Schizosaccharomyces pombe Grx4 is subject to autophagic degradation under nitrogen- and iron- starvation and ER-stress

Glutaredoxins (Grxs) are small, heat-stable proteins that serve as multi-functional glutathione (GSH)-dependent thiol transferases. Recent studies have elucidated their role in regulating cellular iron and copper homeostases. In Schizosaccharomyces pombe, five Grxs (Grx1-5) have been identified. Amo...

Full description

Saved in:
Bibliographic Details
Published inArchives of biochemistry and biophysics Vol. 764; p. 110227
Main Authors Li, Rong, Huang, Ying
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Glutaredoxins (Grxs) are small, heat-stable proteins that serve as multi-functional glutathione (GSH)-dependent thiol transferases. Recent studies have elucidated their role in regulating cellular iron and copper homeostases. In Schizosaccharomyces pombe, five Grxs (Grx1-5) have been identified. Among them, Grx4 and its homologs possess a C-terminal glutaredoxin domain (GRX) and an N-terminal thioredoxin-like domain (TRX). The functional roles of the GRX and TRX domains in Grx4 were investigated by constructing strains that express a truncated Grx4 under the regulation of either a constitutive cam1 promoter or its native promoter. Our findings indicated that two autophagy-related (Atg) protein 8 (Atg8)-interacting motifs (AIM), FLKI and FQEI, in the TRX domain of Grx4 are sufficient to induce autophagic degradation under nitrogen- and iron-starvation, respectively. Moreover, the expression level of a vacuolar ferrous iron transporter Pcl1 was altered in Δatg5 or Δatg8 strains under iron starvation,suggesting that autophagy is required for maintaining iron homeostasis in S. pombe. Further investigations revealed that Grx4 is required for cellular survival and endoplasmic reticulum (ER) autophagy (ER-phagy) during dithiothreitol (DTT) treatment, implying a potential correlation between Grxs and ER-stress. Additionally, loss of Grx4 disrupts nuclear integrity during ER stress, highlighting the versatility and importance of further investigations into the functions of Grx4. [Display omitted] •Grx4 is degraded via autophagy under nitrogen or iron starvation.•The AIM motifs FLKI and FQEI are responsible for the recognition and binding of Atg8 for autophagy.•Autophagic degradation of Grx4 is essential for maintaining iron homeostasis.•Grx4 is required for cellular survival and ER-phagy during DTT treatment.
AbstractList Glutaredoxins (Grxs) are small, heat-stable proteins that serve as multi-functional glutathione (GSH)-dependent thiol transferases. Recent studies have elucidated their role in regulating cellular iron and copper homeostases. In Schizosaccharomyces pombe, five Grxs (Grx1-5) have been identified. Among them, Grx4 and its homologs possess a C-terminal glutaredoxin domain (GRX) and an N-terminal thioredoxin-like domain (TRX). The functional roles of the GRX and TRX domains in Grx4 were investigated by constructing strains that express a truncated Grx4 under the regulation of either a constitutive cam1 promoter or its native promoter. Our findings indicated that two autophagy-related (Atg) protein 8 (Atg8)-interacting motifs (AIM), FLKI and FQEI, in the TRX domain of Grx4 are sufficient to induce autophagic degradation under nitrogen- and iron-starvation, respectively. Moreover, the expression level of a vacuolar ferrous iron transporter Pcl1 was altered in Δatg5 or Δatg8 strains under iron starvation,suggesting that autophagy is required for maintaining iron homeostasis in S. pombe. Further investigations revealed that Grx4 is required for cellular survival and endoplasmic reticulum (ER) autophagy (ER-phagy) during dithiothreitol (DTT) treatment, implying a potential correlation between Grxs and ER-stress. Additionally, loss of Grx4 disrupts nuclear integrity during ER stress, highlighting the versatility and importance of further investigations into the functions of Grx4.Glutaredoxins (Grxs) are small, heat-stable proteins that serve as multi-functional glutathione (GSH)-dependent thiol transferases. Recent studies have elucidated their role in regulating cellular iron and copper homeostases. In Schizosaccharomyces pombe, five Grxs (Grx1-5) have been identified. Among them, Grx4 and its homologs possess a C-terminal glutaredoxin domain (GRX) and an N-terminal thioredoxin-like domain (TRX). The functional roles of the GRX and TRX domains in Grx4 were investigated by constructing strains that express a truncated Grx4 under the regulation of either a constitutive cam1 promoter or its native promoter. Our findings indicated that two autophagy-related (Atg) protein 8 (Atg8)-interacting motifs (AIM), FLKI and FQEI, in the TRX domain of Grx4 are sufficient to induce autophagic degradation under nitrogen- and iron-starvation, respectively. Moreover, the expression level of a vacuolar ferrous iron transporter Pcl1 was altered in Δatg5 or Δatg8 strains under iron starvation,suggesting that autophagy is required for maintaining iron homeostasis in S. pombe. Further investigations revealed that Grx4 is required for cellular survival and endoplasmic reticulum (ER) autophagy (ER-phagy) during dithiothreitol (DTT) treatment, implying a potential correlation between Grxs and ER-stress. Additionally, loss of Grx4 disrupts nuclear integrity during ER stress, highlighting the versatility and importance of further investigations into the functions of Grx4.
Glutaredoxins (Grxs) are small, heat-stable proteins that serve as multi-functional glutathione (GSH)-dependent thiol transferases. Recent studies have elucidated their role in regulating cellular iron and copper homeostases. In Schizosaccharomyces pombe, five Grxs (Grx1-5) have been identified. Among them, Grx4 and its homologs possess a C-terminal glutaredoxin domain (GRX) and an N-terminal thioredoxin-like domain (TRX). The functional roles of the GRX and TRX domains in Grx4 were investigated by constructing strains that express a truncated Grx4 under the regulation of either a constitutive cam1 promoter or its native promoter. Our findings indicated that two autophagy-related (Atg) protein 8 (Atg8)-interacting motifs (AIM), FLKI and FQEI, in the TRX domain of Grx4 are sufficient to induce autophagic degradation under nitrogen- and iron-starvation, respectively. Moreover, the expression level of a vacuolar ferrous iron transporter Pcl1 was altered in Δatg5 or Δatg8 strains under iron starvation,suggesting that autophagy is required for maintaining iron homeostasis in S. pombe. Further investigations revealed that Grx4 is required for cellular survival and endoplasmic reticulum (ER) autophagy (ER-phagy) during dithiothreitol (DTT) treatment, implying a potential correlation between Grxs and ER-stress. Additionally, loss of Grx4 disrupts nuclear integrity during ER stress, highlighting the versatility and importance of further investigations into the functions of Grx4.
