 end-page: 1385 ident: bib19 article-title: Atg8-family interacting motif crucial for selective autophagy publication-title: FEBS Lett. – volume: 64 start-page: 1518 year: 2007 end-page: 1530 ident: bib4 article-title: Monothiol glutaredoxins: a common domain for multiple functions publication-title: Cell. Mol. Life Sci. – volume: 12 year: 2023 ident: bib38 article-title: Glutathione and glutaredoxin-key players in cellular redox homeostasis and signaling publication-title: Antioxidants-Basel – volume: 66 start-page: 2539 year: 2009 end-page: 2557 ident: bib5 article-title: Evolution and diversity of glutaredoxins in photosynthetic organisms publication-title: Cell. Mol. Life Sci. – volume: 12 start-page: 1542 year: 2005 ident: 10.1016/j.abb.2024.110227_bib15 article-title: Autophagy: molecular machinery for self-eating publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401765 – volume: 91 start-page: 2 issue: 1 year: 2024 ident: 10.1016/j.abb.2024.110227_bib16 article-title: Molecular mechanisms of macroautophagy, microautophagy, and chaperone-mediated autophagy publication-title: J. Nippon Med. Sch. doi: 10.1272/jnms.JNMS.2024_91-102 – volume: 68 start-page: 12221 issue: 44 year: 2020 ident: 10.1016/j.abb.2024.110227_bib8 article-title: Changes in glutathione, ascorbate, and antioxidant enzymes during olive fruit ripening publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.0c04789 – volume: 9 start-page: 1096 issue: 8 year: 2017 ident: 10.1016/j.abb.2024.110227_bib34 article-title: Grx4 regulates the transcriptional repressor Php4 [2Fe-2S] cluster binding publication-title: Metallomics doi: 10.1039/C7MT00144D – volume: 28 start-page: 49 issue: 1 year: 2003 ident: 10.1016/j.abb.2024.110227_bib40 article-title: The early secretory pathway contributes to autophagy in yeast publication-title: Cell Struct. Funct. doi: 10.1247/csf.28.49 – volume: 5 start-page: 1866 issue: 11 year: 2006 ident: 10.1016/j.abb.2024.110227_bib23 article-title: A transcription factor cascade involving Fep1 and the CCAAT-binding factor Php4 regulates gene expression in response to iron deficiency in the fission yeast publication-title: Eukaryot. Cell doi: 10.1128/EC.00199-06 – volume: 10 start-page: 1941 issue: 11 year: 2008 ident: 10.1016/j.abb.2024.110227_bib9 article-title: Molecular mechanisms and clinical implications of reversible protein-glutathionylation publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2008.2089 – volume: 432 start-page: 80 issue: 1 year: 2020 ident: 10.1016/j.abb.2024.110227_bib20 article-title: Selective autophagy: ATG8 family proteins, LIR motifs and cargo receptors publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2019.07.016 – volume: 9 start-page: 1173 issue: 5 year: 2018 ident: 10.1016/j.abb.2024.110227_bib3 article-title: Glutaredoxins employ parallel monothiol-dithiol mechanisms to catalyze thiol-disulfide exchanges with protein disulfides publication-title: Chem. Sci. doi: 10.1039/C7SC04416J – volume: 5 start-page: 328 issue: 4 year: 2004 ident: 10.1016/j.abb.2024.110227_bib28 article-title: Evolution and cellular function of monothiol glutaredoxins:: involvement in iron-sulphur cluster assembly publication-title: Comp. Funct. Genom. doi: 10.1002/cfg.406 – volume: 15 start-page: 2217 issue: 10 year: 2006 ident: 10.1016/j.abb.2024.110227_bib45 article-title: The origami of thioredoxin-like folds publication-title: Protein Sci. doi: 10.1110/ps.062268106 – volume: 12 start-page: 1973 issue: 11 year: 2016 ident: 10.1016/j.abb.2024.110227_bib51 article-title: Nuclear autophagy: an evolutionarily conserved mechanism of nuclear degradation in the cytoplasm publication-title: Autophagy doi: 10.1080/15548627.2016.1217381 – volume: 66 start-page: 2539 issue: 15 year: 2009 ident: 10.1016/j.abb.2024.110227_bib5 article-title: Evolution and diversity of glutaredoxins in photosynthetic organisms publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-009-0054-y – volume: 12 year: 2021 ident: 10.1016/j.abb.2024.110227_bib22 article-title: Regulates skeletal muscle mitochondrial structure and autophagy publication-title: Front. Physiol. doi: 10.3389/fphys.2021.604210 – volume: 11 start-page: 2741 issue: 11 year: 2009 ident: 10.1016/j.abb.2024.110227_bib1 article-title: Redox regulation of cell survival by the thioredoxin superfamily: an implication of redox gene therapy in the heart publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2009.2683 – volume: 27 start-page: 1235 issue: 15 year: 2017 ident: 10.1016/j.abb.2024.110227_bib43 article-title: Glutathione, glutaredoxins, and iron publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2017.7132 – volume: 25 issue: 17 year: 2020 ident: 10.1016/j.abb.2024.110227_bib39 article-title: Role of GSH and iron-sulfur glutaredoxins in iron metabolism-review publication-title: Molecules doi: 10.3390/molecules25173860 – volume: 1862 issue: 1 year: 2021 ident: 10.1016/j.abb.2024.110227_bib13 article-title: Glutaredoxins with iron-sulphur clusters in eukaryotes - structure, function and impact on disease publication-title: Biochim. Biophys. Acta Bioenerg. doi: 10.1016/j.bbabio.2020.148317 – volume: 64 start-page: 1518 issue: 12 year: 2007 ident: 10.1016/j.abb.2024.110227_bib4 article-title: Monothiol glutaredoxins: a common domain for multiple functions publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-007-6554-8 – volume: 136 issue: 16 year: 2023 ident: 10.1016/j.abb.2024.110227_bib33 article-title: Post-translational modifications of ATG8 proteins - an emerging mechanism of autophagy control publication-title: J. Cell Sci. doi: 10.1242/jcs.259725 – volume: 12 issue: 7 year: 2011 ident: 10.1016/j.abb.2024.110227_bib18 article-title: Atg8: an autophagy-related ubiquitin-like protein family publication-title: Genome Biol. doi: 10.1186/gb-2011-12-7-226 – volume: 70 start-page: 1992 issue: 8 year: 2006 ident: 10.1016/j.abb.2024.110227_bib26 article-title: A rapid method for protein extraction from fission yeast publication-title: Biosc. Biotech. Biochem. doi: 10.1271/bbb.60087 – volume: 25 issue: 8 year: 2024 ident: 10.1016/j.abb.2024.110227_bib48 article-title: Mechanism of decision making between autophagy and apoptosis induction upon endoplasmic reticulum stress publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms25084368 – volume: 50 start-page: 206 issue: 2 year: 2016 ident: 10.1016/j.abb.2024.110227_bib10 article-title: Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions publication-title: Free Radic. Res. doi: 10.3109/10715762.2015.1120864 – volume: 433 start-page: 303 year: 2011 ident: 10.1016/j.abb.2024.110227_bib30 article-title: The crystal structure of human GLRX5: iron-sulfur cluster co-ordination, tetrameric assembly and monomer activity publication-title: Biochem. J. doi: 10.1042/BJ20101286 – volume: 12 issue: 8 year: 2023 ident: 10.1016/j.abb.2024.110227_bib38 article-title: Glutathione and glutaredoxin-key players in cellular redox homeostasis and signaling publication-title: Antioxidants-Basel – volume: 57 start-page: 1685 issue: 8 year: 2006 ident: 10.1016/j.abb.2024.110227_bib6 article-title: Genome-wide analysis of plant glutaredoxin systems publication-title: J. Exp. Bot. doi: 10.1093/jxb/erl001 – volume: 18 start-page: 1654 issue: 13 year: 2013 ident: 10.1016/j.abb.2024.110227_bib11 article-title: Glutaredoxins in thiol/disulfide exchange publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2012.5007 – volume: 30 start-page: 1 issue: 1–2 year: 2009 ident: 10.1016/j.abb.2024.110227_bib2 article-title: Glutathione: overview of its protective roles, measurement, and biosynthesis publication-title: Mol. Aspect. Med. doi: 10.1016/j.mam.2008.08.006 – volume: 1783 start-page: 1354 issue: 7 year: 2008 ident: 10.1016/j.abb.2024.110227_bib7 article-title: Reactive oxygen species and yeast apoptosis publication-title: Biochim. Biophys. Acta Mol. Cell Res. doi: 10.1016/j.bbamcr.2008.01.023 – volume: 55 start-page: 189 year: 2020 ident: 10.1016/j.abb.2024.110227_bib35 article-title: Iron-sulfur cluster signaling: the common thread in fungal iron regulation publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2020.02.008 – volume: 10 start-page: 458 issue: 7 year: 2009 ident: 10.1016/j.abb.2024.110227_bib17 article-title: Dynamics and diversity in