The DRESDYN project: liquid metal experiments on dynamo action and magnetorotational instability

Magnetic fields of planets, stars and galaxies are generated by self-excitation in moving electrically conducting fluids. Once produced, magnetic fields can play an active role in cosmic structure formation by destabilising rotational flows that would be otherwise hydrodynamically stable. For a long...

Full description

Saved in:
Bibliographic Details
Published inGeophysical and astrophysical fluid dynamics Vol. 113; no. 1-2; pp. 51 - 70
Main Authors Stefani, F., Gailitis, A., Gerbeth, G., Giesecke, A., Gundrum, Th, Rüdiger, G., Seilmayer, M., Vogt, T.
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 04.03.2019
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magnetic fields of planets, stars and galaxies are generated by self-excitation in moving electrically conducting fluids. Once produced, magnetic fields can play an active role in cosmic structure formation by destabilising rotational flows that would be otherwise hydrodynamically stable. For a long time, both hydromagnetic dynamo action as well as magnetically triggered flow instabilities had been the subject of purely theoretical research. Meanwhile, however, the dynamo effect has been observed in large-scale liquid sodium experiments in Riga, Karlsruhe and Cadarache. In this paper, we summarise the results of liquid metal experiments devoted to the dynamo effect and various magnetic instabilities such as the helical and the azimuthal magnetorotational instability and the Tayler instability. We discuss in detail our plans for a precession-driven dynamo experiment and a large-scale Tayler-Couette experiment using liquid sodium, and on the prospects to observe magnetically triggered instabilities of flows with positive shear.
AbstractList Magnetic fields of planets, stars and galaxies are generated by self-excitation in moving electrically conducting fluids. Once produced, magnetic fields can play an active role in cosmic structure formation by destabilising rotational flows that would be otherwise hydrodynamically stable. For a long time, both hydromagnetic dynamo action as well as magnetically triggered flow instabilities had been the subject of purely theoretical research. Meanwhile, however, the dynamo effect has been observed in large-scale liquid sodium experiments in Riga, Karlsruhe and Cadarache. In this paper, we summarise the results of liquid metal experiments devoted to the dynamo effect and various magnetic instabilities such as the helical and the azimuthal magnetorotational instability and the Tayler instability. We discuss in detail our plans for a precession-driven dynamo experiment and a large-scale Tayler-Couette experiment using liquid sodium, and on the prospects to observe magnetically triggered instabilities of flows with positive shear.
Author Gundrum, Th
Stefani, F.
Seilmayer, M.
Vogt, T.
Rüdiger, G.
Giesecke, A.
Gailitis, A.
Gerbeth, G.
Author_xml – sequence: 1
  givenname: F.
  surname: Stefani
  fullname: Stefani, F.
  email: f.stefani@hzdr.de
  organization: Helmholtz-Zentrum Dresden-Rossendorf
– sequence: 2
  givenname: A.
  surname: Gailitis
  fullname: Gailitis, A.
  organization: Institute of Physics, Latvian University
– sequence: 3
  givenname: G.
  surname: Gerbeth
  fullname: Gerbeth, G.
  organization: Helmholtz-Zentrum Dresden-Rossendorf
– sequence: 4
  givenname: A.
  surname: Giesecke
  fullname: Giesecke, A.
  organization: Helmholtz-Zentrum Dresden-Rossendorf
– sequence: 5
  givenname: Th
  surname: Gundrum
  fullname: Gundrum, Th
  organization: Helmholtz-Zentrum Dresden-Rossendorf
– sequence: 6
  givenname: G.
  surname: Rüdiger
  fullname: Rüdiger, G.
  organization: Leibniz-Institut für Astrophysik Potsdam
– sequence: 7
  givenname: M.
  surname: Seilmayer
  fullname: Seilmayer, M.
  organization: Helmholtz-Zentrum Dresden-Rossendorf
– sequence: 8
  givenname: T.
  surname: Vogt
  fullname: Vogt, T.