Glutaredoxins (Grxs) are small, heat-stable proteins that serve as multi-functional glutathione (GSH)-dependent thiol transferases. Recent studies have elucidated their role in regulating cellular iron and copper homeostases. In Schizosaccharomyces pombe, five Grxs (Grx1-5) have been identified. Among them, Grx4 and its homologs possess a C-terminal glutaredoxin domain (GRX) and an N-terminal thioredoxin-like domain (TRX). The functional roles of the GRX and TRX domains in Grx4 were investigated by constructing strains that express a truncated Grx4 under the regulation of either a constitutive cam1 promoter or its native promoter. Our findings indicated that two autophagy-related (Atg) protein 8 (Atg8)-interacting motifs (AIM), FLKI and FQEI, in the TRX domain of Grx4 are sufficient to induce autophagic degradation under nitrogen- and iron-starvation, respectively. Moreover, the expression level of a vacuolar ferrous iron transporter Pcl1 was altered in Δatg5 or Δatg8 strains under iron starvation,suggesting that autophagy is required for maintaining iron homeostasis in S. pombe. Further investigations revealed that Grx4 is required for cellular survival and endoplasmic reticulum (ER) autophagy (ER-phagy) during dithiothreitol (DTT) treatment, implying a potential correlation between Grxs and ER-stress. Additionally, loss of Grx4 disrupts nuclear integrity during ER stress, highlighting the versatility and importance of further investigations into the functions of Grx4. [Display omitted] •Grx4 is degraded via autophagy under nitrogen or iron starvation.•The AIM motifs FLKI and FQEI are responsible for the recognition and binding of Atg8 for autophagy.•Autophagic degradation of Grx4 is essential for maintaining iron homeostasis.•Grx4 is required for cellular survival and ER-phagy during DTT treatment.
ArticleNumber 110227
Author Huang, Ying
Li, Rong
Author_xml – sequence: 1
  givenname: Rong
  surname: Li
  fullname: Li, Rong
– sequence: 2
  givenname: Ying
  surname: Huang
  fullname: Huang, Ying
  email: yhuang@njnu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39603377$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vEzEQhi1URNPCD-CCfOSyYfwR71qcUFUKUiUkPs6W155NHGXtYHsjyq9nwxaOiNOMRs87h-e9IhcxRSTkJYM1A6be7Ne279ccuFwzBpy3T8iKgVYNiE5ekBUAiEZ3il2Sq1L2AIxJxZ-RS6EVCNG2K3L64nbhZyrWuZ3NaXxwWOgxjT3Su_xD0lBomfo9ukpronaq6biz2-Cox2223taQIp2ix0xjqDltMTbURk9DTvNWqs2nBTofbz83pWYs5Tl5OthDwReP85p8e3_79eZDc__p7uPNu_vGCdHVxm-09lz2qrVcsxbQMYdiaB3oje_coCWDwXdWQ6879OA6kEoq2892Ot4O4pq8Xv4ec_o-YalmDMXh4WAjpqkYwTaSS82F_g90NiY26jf66hGd-hG9OeYw2vxg_midAbYALqdSMg5_EQbmXJ3Zm7k6c67OLNXNmbdLBmcfp4DZFBcwOvQhz_qNT-Ef6V_qEaBd
Cites_doi 10.1038/sj.cdd.4401765
10.1272/jnms.JNMS.2024_91-102
10.1021/acs.jafc.0c04789
10.1039/C7MT00144D
10.1247/csf.28.49
10.1128/EC.00199-06
10.1089/ars.2008.2089
10.1016/j.jmb.2019.07.016
10.1039/C7SC04416J
10.1002/cfg.406
10.1110/ps.062268106
10.1080/15548627.2016.1217381
10.1007/s00018-009-0054-y
10.3389/fphys.2021.604210
10.1089/ars.2009.2683
10.1089/ars.2017.7132
10.3390/molecules25173860
10.1016/j.bbabio.2020.148317
10.1007/s00018-007-6554-8
10.1242/jcs.259725
10.1186/gb-2011-12-7-226
10.1271/bbb.60087
10.3390/ijms25084368
10.3109/10715762.2015.1120864
10.1042/BJ20101286
10.1093/jxb/erl001
10.1089/ars.2012.5007
10.1016/j.mam.2008.08.006
10.1016/j.bbamcr.2008.01.023
10.1016/j.cbpa.2020.02.008
10.1038/nrm2708
10.1091/mbc.e12-09-0644
10.1093/nar/gks141
10.1186/1471-2148-9-66
10.1091/mbc.e14-06-1137
10.1091/mbc.e07-09-0896
10.1016/j.bbrc.2023.01.095
10.1016/j.bbamcr.2014.09.018
10.1016/j.semcdb.2018.09.013
10.1371/journal.pbio.3002372
10.1091/mbc.e03-07-0479
10.1016/j.bulcan.2020.11.004
10.1111/j.1365-2443.2008.01238.x
10.1111/tpj.16687
10.1016/j.molcel.2020.07.019
10.1128/EC.00133-08
10.1016/j.febslet.2010.01.018
10.1042/BJ20101619
10.1038/s41556-019-0459-2
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright © 2024 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Inc.
– notice: Copyright © 2024 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.abb.2024.110227
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1096-0384
ExternalDocumentID 39603377
10_1016_j_abb_2024_110227
S0003986124003497
Genre Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.55
.GJ
.HR
.~1
0R~
1B1
1RT
1~.