autophagy mechanisms: lessons from yeast publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2708 – volume: 24 start-page: 1830 issue: 12 year: 2013 ident: 10.1016/j.abb.2024.110227_bib31 article-title: The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e12-09-0644 – volume: 40 start-page: 4816 issue: 11 year: 2012 ident: 10.1016/j.abb.2024.110227_bib27 article-title: The transcription factors Pap1 and Prr1 collaborate to activate antioxidant, but not drug tolerance, genes in response to HO publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks141 – volume: 9 year: 2009 ident: 10.1016/j.abb.2024.110227_bib29 article-title: Evolution based on domain combinations: the case of glutaredoxins publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-9-66 – volume: 26 start-page: 104 issue: 1 year: 2015 ident: 10.1016/j.abb.2024.110227_bib47 article-title: Altered intracellular calcium homeostasis and endoplasmic reticulum redox state in cells lacking Grx6 glutaredoxin publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e14-06-1137 – volume: 19 start-page: 2673 issue: 6 year: 2008 ident: 10.1016/j.abb.2024.110227_bib42 article-title: A novel group of glutaredoxins in the -Golgi critical for oxidative stress resistance publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e07-09-0896 – volume: 127 start-page: 4078 issue: 18 year: 2014 ident: 10.1016/j.abb.2024.110227_bib37 article-title: ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery publication-title: J. Cell Sci. – volume: 649 start-page: 39 year: 2023 ident: 10.1016/j.abb.2024.110227_bib21 article-title: Liver specific disruption of Glutaredoxin 3 leads to iron accumulation and impaired cellular iron homeostasis publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2023.01.095 – volume: 1853 start-page: 1513 issue: 6 year: 2015 ident: 10.1016/j.abb.2024.110227_bib12 article-title: The roles of glutaredoxins ligating Fe-S clusters: sensing, transfer or repair functions? publication-title: Biochim. Biophys. Acta Mol. Cell Res. doi: 10.1016/j.bbamcr.2014.09.018 – volume: 93 start-page: 111 year: 2019 ident: 10.1016/j.abb.2024.110227_bib49 article-title: Ubiquitin-dependent protein degradation at the endoplasmic reticulum and nuclear envelope publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2018.09.013 – volume: 21 issue: 11 year: 2023 ident: 10.1016/j.abb.2024.110227_bib50 article-title: The ortholog of human REEP1-4 is required for autophagosomal enclosure of ER-phagy/nucleophagy cargos in fission yeast publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3002372 – volume: 15 start-page: 2189 issue: 5 year: 2004 ident: 10.1016/j.abb.2024.110227_bib41 article-title: Early stages of the secretory pathway, but not endosomes, are required for cvt vesicle and autophagosome assembly in publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e03-07-0479 – volume: 108 start-page: 304 issue: 3 year: 2021 ident: 10.1016/j.abb.2024.110227_bib14 article-title: An overview of autophagy: mechanism, regulation and research progress publication-title: B Cancer doi: 10.1016/j.bulcan.2020.11.004 – volume: 13 start-page: 1211 issue: 12 year: 2008 ident: 10.1016/j.abb.2024.110227_bib44 article-title: Structural basis of target recognition by Atg8/LC3 during selective autophagy publication-title: Gene Cell. doi: 10.1111/j.1365-2443.2008.01238.x – volume: 118 start-page: 1455 issue: 5 year: 2024 ident: 10.1016/j.abb.2024.110227_bib46 article-title: Localization of four class I glutaredoxins in the cytosol and the secretory pathway and characterization of their biochemical diversification publication-title: Plant J. doi: 10.1111/tpj.16687 – volume: 79 start-page: 963 issue: 6 year: 2020 ident: 10.1016/j.abb.2024.110227_bib24 article-title: A UPR-induced soluble ER-phagy receptor acts with VAPs to confer ER stress resistance publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.07.019 – volume: 7 start-page: 1415 issue: 8 year: 2008 ident: 10.1016/j.abb.2024.110227_bib36 article-title: Grx6 and Grx7 are monothiol glutaredoxins associated with the early secretory pathway publication-title: Eukaryot. Cell