  organization: Helmholtz-Zentrum Dresden-Rossendorf
BookMark eNqFkE1PGzEQhq0KJJLQn4C0EudNPfZms4YLKNAPKQIJ0kNP7qztbR1t7GA7gvz7epX00gM9WWM97-idZ0xOnHeGkAugU6AN_UQ5FSCYmDIKzRRmFKoGPpARUCZKWoE4IaOBKQfojIxjXFMKvKrpiPxc_TbF3dP9892Ph2Ib_NqodFX09mVndbExCfvCvG1NsBvjUiy8K_Te4cYXqJLNE7qM4S9nkg8-4fCXI9bFhK3tbdqfk9MO-2g-Ht8J-f75frX4Wi4fv3xb3C5LxXmTSs1mnNdzoYzSjWhB53pczRsE1G3Fq2reiVZQgwpQVQBtnS9A5PNa6xlrKZ-Qy8PefMTLzsQk134XcpkoGWO8YTWtIVPXB0oFH2MwnVT20DoFtL0EKgel8q9SOSiVR6U5Pfsnvc1iMOz_m7s55KzrfNjgqw-9lgn3vQ9dQKdslPz9FX8At_6PtQ
CitedBy_id crossref_primary_10_1017_jfm_2024_517
crossref_primary_10_1088_1367_2630_ac3c0f
crossref_primary_10_1103_PhysRevE_101_013201
crossref_primary_10_1063_5_0131035
crossref_primary_10_1007_s00419_022_02360_6
crossref_primary_10_1017_jfm_2021_548
crossref_primary_10_1103_PhysRevFluids_4_103905
crossref_primary_10_1063_5_0134562
crossref_primary_10_1063_5_0100131
crossref_primary_10_1103_PhysRevFluids_8_083902
crossref_primary_10_1103_PhysRevFluids_9_033904
crossref_primary_10_5802_crphys_233
crossref_primary_10_1098_rspa_2022_0740
crossref_primary_10_1002_ejic_202200313
crossref_primary_10_1038_s42254_024_00724_1
crossref_primary_10_1098_rsta_2022_0119
crossref_primary_10_5802_crphys_204
crossref_primary_10_1063_5_0037922
crossref_primary_10_5802_crphys_219
Cites_doi 10.1046/j.1365-246x.2000.00170.x
10.1063/1.4978889
10.1017/S0022112071003021
10.1080/03091929308203609
10.1007/s11207-016-0968-0
10.1103/PhysRevLett.108.244501
10.1103/PhysRevE.92.051001
10.1063/1.1513156
10.1103/PhysRevLett.120.024502
10.1209/0295-5075/77/59001
10.1088/0957-0233/21/4/045402
10.1098/rspa.1998.0207
10.1088/0004-637X/811/2/84
10.1038/1981158a0
10.1103/PhysRevFluids.3.044603
10.1063/PT.3.1166
10.1126/science.1225648
10.1103/PhysRevE.80.066303
10.1126/science.1246753
10.1088/0004-637X/755/2/181
10.1103/PhysRevLett.104.044502
10.1088/1367-2630/9/8/295
10.1103/PhysRevLett.84.4365
10.1103/PhysRevLett.108.154502
10.1098/rspl.1866.0082
10.1103/PhysRevLett.97.184502
10.1017/jfm.2014.614
10.22364/mhd.48.1.12
10.1098/rspl.1866.0083
10.1002/9783527648924
10.1063/1.4901449
10.1063/1.3630949
10.1063/1.1852576
10.1088/0004-637X/712/1/52
10.1103/PhysRevLett.119.234501
10.1103/PhysRevLett.113.024505
10.1007/s11214-009-9546-1
10.1023/A:1024851818821
10.1088/1757-899X/143/1/012024
10.1063/1.4737657
10.1088/0004-637X/759/2/80
10.1017/S0022112003006700
10.1088/0266-5611/25/6/065011
10.1103/PhysRevLett.105.184502
10.1002/asna.200710774
10.1103/PhysRevLett.106.175003
10.1088/1367-2630/14/5/053005
10.1023/A:1023379931109
10.1038/219717a0
10.22364/mhd.53.2.12
10.1086/501495
10.1103/PhysRevLett.111.061103
10.1103/PhysRevLett.90.058501
10.1098/rsta.1958.0007
10.1103/PhysRevLett.105.024501
10.1002/zamm.200800102
10.5194/npg-9-171-2002
10.1017/jfm.2013.195
10.1017/S0022377818000363
10.1103/PhysRevLett.98.044502
10.1063/1.4936653
10.1063/1.4916234
10.1063/1.2963969
10.1017/S0022377815000975
10.1080/03091920903311788
10.1086/170270
10.1016/j.euromechflu.2012.09.001
10.1007/s001140050746