1~5
23M
3O-
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABPPZ
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ACRPL
ADBBV
ADEZE
ADFGL
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IH2
IHE
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
MVM
N9A
NEJ
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
TWZ
UQL
VH1
WH7
WUQ
X7M
XOL
XPP
YYP
ZGI
ZMT
ZXP
~02
~G-
~KM
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c338t-d599d24b67a29170ec1ce3f7c095d8cf9410fd8a90b98ed0c804646ab016827f3
IEDL.DBID .~1
ISSN 0003-9861
1096-0384
IngestDate Thu Jul 10 17:26:02 EDT 2025
Tue Aug 05 10:56:50 EDT 2025
Mon Jul 21 06:04:15 EDT 2025
Tue Jul 01 01:32:11 EDT 2025
Sat Jan 25 15:59:31 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Iron homeostasis
GSSH
Atgs
Grxs
AIM
Glutaredoxins
ER stress
GRX
Autophagy
ER
ER-phagy
S. pombe
CMA
ROS
TRX
GSH
Trxs
Language English
License Copyright © 2024 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-d599d24b67a29170ec1ce3f7c095d8cf9410fd8a90b98ed0c804646ab016827f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39603377
PQID 3133735639
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3154249239
proquest_miscellaneous_3133735639
pubmed_primary_39603377
crossref_primary_10_1016_j_abb_2024_110227
elsevier_sciencedirect_doi_10_1016_j_abb_2024_110227
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Archives of biochemistry and biophysics
PublicationTitleAlternate Arch Biochem Biophys
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Yorimitsu, Klionsky (bib15) 2005; 12
Noda, Ohsumi, Inagaki (bib19) 2010; 584
Pan, Bardwell (bib45) 2006; 15
Netto, De Oliveira, Tairum (bib10) 2016; 50
Liaghati, Pileggi, Parmar (bib22) 2021; 12
Perrone, Tan, Dawes (bib7) 2008; 1783
Alves, Vilaprinyo, Sorribas (bib29) 2009; 9
Johansson, Roos, Montano (bib30) 2011; 433
Mesecke, Spang, Deponte (bib42) 2008; 19
Cao, Li, Yang (bib14) 2021; 108
Ukuwela, Bush, Wedd (bib3) 2018; 9
Dlouhy, Beaudoin, Labbé (bib34) 2017; 9
Schuck, Gallagher, Walter (bib37) 2014; 127
Mehrtash, Hochstrasser (bib49) 2019; 93
Cheng, Donelson, Breton (bib21) 2023; 649
Zhao, Zou, Liu (bib24) 2020; 79
Daniel, Faruq, Magdalena (bib39) 2020; 25
Puigpinós, Casas, Herrero (bib47) 2015; 26
Reggiori, Wang, Nair (bib41) 2004; 15
Lee, Wilfling, Ronchi (bib52) 2020; 22
Ahsan, Lekli, Ray (bib1) 2009; 11
Mieyal, Gallogly, Qanungo (bib9) 2008; 10
Couturier, Jacquot, Rouhier (bib5) 2009; 66
Johansen, Lamark (bib20) 2020; 432
Forman, Zhang, Rinna (bib2) 2009; 30
Rouhier, Couturier, Jacquot (bib6) 2006; 57
Shpilka, Weidberg, Pietrokovski (bib18) 2011; 12
Izquierdo, Casas, Mühlenhoff (bib36) 2008; 7
Zou, Ma, Jiang (bib50) 2023; 21
Matsuo, Asakawa, Toda (bib26) 2006; 70
Gupta, Outten (bib35) 2020; 55
Couturier, Przybyla-Toscano, Roret (bib12) 2015; 1853
Nakatogawa, Suzuki, Kamada (bib17) 2009; 10
Del Dedo, Gabrielli, Carmona (bib32) 2015; 11
Berndt, Christ, Rouhier (bib13) 2021; 1862
Yamamoto, Matsui (bib16) 2024; 91
López-Huertas, Palma (bib8) 2020; 68
Lillig, Berndt (bib11) 2013; 18
Vilella, Alves, Rodríguez-Manzaneque (bib28) 2004; 5
Schlösser, Moseler, Bodnar (bib46) 2024; 118
Gan, Yang, Li (bib25) 2011; 435
Luo, Zhao, Song (bib51) 2016; 12
Mercier, Pelletier, Labbé (bib23) 2006; 5
Herrero, De La Torre-Ruiz (bib4) 2007; 64
Uzarska, Dutkiewicz, Freibert (bib31) 2013; 24
Nieto-Torres, Zaretski, Liu (bib33) 2023; 136
Berndt, Lillig (bib43) 2017; 27
Calvo, García, Ayté (bib27) 2012; 40
Noda, Kumeta, Nakatogawa (bib44) 2008; 13
Kapuy (bib48) 2024; 25
Chai, Mieyal (bib38) 2023; 12
Hamasaki, Noda, Ohsumi (bib40) 2003; 28
Herrero (10.1016/j.abb.2024.110227_bib4) 2007; 64
Mercier (10.1016/j.abb.2024.110227_bib23) 2006; 5
Cheng (10.1016/j.abb.2024.110227_bib21) 2023; 649
Dlouhy (10.1016/j.abb.2024.110227_bib34) 2017; 9
Matsuo (10.1016/j.abb.2024.110227_bib26) 2006; 70
Cao (10.1016/j.abb.2024.110227_bib14) 2021; 108
Johansen (10.1016/j.abb.2024.110227_bib20) 2020; 432
Johansson (10.1016/j.abb.2024.110227_bib30) 2011; 433
Noda (10.1016/j.abb.2024.110227_bib44) 2008; 13
Couturier (10.1016/j.abb.2024.110227_bib5) 2009; 66
Mieyal (10.1016/j.abb.2024.110227_bib9) 2008; 10
Lee (10.1016/j.abb.2024.110227_bib52) 2020; 22
Gupta (10.1016/j.abb.2024.110227_bib35) 2020; 55
Netto (10.1016/j.abb.2024.110227_bib10) 2016; 50
Nakatogawa (10.1016/j.abb.2024.110227_bib17) 2009; 10
Daniel (10.1016/j.abb.2024.110227_bib39) 2020; 25
Del Dedo (10.1016/j.abb.2024.110227_bib32) 2015; 11
López-Huertas (10.1016/j.abb.2024.110227_bib8) 2020; 68
Nieto-Torres (10.1016/j.abb.2024.110227_bib33) 2023; 136
Chai (10.1016/j.abb.2024.110227_bib38) 2023; 12
Hamasaki (10.1016/j.abb.2024.110227_bib40) 2003; 28
Vilella (10.1016/j.abb.2024.110227_bib28) 2004; 5
Kapuy (10.1016/j.abb.2024.110227_bib48) 2024; 25
Zhao (10.1016/j.abb.2024.110227_bib24) 2020; 79
Calvo (10.1016/j.abb.2024.110227_bib27) 2012; 40
Yamamoto (10.1016/j.abb.2024.110227_bib16) 2024; 91
Liaghati (10.1016/j.abb.2024.110227_bib22) 2021; 12
Uzarska (10.1016/j.abb.2024.110227_bib31) 2013; 24
Yorimitsu (10.1016/j.abb.2024.110227_bib15) 2005; 12
Noda (10.1016/j.abb.2024.110227_bib19) 2010; 584
Izquierdo (10.1016/j.abb.2024.110227_bib36) 2008; 7