doi: 10.1128/EC.00133-08 – volume: 11 issue: 3 year: 2015 ident: 10.1016/j.abb.2024.110227_bib32 article-title: A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast publication-title: PLoS Genet. – volume: 584 start-page: 1379 issue: 7 year: 2010 ident: 10.1016/j.abb.2024.110227_bib19 article-title: Atg8-family interacting motif crucial for selective autophagy publication-title: FEBS Lett. doi: 10.1016/j.febslet.2010.01.018 – volume: 435 start-page: 103 year: 2011 ident: 10.1016/j.abb.2024.110227_bib25 article-title: The fission yeast has two distinct tRNase Zs encoded by two different genes and differentially targeted to the nucleus and mitochondria publication-title: Biochem. J. doi: 10.1042/BJ20101619 – volume: 22 start-page: 159 issue: 2 year: 2020 ident: 10.1016/j.abb.2024.110227_bib52 article-title: Selective autophagy degrades nuclear pore complexes publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0459-2 |
SSID | ssj0011462 |
Score | 2.4572833 |
Snippet | Glutaredoxins (Grxs) are small, heat-stable proteins that serve as multi-functional glutathione (GSH)-dependent thiol transferases. Recent studies have... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 110227 |
SubjectTerms | Autophagy biophysics dithiothreitol domain endoplasmic reticulum Endoplasmic Reticulum Stress ER stress Glutaredoxins Glutaredoxins - chemistry Glutaredoxins - genetics Glutaredoxins - metabolism glutathione heat stability homeostasis iron Iron - metabolism Iron homeostasis Nitrogen - metabolism S. pombe Schizosaccharomyces - cytology Schizosaccharomyces - genetics Schizosaccharomyces - metabolism Schizosaccharomyces pombe Schizosaccharomyces pombe Proteins - chemistry Schizosaccharomyces pombe Proteins - genetics Schizosaccharomyces pombe Proteins - metabolism starvation thiols transferases vacuoles |
Title | Schizosaccharomyces pombe Grx4 is subject to autophagic degradation under nitrogen- and iron- starvation and ER-stress |
URI | https://dx.doi.org/10.1016/j.abb.2024.110227 https://www.ncbi.nlm.nih.gov/pubmed/39603377 https://www.proquest.com/docview/3133735639 https://www.proquest.com/docview/3154249239 |
Volume | 764 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYmJaSX0NhJk7YxKpQeAorXu9rV7tE1cZ2G-NAmkJvQa8GB7Bo_SnLpb--MdmUoJDn0JoQkxMwwD2m-GUK-CCe0MqVhOR86xhOjYZRnrLDalo4bsPqIHb6eZdNb_uMuveuQccDCYFplq_sbne61dTszaKk5WMzniPGNkiIHC819kRVElHMuUMrP_2zTPBB0G4euebg6_Gz6HC-lNYSIMcdk-Bgbyzxvm17yPb0Nmrwj-63zSEfN_Q5Ix1Vd0htVEDg_PNGv1Kdz-nfyLtn9FkZ749DUrUd-__JJditlEG4Fu0BN0EX9oB39vnzkdL6iq43Gtxm6rqnaYNkBBcqRWiwq0fRfoog7W1LQBcsaxI9RVVmKaDlGwdVs33j95MVP1mBRDsnt5OJmPGVt6wVmIGZdM5sWhY25zoSKIaCLnBkal5TCgEdmc1MWfBiVNldFpIvc2cjk-EWaKQ10zWNRJkdkp6ord0yoVbHjQhdWaQWW0OoUjjIYhxrwhjJ-Qs4C0eWiqbAhQ-rZvQQOSeSQbDh0Qnhgi_xHTCRYgNe2fQ4slEBw_BNRlas3K5lAjC6SFPy019akHAsr4pr3Df-3N00gAoQTxIf_u9hH8jbGhsI-DfwT2VkvN-4UvJy17nsx7pM3o8ur6ewvI2f7uA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_sidiXUrUf9kNTkD4Ugnu72c3u4_VQz6r3YBV8C_lauIK7x32U9r_vTHYjCK0PfQshCWEmzPwm8wVwJL002taWl2LouciswVFZ8MoZV3thUetT7vDVtJjcim93-d0GjGMuDIVV9rK_k-lBWvczxz01j-ezGeX4JllVooYWociKfAabVJ0qH8Dm6PxiMn1wJqAwSGPjPNoQnZshzEsbg1ZiKigePqXeMn9XT_-Cn0ENnb6EFz1-ZKPuijuw4Ztd2Bs1aDvf_2afWYjoDF_lu7D1NY62x7Gv2x78_B7i7JbaUsYV7kJJwebtvfHsbPFLsNmSLdeGvmfYqmV6TZUHNMpH5qiuRNeCiVHq2YKhOFi0-AI5041jlDDHGaLN_ps3TJ5c8y4d5RXcnp7cjCe8777ALZqtK-7yqnKpMIXUKdp0ibdD67NaWgRlrrR1JYZJ7UpdJaYqvUtsSV7SQhuka5nKOnsNg6Zt_FtgTqdeSFM5bTQqQ2dyPMqSKWoREBViH75Eoqt5V2RDxeizHwo5pIhDquPQPojIFvXopShUAk9t-xRZqJDg5BbRjW_XS5WhmS6zHKHaU2tyQbUVac2bjv8PN83QCMQT5Lv_u9ghbE9uri7V5fn04j08T6m_cIgK_wCD1WLtPyLoWZmD_lH_AcPe_mk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Schizosaccharomyces+pombe+Grx4+is+subject+to+autophagic+degradation+under+nitrogen-+and+iron-+starvation+and+ER-stress&rft.jtitle=Archives+of+biochemistry+and+biophysics&rft.au=Li%2C+Rong&rft.au=Huang%2C+Ying&rft.date=2025-02-01&rft.issn=0003-9861&rft.volume=764+p.110227-&rft_id=info:doi/10.1016%2Fj.abb.2024.110227&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-9861&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-9861&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-9861&client=summon |