10.1103/PhysRevLett.93.114502
10.1080/03091920701561915
10.1080/03091929.2018.1508575
10.1088/1367-2630/18/10/103019
10.1103/PhysRevLett.95.124501
10.1093/mnras/161.4.365
10.1016/j.crhy.2008.07.004
10.1103/PhysRevLett.96.055002
10.1002/2013JB010733
10.1080/03091920601045324
10.1002/asna.200911249
10.1038/nature10564
10.1017/jfm.2013.524
10.1017/S0305004100030814
10.22364/mhd.53.2.13
10.1103/PhysRevLett.102.144503
10.1103/PhysRevE.67.046312
10.22364/mhd.51.2.10
10.1016/j.physrep.2018.02.006
10.1103/RevModPhys.74.973
10.1063/1.1331315
10.5194/npg-9-165-2002
10.5194/npg-13-525-2006
10.1063/1.4939270
10.1103/PhysRevLett.104.044503
10.1103/PhysRevLett.86.3024
10.1126/science.160.3825.259
10.1051/0004-6361:20011465
10.1209/0295-5075/114/65002
10.1007/BF01449179
10.1103/PhysRevLett.104.074501
10.1103/PhysRevE.84.016317
10.1103/PhysRevE.94.051203
10.1063/1.1666361
10.1088/1367-2630/17/11/113044
10.1098/rspa.1989.0112
10.1016/j.pepi.2007.07.001
10.1017/S0022377818000065
10.1063/1.3085724
10.1007/s00348-012-1385-2
10.1103/PhysRevE.74.056302
10.1146/annurev.astro.41.081401.155207
ContentType Journal Article
Copyright 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
2018 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
– notice: 2018 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TB
7TG
7U5
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1080/03091929.2018.1501481
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
EISSN 1029-0419
EndPage 70
ExternalDocumentID 10_1080_03091929_2018_1501481
1501481
Genre Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29H
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
C5L
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NZ-
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEX
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UB7
UT5
UU3
ZGOLN
~02
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7TB
7TG
7U5
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
TASJS
ID FETCH-LOGICAL-c338t-d2533679cecd89b1d3463c78a1adb43447f9b90eac1ac411b6013aa376dd52b03
ISSN 0309-1929
IngestDate Fri Jul 25 07:24:33 EDT 2025
Thu Apr 24 23:00:38 EDT 2025
Tue Jul 01 03:59:06 EDT 2025
Wed Dec 25 09:07:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1-2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-d2533679cecd89b1d3463c78a1adb43447f9b90eac1ac411b6013aa376dd52b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2223826061
PQPubID 53072
PageCount 20
ParticipantIDs informaworld_taylorfrancis_310_1080_03091929_2018_1501481
crossref_citationtrail_10_1080_03091929_2018_1501481
proquest_journals_2223826061
crossref_primary_10_1080_03091929_2018_1501481
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-04
PublicationDateYYYYMMDD 2019-03-04
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-04
  day: 04
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Geophysical and astrophysical fluid dynamics
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0072
CIT0071
CIT0074
CIT0073
CIT0076