Mesecke (10.1016/j.abb.2024.110227_bib42) 2008; 19
Lillig (10.1016/j.abb.2024.110227_bib11) 2013; 18
Gan (10.1016/j.abb.2024.110227_bib25) 2011; 435
Mehrtash (10.1016/j.abb.2024.110227_bib49) 2019; 93
Berndt (10.1016/j.abb.2024.110227_bib13) 2021; 1862
Luo (10.1016/j.abb.2024.110227_bib51) 2016; 12
Pan (10.1016/j.abb.2024.110227_bib45) 2006; 15
Berndt (10.1016/j.abb.2024.110227_bib43) 2017; 27
Reggiori (10.1016/j.abb.2024.110227_bib41) 2004; 15
Ukuwela (10.1016/j.abb.2024.110227_bib3) 2018; 9
Schuck (10.1016/j.abb.2024.110227_bib37) 2014; 127
Shpilka (10.1016/j.abb.2024.110227_bib18) 2011; 12
Couturier (10.1016/j.abb.2024.110227_bib12) 2015; 1853
Alves (10.1016/j.abb.2024.110227_bib29) 2009; 9
Rouhier (10.1016/j.abb.2024.110227_bib6) 2006; 57
Puigpinós (10.1016/j.abb.2024.110227_bib47) 2015; 26
Forman (10.1016/j.abb.2024.110227_bib2) 2009; 30
Perrone (10.1016/j.abb.2024.110227_bib7) 2008; 1783
Schlösser (10.1016/j.abb.2024.110227_bib46) 2024; 118
Ahsan (10.1016/j.abb.2024.110227_bib1) 2009; 11
Zou (10.1016/j.abb.2024.110227_bib50) 2023; 21
References_xml – volume: 21
  year: 2023
  ident: bib50
  article-title: The ortholog of human REEP1-4 is required for autophagosomal enclosure of ER-phagy/nucleophagy cargos in fission yeast
  publication-title: PLoS Biol.
– volume: 432
  start-page: 80
  year: 2020
  end-page: 103
  ident: bib20
  article-title: Selective autophagy: ATG8 family proteins, LIR motifs and cargo receptors
  publication-title: J. Mol. Biol.
– volume: 11
  start-page: 2741
  year: 2009
  end-page: 2758
  ident: bib1
  article-title: Redox regulation of cell survival by the thioredoxin superfamily: an implication of redox gene therapy in the heart
  publication-title: Antioxidants Redox Signal.
– volume: 13
  start-page: 1211
  year: 2008
  end-page: 1218
  ident: bib44
  article-title: Structural basis of target recognition by Atg8/LC3 during selective autophagy
  publication-title: Gene Cell.
– volume: 12
  start-page: 1542
  year: 2005
  end-page: 1552
  ident: bib15
  article-title: Autophagy: molecular machinery for self-eating
  publication-title: Cell Death Differ.
– volume: 15
  start-page: 2189
  year: 2004
  end-page: 2204
  ident: bib41
  article-title: Early stages of the secretory pathway, but not endosomes, are required for cvt vesicle and autophagosome assembly in
  publication-title: Mol. Biol. Cell
– volume: 9
  year: 2009
  ident: bib29
  article-title: Evolution based on domain combinations: the case of glutaredoxins
  publication-title: BMC Evol. Biol.
– volume: 57
  start-page: 1685
  year: 2006
  end-page: 1696
  ident: bib6
  article-title: Genome-wide analysis of plant glutaredoxin systems
  publication-title: J. Exp. Bot.
– volume: 15
  start-page: 2217
  year: 2006
  end-page: 2227
  ident: bib45
  article-title: The origami of thioredoxin-like folds
  publication-title: Protein Sci.
– volume: 22
  start-page: 159
  year: 2020
  end-page: 166
  ident: bib52
  article-title: Selective autophagy degrades nuclear pore complexes
  publication-title: Nat. Cell Biol.
– volume: 91
  start-page: 2
  year: 2024
  end-page: 9
  ident: bib16
  article-title: Molecular mechanisms of macroautophagy, microautophagy, and chaperone-mediated autophagy
  publication-title: J. Nippon Med. Sch.
– volume: 93
  start-page: 111
  year: 2019
  end-page: 124
  ident: bib49
  article-title: Ubiquitin-dependent protein degradation at the endoplasmic reticulum and nuclear envelope
  publication-title: Semin. Cell Dev. Biol.
– volume: 55
  start-page: 189
  year: 2020
  end-page: 201
  ident: bib35
  article-title: Iron-sulfur cluster signaling: the common thread in fungal iron regulation
  publication-title: Curr. Opin. Chem. Biol.
– volume: 27
  start-page: 1235
  year: 2017
  end-page: 1251
  ident: bib43
  article-title: Glutathione, glutaredoxins, and iron
  publication-title: Antioxidants Redox Signal.
– volume: 12
  start-page: 1973
  year: 2016
  end-page: 1983
  ident: bib51
  article-title: Nuclear autophagy: an evolutionarily conserved mechanism of nuclear degradation in the cytoplasm
  publication-title: Autophagy
– volume: 24
  start-page: 1830
  year: 2013
  end-page: 1841
  ident: bib31
  article-title: The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation
  publication-title: Mol. Biol. Cell
– volume: 136
  year: 2023
  ident: bib33
  article-title: Post-translational modifications of ATG8 proteins - an emerging mechanism of autophagy control
  publication-title: J. Cell Sci.
– volume: 9
  start-page: 1173
  year: 2018
  end-page: 1183
  ident: bib3
  article-title: Glutaredoxins employ parallel monothiol-dithiol mechanisms to catalyze thiol-disulfide exchanges with protein disulfides
  publication-title: Chem. Sci.
– volume: 127
  start-page: 4078
  year: 2014
  end-page: 4088
  ident: bib37
  article-title: ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery
  publication-title: J. Cell Sci.
– volume: 28
  start-page: 49
  year: 2003
  end-page: 54
  ident: bib40
  article-title: The early secretory pathway contributes to autophagy in yeast
  publication-title: Cell Struct. Funct.
– volume: 50
  start-page: 206
  year: 2016
  end-page: 245
  ident: bib10
  article-title: Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions
  publication-title: Free Radic. Res.
– volume: 25
  year: 2020
  ident: bib39
  article-title: Role of GSH and iron-sulfur glutaredoxins in iron metabolism-review
  publication-title: Molecules
– volume: 26
  start-page: 104
  year: 2015
  end-page: 116
  ident: bib47
  article-title: Altered intracellular calcium homeostasis and endoplasmic reticulum redox state in cells lacking Grx6 glutaredoxin
  publication-title: Mol. Biol. Cell
– volume: 30
  start-page: 1
  year: 2009
  end-page: 12
  ident: bib2
  article-title: Glutathione: overview of its protective roles, measurement, and biosynthesis
  publication-title: Mol. Aspect. Med.
– volume: 5
  start-page: 328
  year: 2004
  end-page: 341
  ident: bib28
  article-title: Evolution and cellular function of monothiol glutaredoxins:: involvement in iron-sulphur cluster assembly
  publication-title: Comp. Funct. Genom.
– volume: 108
  start-page: 304
  year: 2021
  end-page: 322
  ident: bib14
  article-title: An overview of autophagy: mechanism, regulation and research progress
  publication-title: B Cancer
– volume: 1783
  start-page: 1354
  year: 2008
  end-page: 1368
  ident: bib7
  article-title: Reactive oxygen species and yeast apoptosis
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
– volume: 435
  start-page: 103
  year: 2011
  end-page: 111
  ident: bib25
  article-title: The fission yeast has two distinct tRNase Zs encoded by two different genes and differentially targeted to the nucleus and mitochondria
  publication-title: Biochem. J.
– volume: 25
  year: 2024
  ident: bib48
  article-title: Mechanism of decision making between autophagy and apoptosis induction upon endoplasmic reticulum stress
  publication-title: Int. J. Mol. Sci.
– volume: 1853
  start-page: 1513
  year: 2015
  end-page: 1527
  ident: bib12
  article-title: The roles of glutaredoxins ligating Fe-S clusters: sensing, transfer or repair functions?
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
– volume: 79
  start-page: 963
  year: 2020
  end-page: 977
  ident: bib24
  article-title: A UPR-induced soluble ER-phagy receptor acts with VAPs to confer ER stress resistance
  publication-title: Mol. Cell
– volume: 10
  start-page: 1941
  year: 2008
  end-page: 1988
  ident: bib9
  article-title: Molecular mechanisms and clinical implications of reversible protein-glutathionylation
  publication-title: Antioxidants Redox Signal.
– volume: 19
  start-page: 2673
  year: 2008
  end-page: 2680
  ident: bib42
  article-title: A novel group of glutaredoxins in the -Golgi critical for oxidative stress resistance
  publication-title: Mol. Biol. Cell
– volume: 5
  start-page: 1866
  year: 2006
  end-page: 1881
  ident: bib23
  article-title: A transcription factor cascade involving Fep1 and the CCAAT-binding factor Php4 regulates gene expression in response to iron deficiency in the fission yeast
  publication-title: Eukaryot. Cell
– volume: 68
  start-page: 12221
  year: 2020
  end-page: 12228
  ident: bib8
  article-title: Changes in glutathione, ascorbate, and antioxidant enzymes during olive fruit ripening
  publication-title: J. Agric. Food Chem.
– volume: 70
  start-page: 1992
  year: 2006
  end-page: 1994
  ident: bib26
  article-title: A rapid method for protein extraction from fission yeast
  publication-title: Biosc. Biotech. Biochem.
– volume: 1862
  year: 2021
  ident: bib13
  article-title: Glutaredoxins with iron-sulphur clusters in eukaryotes - structure, function and impact on disease
  publication-title: Biochim. Biophys. Acta Bioenerg.
– volume: 118
  start-page: 1455
  year: 2024
  end-page: 1474
  ident: bib46
  article-title: Localization of four class I glutaredoxins in the cytosol and the secretory pathway and characterization of their biochemical diversification
  publication-title: Plant J.
– volume: 9
  start-page: 1096
  year: 2017
  end-page: 1105
  ident: bib34
  article-title: Grx4 regulates the transcriptional repressor Php4 [2Fe-2S] cluster binding
  publication-title: Metallomics
– volume: 433
  start-page: 303
  year: 2011
  end-page: 311
  ident: bib30
  article-title: The crystal structure of human GLRX5: iron-sulfur cluster co-ordination, tetrameric assembly and monomer activity
  publication-title: Biochem. J.
– volume: 18
  start-page: 1654
  year: 2013
  end-page: 1665
  ident: bib11
  article-title: Glutaredoxins in thiol/disulfide exchange
  publication-title: Antioxidants Redox Signal.
– volume: 12
  year: 2011
  ident: bib18
  article-title: Atg8: an autophagy-related ubiquitin-like protein family
  publication-title: Genome Biol.
– volume: 10
  start-page: 458
  year: 2009
  end-page: 467
  ident: bib17
  article-title: Dynamics and diversity in autophagy mechanisms: lessons from yeast
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 7
  start-page: 1415
  year: 2008
  end-page: 1426
  ident: bib36
  article-title: Grx6 and Grx7 are monothiol glutaredoxins associated with the early secretory pathway
  publication-title: Eukaryot. Cell
– volume: 649
  start-page: 39
  year: 2023
  end-page: 46
  ident: bib21
  article-title: Liver specific disruption of Glutaredoxin 3 leads to iron accumulation and impaired cellular iron homeostasis
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 12
  year: 2021
  ident: bib22
  article-title: Regulates skeletal muscle mitochondrial structure and autophagy
  publication-title: Front. Physiol.
– volume: 40
  start-page: 4816
  year: 2012
  end-page: 4824
  ident: bib27
  article-title: The transcription factors Pap1 and Prr1 collaborate to activate antioxidant, but not drug tolerance, genes in response to HO
  publication-title: Nucleic Acids Res.
– volume: 11
  year: 2015
  ident: bib32
  article-title: A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast
  publication-title: PLoS Genet.
– volume: 584
  start-page: 1379
  year: 2010
  end-page: 1385
  ident: bib19
  article-title: Atg8-family interacting motif crucial for selective autophagy
  publication-title: FEBS Lett.