CIT0075
CIT0078
CIT0111
CIT0077
CIT0113
CIT0079
CIT0112
CIT0115
CIT0114
CIT0117
CIT0116
CIT0119
Gailitis A. (CIT0017) 1973; 9
CIT0118
CIT0083
CIT0082
CIT0085
CIT0084
CIT0087
CIT0086
CIT0001
CIT0089
Gailitis A. (CIT0020) 1987; 23
CIT0088
CIT0081
CIT0080
CIT0003
CIT0002
CIT0005
CIT0004
CIT0007
CIT0006
CIT0009
CIT0008
CIT0093
CIT0096
CIT0095
CIT0010
CIT0098
CIT0097
CIT0012
CIT0011
CIT0099
CIT0090
CIT0091
Miralles S. (CIT0058) 2013; 88
CIT0014
CIT0013
CIT0016
CIT0015
CIT0019
CIT0021
CIT0023
CIT0022
CIT0025
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
Herault J. (CIT0037) 2018
CIT0036
CIT0035
CIT0038
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0045
CIT0044
Gailitis A. (CIT0018) 1976; 12
Ponomarenko Y.B. (CIT0070) 1973; 6
CIT0047
CIT0046
CIT0049
CIT0048
CIT0050
Velikhov E.P. (CIT0110) 1959; 36
CIT0052
CIT0051
CIT0054
CIT0053
CIT0056
CIT0055
CIT0057
CIT0059
CIT0061
CIT0060
CIT0063
CIT0062
CIT0065
CIT0064
CIT0067
CIT0100
CIT0066
Steenbeck M. (CIT0092) 1967; 9
CIT0109
CIT0069
CIT0102
CIT0068
CIT0101
CIT0104
CIT0103
CIT0106
CIT0105
CIT0108
CIT0107
References_xml – ident: CIT0109
  doi: 10.1046/j.1365-246x.2000.00170.x
– ident: CIT0112
  doi: 10.1063/1.4978889
– ident: CIT0028
  doi: 10.1017/S0022112071003021
– ident: CIT0043
  doi: 10.1080/03091929308203609
– ident: CIT0102
  doi: 10.1007/s11207-016-0968-0
– ident: CIT0084
  doi: 10.1103/PhysRevLett.108.244501
– ident: CIT0093
  doi: 10.1103/PhysRevE.92.051001
– ident: CIT0106
  doi: 10.1063/1.1513156
– ident: CIT0032
  doi: 10.1103/PhysRevLett.120.024502
– ident: CIT0006
  doi: 10.1209/0295-5075/77/59001
– ident: CIT0116
  doi: 10.1088/0957-0233/21/4/045402
– ident: CIT0007
  doi: 10.1098/rspa.1998.0207
– ident: CIT0078
  doi: 10.1088/0004-637X/811/2/84
– ident: CIT0053
  doi: 10.1038/1981158a0
– ident: CIT0042
  doi: 10.1103/PhysRevFluids.3.044603
– ident: CIT0049
  doi: 10.1063/PT.3.1166
– ident: CIT0016
  doi: 10.1126/science.1225648
– ident: CIT0098
  doi: 10.1103/PhysRevE.80.066303
– ident: CIT0113
  doi: 10.1126/science.1246753
– ident: CIT0076
  doi: 10.1088/0004-637X/755/2/181
– volume: 36
  start-page: 995
  year: 1959
  ident: CIT0110
  publication-title: Sov. Phys. JETP
– ident: CIT0040
  doi: 10.1103/PhysRevLett.104.044502
– ident: CIT0096
  doi: 10.1088/1367-2630/9/8/295
– ident: CIT0021
  doi: 10.1103/PhysRevLett.84.4365
– ident: CIT0074
  doi: 10.1103/PhysRevLett.108.154502
– ident: CIT0086
  doi: 10.1098/rspl.1866.0082
– ident: CIT0095
  doi: 10.1103/PhysRevLett.97.184502
– ident: CIT0046
  doi: 10.1017/jfm.2014.614
– ident: CIT0099
  doi: 10.22364/mhd.48.1.12
– ident: CIT0114
  doi: 10.1098/rspl.1866.0083
– ident: CIT0077
  doi: 10.1002/9783527648924
– ident: CIT0035
  doi: 10.1063/1.4901449
– ident: CIT0057
  doi: 10.1063/1.3630949
– ident: CIT0107
  doi: 10.1063/1.1852576
– ident: CIT0044
  doi: 10.1088/0004-637X/712/1/52
– ident: CIT0047
  doi: 10.1103/PhysRevLett.119.234501
– volume: 88
  start-page: 013992
  year: 2013
  ident: CIT0058
  publication-title: Phys. Rev. Lett.