– volume: 64
  start-page: 1518
  year: 2007
  end-page: 1530
  ident: bib4
  article-title: Monothiol glutaredoxins: a common domain for multiple functions
  publication-title: Cell. Mol. Life Sci.
– volume: 12
  year: 2023
  ident: bib38
  article-title: Glutathione and glutaredoxin-key players in cellular redox homeostasis and signaling
  publication-title: Antioxidants-Basel
– volume: 66
  start-page: 2539
  year: 2009
  end-page: 2557
  ident: bib5
  article-title: Evolution and diversity of glutaredoxins in photosynthetic organisms
  publication-title: Cell. Mol. Life Sci.
– volume: 12
  start-page: 1542
  year: 2005
  ident: 10.1016/j.abb.2024.110227_bib15
  article-title: Autophagy: molecular machinery for self-eating
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4401765
– volume: 91
  start-page: 2
  issue: 1
  year: 2024
  ident: 10.1016/j.abb.2024.110227_bib16
  article-title: Molecular mechanisms of macroautophagy, microautophagy, and chaperone-mediated autophagy
  publication-title: J. Nippon Med. Sch.
  doi: 10.1272/jnms.JNMS.2024_91-102
– volume: 68
  start-page: 12221
  issue: 44
  year: 2020
  ident: 10.1016/j.abb.2024.110227_bib8
  article-title: Changes in glutathione, ascorbate, and antioxidant enzymes during olive fruit ripening
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.0c04789
– volume: 9
  start-page: 1096
  issue: 8
  year: 2017
  ident: 10.1016/j.abb.2024.110227_bib34
  article-title: Grx4 regulates the transcriptional repressor Php4 [2Fe-2S] cluster binding
  publication-title: Metallomics
  doi: 10.1039/C7MT00144D
– volume: 28
  start-page: 49
  issue: 1
  year: 2003
  ident: 10.1016/j.abb.2024.110227_bib40
  article-title: The early secretory pathway contributes to autophagy in yeast
  publication-title: Cell Struct. Funct.
  doi: 10.1247/csf.28.49
– volume: 5
  start-page: 1866
  issue: 11
  year: 2006
  ident: 10.1016/j.abb.2024.110227_bib23
  article-title: A transcription factor cascade involving Fep1 and the CCAAT-binding factor Php4 regulates gene expression in response to iron deficiency in the fission yeast
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.00199-06
– volume: 10
  start-page: 1941
  issue: 11
  year: 2008
  ident: 10.1016/j.abb.2024.110227_bib9
  article-title: Molecular mechanisms and clinical implications of reversible protein-glutathionylation
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2008.2089
– volume: 432
  start-page: 80
  issue: 1
  year: 2020
  ident: 10.1016/j.abb.2024.110227_bib20
  article-title: Selective autophagy: ATG8 family proteins, LIR motifs and cargo receptors
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2019.07.016
– volume: 9
  start-page: 1173
  issue: 5
  year: 2018
  ident: 10.1016/j.abb.2024.110227_bib3
  article-title: Glutaredoxins employ parallel monothiol-dithiol mechanisms to catalyze thiol-disulfide exchanges with protein disulfides
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC04416J
– volume: 5
  start-page: 328
  issue: 4
  year: 2004
  ident: 10.1016/j.abb.2024.110227_bib28
  article-title: Evolution and cellular function of monothiol glutaredoxins:: involvement in iron-sulphur cluster assembly
  publication-title: Comp. Funct. Genom.
  doi: 10.1002/cfg.406
– volume: 15
  start-page: 2217
  issue: 10
  year: 2006
  ident: 10.1016/j.abb.2024.110227_bib45
  article-title: The origami of thioredoxin-like folds
  publication-title: Protein Sci.
  doi: 10.1110/ps.062268106
– volume: 12
  start-page: 1973
  issue: 11
  year: 2016
  ident: 10.1016/j.abb.2024.110227_bib51
  article-title: Nuclear autophagy: an evolutionarily conserved mechanism of nuclear degradation in the cytoplasm
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1217381
– volume: 66
  start-page: 2539
  issue: 15
  year: 2009
  ident: 10.1016/j.abb.2024.110227_bib5
  article-title: Evolution and diversity of glutaredoxins in photosynthetic organisms
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-009-0054-y
– volume: 12
  year: 2021
  ident: 10.1016/j.abb.2024.110227_bib22
  article-title: Regulates skeletal muscle mitochondrial structure and autophagy
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2021.604210
– volume: 11
  start-page: 2741
  issue: 11
  year: 2009
  ident: 10.1016/j.abb.2024.110227_bib1
  article-title: Redox regulation of cell survival by the thioredoxin superfamily: an implication of redox gene therapy in the heart
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2009.2683
– volume: 27
  start-page: 1235
  issue: 15
  year: 2017
  ident: 10.1016/j.abb.2024.110227_bib43
  article-title: Glutathione, glutaredoxins, and iron
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2017.7132
– volume: 25
  issue: 17
  year: 2020
  ident: 10.1016/j.abb.2024.110227_bib39
  article-title: Role of GSH and iron-sulfur glutaredoxins in iron metabolism-review
  publication-title: Molecules
  doi: 10.3390/molecules25173860
– volume: 1862
  issue: 1
  year: 2021
  ident: 10.1016/j.abb.2024.110227_bib13
  article-title: Glutaredoxins with iron-sulphur clusters in eukaryotes - structure, function and impact on disease
  publication-title: Biochim. Biophys. Acta Bioenerg.
  doi: 10.1016/j.bbabio.2020.148317
– volume: 64
  start-page: 1518
  issue: 12
  year: 2007
  ident: 10.1016/j.abb.2024.110227_bib4
  article-title: Monothiol glutaredoxins: a common domain for multiple functions
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-007-6554-8
– volume: 136
  issue: 16
  year: 2023
  ident: 10.1016/j.abb.2024.110227_bib33
  article-title: Post-translational modifications of ATG8 proteins - an emerging mechanism of autophagy control
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.259725
– volume: 12
  issue: 7
  year: 2011
  ident: 10.1016/j.abb.2024.110227_bib18
  article-title: Atg8: an autophagy-related ubiquitin-like protein family
  publication-title: Genome Biol.
  doi: 10.1186/gb-2011-12-7-226
– volume: 70
  start-page: 1992
  issue: 8
  year: 2006
  ident: 10.1016/j.abb.2024.110227_bib26
  article-title: A rapid method for protein extraction from fission yeast
  publication-title: Biosc. Biotech. Biochem.
  doi: 10.1271/bbb.60087
– volume: 25
  issue: 8
  year: 2024
  ident: 10.1016/j.abb.2024.110227_bib48
  article-title: Mechanism of decision making between autophagy and apoptosis induction upon endoplasmic reticulum stress
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms25084368
– volume: 50
  start-page: 206
  issue: 2
  year: 2016
  ident: 10.1016/j.abb.2024.110227_bib10
  article-title: Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions
  publication-title: Free Radic. Res.
  doi: 10.3109/10715762.2015.1120864
– volume: 433
  start-page: 303
  year: 2011
  ident: 10.1016/j.abb.2024.110227_bib30
  article-title: The crystal structure of human GLRX5: iron-sulfur cluster co-ordination, tetrameric assembly and monomer activity
  publication-title: Biochem. J.
  doi: 10.1042/BJ20101286
– volume: 12
  issue: 8
  year: 2023
  ident: 10.1016/j.abb.2024.110227_bib38
  article-title: Glutathione and glutaredoxin-key players in cellular redox homeostasis and signaling
  publication-title: Antioxidants-Basel
– volume: 57
  start-page: 1685
  issue: 8
  year: 2006
  ident: 10.1016/j.abb.2024.110227_bib6
  article-title: Genome-wide analysis of plant glutaredoxin systems
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erl001
– volume: 18
  start-page: 1654
  issue: 13
  year: 2013
  ident: 10.1016/j.abb.2024.110227_bib11
  article-title: Glutaredoxins in thiol/disulfide exchange
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2012.5007
– volume: 30
  start-page: 1
  issue: 1–2
  year: 2009
  ident: 10.1016/j.abb.2024.110227_bib2
  article-title: Glutathione: overview of its protective roles, measurement, and biosynthesis
  publication-title: Mol. Aspect. Med.
  doi: 10.1016/j.mam.2008.08.006
– volume: 1783
  start-page: 1354
  issue: 7
  year: 2008
  ident: 10.1016/j.abb.2024.110227_bib7
  article-title: Reactive oxygen species and yeast apoptosis
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2008.01.023
– volume: 55
  start-page: 189
  year: 2020
  ident: 10.1016/j.abb.2024.110227_bib35
  article-title: Iron-sulfur cluster signaling: the common thread in fungal iron regulation
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2020.02.008
– volume: 10
  start-page: 458
  issue: 7
  year: 2009
  ident: 10.1016/j.abb.2024.110227_bib17
  article-title: Dynamics and diversity in autophagy mechanisms: lessons from yeast
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2708
– volume: 24
  start-page: 1830
  issue: 12
  year: 2013
  ident: 10.1016/j.abb.2024.110227_bib31
  article-title: The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e12-09-0644
– volume: 40
  start-page: 4816
  issue: 11
  year: 2012
  ident: 10.1016/j.abb.2024.110227_bib27
  article-title: The transcription factors Pap1 and Prr1 collaborate to activate antioxidant, but not drug tolerance, genes in response to HO
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks141
– volume: 9
  year: 2009
  ident: 10.1016/j.abb.2024.110227_bib29
  article-title: Evolution based on domain combinations: the case of glutaredoxins
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-9-66
– volume: 26
  start-page: 104
  issue: 1
  year: 2015
  ident: 10.1016/j.abb.2024.110227_bib47
  article-title: Altered intracellular calcium homeostasis and endoplasmic reticulum redox state in cells lacking Grx6 glutaredoxin
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e14-06-1137
– volume: 19
  start-page: 2673
  issue: 6
  year: 2008
  ident: 10.1016/j.abb.2024.110227_bib42
  article-title: A novel group of glutaredoxins in the -Golgi critical for oxidative stress resistance
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e07-09-0896
– volume: 127
  start-page: 4078
  issue: 18
  year: 2014
  ident: 10.1016/j.abb.2024.110227_bib37
  article-title: ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery
  publication-title: J. Cell Sci.
– volume: 649
  start-page: 39
  year: 2023
  ident: 10.1016/j.abb.2024.110227_bib21
  article-title: Liver specific disruption of Glutaredoxin 3 leads to iron accumulation and impaired cellular iron homeostasis
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2023.01.095
– volume: 1853
  start-page: 1513
  issue: 6
  year: 2015
  ident: 10.1016/j.abb.2024.110227_bib12
  article-title: The roles of glutaredoxins ligating Fe-S clusters: sensing, transfer or repair functions?
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2014.09.018
– volume: 93
  start-page: 111
  year: 2019
  ident: 10.1016/j.abb.2024.110227_bib49
  article-title: Ubiquitin-dependent protein degradation at the endoplasmic reticulum and nuclear envelope
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2018.09.013
– volume: 21
  issue: 11
  year: 2023
  ident: 10.1016/j.abb.2024.110227_bib50
  article-title: The ortholog of human REEP1-4 is required for autophagosomal enclosure of ER-phagy/nucleophagy cargos in fission yeast
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3002372
– volume: 15
  start-page: 2189
  issue: 5
  year: 2004
  ident: 10.1016/j.abb.2024.110227_bib41
  article-title: Early stages of the secretory pathway, but not endosomes, are required for cvt vesicle and autophagosome assembly in
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e03-07-0479
– volume: 108
  start-page: 304
  issue: 3
  year: 2021
  ident: 10.1016/j.abb.2024.110227_bib14
  article-title: An overview of autophagy: mechanism, regulation and research progress
  publication-title: B Cancer
  doi: 10.1016/j.bulcan.2020.11.004
– volume: 13
  start-page: 1211
  issue: 12
  year: 2008
  ident: 10.1016/j.abb.2024.110227_bib44
  article-title: Structural basis of target recognition by Atg8/LC3 during selective autophagy
  publication-title: Gene Cell.
  doi: 10.1111/j.1365-2443.2008.01238.x
– volume: 118
  start-page: 1455
  issue: 5
  year: 2024
  ident: 10.1016/j.abb.2024.110227_bib46
  article-title: Localization of four class I glutaredoxins in the cytosol and the secretory pathway and characterization of their biochemical diversification
  publication-title: Plant J.
  doi: 10.1111/tpj.16687
– volume: 79
  start-page: 963
  issue: 6
  year: 2020
  ident: 10.1016/j.abb.2024.110227_bib24
  article-title: A UPR-induced soluble ER-phagy receptor acts with VAPs to confer ER stress resistance
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.07.019
– volume: 7
  start-page: 1415
  issue: 8
  year: 2008
  ident: 10.1016/j.abb.2024.110227_bib36
  article-title: Grx6 and Grx7 are monothiol glutaredoxins associated with the early secretory pathway
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.00133-08
– volume: 11
  issue: 3
  year: 2015
  ident: 10.1016/j.abb.2024.110227_bib32
  article-title: A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast
  publication-title: PLoS Genet.