– ident: CIT0085
  doi: 10.1103/PhysRevLett.113.024505
– year: 2018
  ident: CIT0037
  publication-title: Phys. Rev. F
– ident: CIT0111
  doi: 10.1007/s11214-009-9546-1
– volume: 9
  start-page: 445
  year: 1973
  ident: CIT0017
  publication-title: Magnetohydrodynamics
– ident: CIT0024
  doi: 10.1023/A:1024851818821
– ident: CIT0101
  doi: 10.1088/1757-899X/143/1/012024
– ident: CIT0033
  doi: 10.1063/1.4737657
– ident: CIT0073
  doi: 10.1088/0004-637X/759/2/80
– ident: CIT0064
  doi: 10.1017/S0022112003006700
– ident: CIT0013
  doi: 10.1088/0266-5611/25/6/065011
– ident: CIT0015
  doi: 10.1103/PhysRevLett.105.184502
– volume: 9
  start-page: 714
  year: 1967
  ident: CIT0092
  publication-title: Mber. Dtsch. Akad. Wiss. Berl.
– ident: CIT0104
  doi: 10.1002/asna.200710774
– ident: CIT0009
  doi: 10.1103/PhysRevLett.106.175003
– ident: CIT0030
  doi: 10.1088/1367-2630/14/5/053005
– volume: 12
  start-page: 127
  year: 1976
  ident: CIT0018
  publication-title: Magnetohydrodynamics
– ident: CIT0071
  doi: 10.1023/A:1023379931109
– ident: CIT0054
  doi: 10.1038/219717a0
– ident: CIT0001
  doi: 10.22364/mhd.53.2.12
– ident: CIT0051
  doi: 10.1086/501495
– ident: CIT0045
  doi: 10.1103/PhysRevLett.111.061103
– ident: CIT0010
  doi: 10.1103/PhysRevLett.90.058501
– ident: CIT0038
  doi: 10.1098/rsta.1958.0007
– ident: CIT0005
  doi: 10.1103/PhysRevLett.105.024501
– ident: CIT0097
  doi: 10.1002/zamm.200800102
– ident: CIT0072
  doi: 10.5194/npg-9-171-2002
– ident: CIT0041
  doi: 10.1017/jfm.2013.195
– ident: CIT0027
  doi: 10.1017/S0022377818000363
– ident: CIT0059
  doi: 10.1103/PhysRevLett.98.044502
– ident: CIT0036
  doi: 10.1063/1.4936653
– ident: CIT0050
  doi: 10.1063/1.4916234
– ident: CIT0048
  doi: 10.1063/1.2963969
– ident: CIT0014
  doi: 10.1017/S0022377815000975
– ident: CIT0117
  doi: 10.1080/03091920903311788
– ident: CIT0004
  doi: 10.1086/170270
– ident: CIT0083
  doi: 10.1016/j.euromechflu.2012.09.001
– ident: CIT0062
  doi: 10.1007/s001140050746
– ident: CIT0087
  doi: 10.1103/PhysRevLett.93.114502
– ident: CIT0002
  doi: 10.1080/03091920701561915
– volume: 6
  start-page: 47
  year: 1973
  ident: CIT0070
  publication-title: Zh. Prikl. Mekh. & Tekh. Fiz. (USSR)
– ident: CIT0081
  doi: 10.1080/03091929.2018.1508575
– ident: CIT0034
  doi: 10.1088/1367-2630/18/10/103019
– ident: CIT0039
  doi: 10.1103/PhysRevLett.95.124501
– ident: CIT0105
  doi: 10.1093/mnras/161.4.365
– ident: CIT0026
  doi: 10.1016/j.crhy.2008.07.004
– ident: CIT0090
  doi: 10.1103/PhysRevLett.96.055002
– ident: CIT0118
  doi: 10.1002/2013JB010733
– ident: CIT0108
  doi: 10.1080/03091920601045324
– ident: CIT0119
  doi: 10.1002/asna.200911249
– ident: CIT0012
  doi: 10.1038/nature10564
– ident: CIT0065
  doi: 10.1017/jfm.2013.524
– ident: CIT0008
  doi: 10.1017/S0305004100030814
– ident: CIT0019
  doi: 10.22364/mhd.53.2.13
– ident: CIT0069
  doi: 10.1103/PhysRevLett.102.144503
– ident: CIT0075
  doi: 10.1103/PhysRevE.67.046312
– ident: CIT0100
  doi: 10.22364/mhd.51.2.10
– ident: CIT0082
  doi: 10.1016/j.physrep.2018.02.006
– ident: CIT0023
  doi: 10.1103/RevModPhys.74.973
– ident: CIT0103
  doi: 10.1063/1.1331315
– ident: CIT0063
  doi: 10.5194/npg-9-165-2002
– ident: CIT0088
  doi: 10.5194/npg-13-525-2006
– ident: CIT0079
  doi: 10.1063/1.4939270
– ident: CIT0029
  doi: 10.1103/PhysRevLett.104.044503
– ident: CIT0022
  doi: 10.1103/PhysRevLett.86.3024
– ident: CIT0055
  doi: 10.1126/science.160.3825.259
– ident: CIT0091
  doi: 10.1051/0004-6361:20011465
– ident: CIT0067
  doi: 10.1209/0295-5075/114/65002
– ident: CIT0115
  doi: 10.1007/BF01449179
– ident: CIT0068
  doi: 10.1103/PhysRevLett.104.074501
– ident: CIT0066
  doi: 10.1103/PhysRevE.84.016317
– ident: CIT0056
  doi: 10.1103/PhysRevE.94.051203
– ident: CIT0025
  doi: 10.1063/1.1666361
– ident: CIT0031
  doi: 10.1088/1367-2630/17/11/113044
– ident: CIT0011
  doi: 10.1098/rspa.1989.0112
– ident: CIT0089
  doi: 10.1016/j.pepi.2007.07.001
– ident: CIT0080
  doi: 10.1017/S0022377818000065
– ident: CIT0060
  doi: 10.1063/1.3085724
– ident: CIT0061
  doi: 10.1007/s00348-012-1385-2
– volume: 23
  start-page: 349
  year: 1987
  ident: CIT0020
  publication-title: Magnetohydrodynamics
– ident: CIT0052
  doi: 10.1103/PhysRevE.74.056302
– ident: CIT0003
  doi: 10.1146/annurev.astro.41.081401.155207
SSID ssj0013460
Score 2.2907891
Snippet Magnetic fields of planets, stars and galaxies are generated by self-excitation in moving electrically conducting fluids. Once produced, magnetic fields can...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 51
SubjectTerms Conducting fluids
Dynamo
Experiments
Fluid flow
Fluids
Galaxies
instabilities
Instability
Liquid sodium
Magnetic field
Magnetic fields
Metals
Planets
Sodium
Stellar magnetic fields
Title The DRESDYN project: liquid metal experiments on dynamo action and magnetorotational instability
URI https://www.tandfonline.com/doi/abs/10.1080/03091929.2018.1501481
https://www.proquest.com/docview/2223826061