– volume: 584
  start-page: 1379
  issue: 7
  year: 2010
  ident: 10.1016/j.abb.2024.110227_bib19
  article-title: Atg8-family interacting motif crucial for selective autophagy
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2010.01.018
– volume: 435
  start-page: 103
  year: 2011
  ident: 10.1016/j.abb.2024.110227_bib25
  article-title: The fission yeast has two distinct tRNase Zs encoded by two different genes and differentially targeted to the nucleus and mitochondria
  publication-title: Biochem. J.
  doi: 10.1042/BJ20101619
– volume: 22
  start-page: 159
  issue: 2
  year: 2020
  ident: 10.1016/j.abb.2024.110227_bib52
  article-title: Selective autophagy degrades nuclear pore complexes
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0459-2
SSID ssj0011462
Score 2.4572833
Snippet Glutaredoxins (Grxs) are small, heat-stable proteins that serve as multi-functional glutathione (GSH)-dependent thiol transferases. Recent studies have...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 110227
SubjectTerms Autophagy
biophysics
dithiothreitol
domain
endoplasmic reticulum
Endoplasmic Reticulum Stress
ER stress
Glutaredoxins
Glutaredoxins - chemistry
Glutaredoxins - genetics
Glutaredoxins - metabolism
glutathione
heat stability
homeostasis
iron
Iron - metabolism
Iron homeostasis
Nitrogen - metabolism
S. pombe
Schizosaccharomyces - cytology
Schizosaccharomyces - genetics
Schizosaccharomyces - metabolism
Schizosaccharomyces pombe
Schizosaccharomyces pombe Proteins - chemistry
Schizosaccharomyces pombe Proteins - genetics
Schizosaccharomyces pombe Proteins - metabolism
starvation
thiols
transferases
vacuoles
Title Schizosaccharomyces pombe Grx4 is subject to autophagic degradation under nitrogen- and iron- starvation and ER-stress
URI https://dx.doi.org/10.1016/j.abb.2024.110227
https://www.ncbi.nlm.nih.gov/pubmed/39603377
https://www.proquest.com/docview/3133735639
https://www.proquest.com/docview/3154249239
Volume 764
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYmJaSX0NhJk7YxKpQeAorXu9rV7tE1cZ2G-NAmkJvQa8GB7Bo_SnLpb--MdmUoJDn0JoQkxMwwD2m-GUK-CCe0MqVhOR86xhOjYZRnrLDalo4bsPqIHb6eZdNb_uMuveuQccDCYFplq_sbne61dTszaKk5WMzniPGNkiIHC819kRVElHMuUMrP_2zTPBB0G4euebg6_Gz6HC-lNYSIMcdk-Bgbyzxvm17yPb0Nmrwj-63zSEfN_Q5Ix1Vd0htVEDg_PNGv1Kdz-nfyLtn9FkZ749DUrUd-__JJditlEG4Fu0BN0EX9oB39vnzkdL6iq43Gtxm6rqnaYNkBBcqRWiwq0fRfoog7W1LQBcsaxI9RVVmKaDlGwdVs33j95MVP1mBRDsnt5OJmPGVt6wVmIGZdM5sWhY25zoSKIaCLnBkal5TCgEdmc1MWfBiVNldFpIvc2cjk-EWaKQ10zWNRJkdkp6ord0yoVbHjQhdWaQWW0OoUjjIYhxrwhjJ-Qs4C0eWiqbAhQ-rZvQQOSeSQbDh0Qnhgi_xHTCRYgNe2fQ4slEBw_BNRlas3K5lAjC6SFPy019akHAsr4pr3Df-3N00gAoQTxIf_u9hH8jbGhsI-DfwT2VkvN-4UvJy17nsx7pM3o8ur6ewvI2f7uA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_sidiXUrUf9kNTkD4Ugnu72c3u4_VQz6r3YBV8C_lauIK7x32U9r_vTHYjCK0PfQshCWEmzPwm8wVwJL002taWl2LouciswVFZ8MoZV3thUetT7vDVtJjcim93-d0GjGMuDIVV9rK_k-lBWvczxz01j-ezGeX4JllVooYWociKfAabVJ0qH8Dm6PxiMn1wJqAwSGPjPNoQnZshzEsbg1ZiKigePqXeMn9XT_-Cn0ENnb6EFz1-ZKPuijuw4Ztd2Bs1aDvf_2afWYjoDF_lu7D1NY62x7Gv2x78_B7i7JbaUsYV7kJJwebtvfHsbPFLsNmSLdeGvmfYqmV6TZUHNMpH5qiuRNeCiVHq2YKhOFi0-AI5041jlDDHGaLN_ps3TJ5c8y4d5RXcnp7cjCe8777ALZqtK-7yqnKpMIXUKdp0ibdD67NaWgRlrrR1JYZJ7UpdJaYqvUtsSV7SQhuka5nKOnsNg6Zt_FtgTqdeSFM5bTQqQ2dyPMqSKWoREBViH75Eoqt5V2RDxeizHwo5pIhDquPQPojIFvXopShUAk9t-xRZqJDg5BbRjW_XS5WhmS6zHKHaU2tyQbUVac2bjv8PN83QCMQT5Lv_u9ghbE9uri7V5fn04j08T6m_cIgK_wCD1WLtPyLoWZmD_lH_AcPe_mk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Schizosaccharomyces+pombe+Grx4+is+subject+to+autophagic+degradation+under+nitrogen-+and+iron-+starvation+and+ER-stress&rft.jtitle=Archives+of+biochemistry+and+biophysics&rft.au=Li%2C+Rong&rft.au=Huang%2C+Ying&rft.date=2025-02-01&rft.issn=0003-9861&rft.volume=764+p.110227-&rft_id=info:doi/10.1016%2Fj.abb.2024.110227&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-9861&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-9861&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-9861&client=summon