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9MIFgQBRKGgP3CpHWXvt2twq0iZCVTjgiMBl2ZdR1MgprXPpf-h_Zsa7fkSpKHCxrI3XG818np2ZnQch75NQpRKtExD-KuBRoQLFEhnEiS0yJbWysq72OU9mC_5pGS8Hg7te1NK2UiN9e29eyf9wFcaAr5gl-w-cbV8KA3AP_IUrcBiuf83jCZBw8m1-7F0qaOGvV7-2K4PNoYH-XQn_-mDAYAf6zXHTIbyEx-TP0mIhg6rxC65QZayDZnfOfKd2c9VwtS7xelNddyPFGtc0rsF9q6h_qWzhukZ1IcRTia_2bZDbQWCvdT6ettvXFCtY6Muey9W7JzAjKgrGnXsy3-sU0gtXqrO2sB1D5r0e1glhDMkZcy9KGyntUlYbOPqcSSd1Xcnavc3AR0_CCrgAhvGlI4bnqK5JzG7x7flncb64uBD52TJ_RA5CsDrCITk4nU2-f-2OpXiddt7-6SYlDIu137fMjrKzUwp3b-uv9Zn8KXniDRF66lD1jAxs-Zz8AERRjyjqEfWBOjzRGk-0hye6KanDE3V4ogALuocn2sPTC7I4P8s_zgLfgyPQUZRWgQnBHkhOMm21STPFDJAg0iepZNIojuUi4ZPOxrB9M6k5YwoM_EhK2LaMiUM1jl6SYbkp7StCYx4qU-iCqYxzE1rJrAXZoLQJYXKsDglviCW0L1CPfVLWgjV1bD2NBdJYeBofklE77cpVaHloQtbnhKhqiBYOnSJ6YO5RwzbhBcGNQBUbrHTQjF__-ec35HH3iRyRYXW9tW9Bp63UO4-03yqLn28
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGWDhIUAUCnhgTakTJ03YEAUVKJlAgsn4FVQBKdB0gF_PnZNQCkIMzNFFzt3lfM_vCNmPfBVLjE7A-CuPB5nyFIukF0Y2S5TUykqH9plG_Wt-fhPefJmFwbZKjKGzEijC2Wr8uTEZXbfEHWBZADwTnDNhcZthaQynr-fDJOriFoOgk04rCdxNCrtKAtLUUzy_vWbmfppBL_1hrd0VdLpMdH34svPkoT0pVFu_f8N1_N_XrZClykOlR6VKrZI5m6-RO1An2gNp9W5TWmVvDunj8GUyNPTJggdPp7sCxnSUU4Or7ke0nJugcBr6JO9zi4gJRZWApEP0TV137ts6uT49uTrue9VyBk9DVFt4xgdHMeom2moTJ4oZYHSgu7Fk0iiOOIIg66QDdp1JzRlTEPkFUoI9Myb0VSfYII18lNtNQkPuK5PpjKmEc-NbyawFpVHa-EAcqibhtUiErpDLcYHGo2A1wGnFMoEsExXLmqT9SfZcQnf8RZB8lbcoXM4kKxeciOAP2latHKKyAmOBvheEb-Aybf3j1XtkoX91ORCDs_RimyzCo8Q1wfEWaRSvE7sDXlGhdp3afwDgTf8f
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swELYQk9BeYAimAd3wA6_p6sRJk71N6yp-qeIBJPbk-WwHVbRpoenD9tfvznEG3YT6wHN0kXN3OX9n333H2EkWQ64pO8HgD5FMSohAZDpKM1cWoA047dk-R9npjTy_TdtqwkUoq6QcumyIInyspp97bsu2Iu4z3QogMKE2E5F3Bd2MUfP1m4zIw6mLozd6ukiQvlHYXySQTNvE89JrVranFfLS_4K134GGOwzatTeFJ_fdZQ1d8_sfWsdXfdw7th3wKf_aONQu23DVHvuJzsQHaKvBjxEPZzdf-GT8sBxbPnWI3_nTpIAFn1Xc0qD7GW-6Jjguhk_1XeWIL6EOx498TMjU1-b-2mc3w-_X306jMJohMpjT1pGNESZm_cI4Y_MChEU9J6afa6EtSGIRREsXPYzqQhspBGDel2iN0czaNIZe8p5tVrPKfWA8lTHY0pQCCilt7LRwDl0GjI1ROIUDJluLKBN4y2l8xkSJlt40qEyRylRQ2QHr_hWbN8Qd6wSK5-ZWtT8xKZvxJipZI9tpfUOFGLBQhLwweUPAdPiKVx-zravBUF2ejS6O2Ft8UvgKONlhm_Xj0n1ESFTDJ-_0fwC1Q_3D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+DRESDYN+project%3A+liquid+metal+experiments+on+dynamo+action+and+magnetorotational+instability&rft.jtitle=Geophysical+and+astrophysical+fluid+dynamics&rft.au=Stefani%2C+F&rft.au=Gailitis%2C+A&rft.au=Gerbeth%2C+G&rft.au=Giesecke%2C+A&rft.date=2019-03-04&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0309-1929&rft.eissn=1029-0419&rft.volume=113&rft.issue=1-2&rft.spage=51&rft_id=info:doi/10.1080%2F03091929.2018.1501481&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0309-1929&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0309-1929&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0309-1929&client=summon