Optimum sequential preventive maintenance first or last policies with imperfect maintenance for a system subject to shocks

This paper proposes and analyses the generalized sequential preventive maintenance policies for an operating system that works at random processing times and subject to shocks. The shocks arrive according to a non homogeneous Poisson process (NHPP) with varied intensity function in each maintenance...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Theory and methods Vol. 51; no. 1; pp. 162 - 178
Main Authors Chen, Yen-Luan, Chang, Chin-Chih
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.01.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes and analyses the generalized sequential preventive maintenance policies for an operating system that works at random processing times and subject to shocks. The shocks arrive according to a non homogeneous Poisson process (NHPP) with varied intensity function in each maintenance interval. As a shock occurs, the system suffers two types of failures with number-dependent probabilities: type-I (minor) failure, which is rectified by a minimal repair, and type-II (catastrophic) failure, which is removed by a corrective maintenance. The imperfect maintenance is carried out to improve the system failure characteristic due to the altered shock process. The preventive maintenance-first and preventive maintenance-last policies are defined as that the system is maintained before any type-II failure occurs at a planned time T i or at the completion of a working time in the i-th maintenance interval, whichever occurs first and last, respectively. At the N-th maintenance, the system is replaced rather than maintained. This paper aim is to minimize the mean cost rate as a measure of policy by determining optimal sequential maintenance parameters for each preventive maintenance policy. All discussions are presented analytically and determined numerically in terms of its existence and uniqueness.
AbstractList This paper proposes and analyses the generalized sequential preventive maintenance policies for an operating system that works at random processing times and subject to shocks. The shocks arrive according to a non homogeneous Poisson process (NHPP) with varied intensity function in each maintenance interval. As a shock occurs, the system suffers two types of failures with number-dependent probabilities: type-I (minor) failure, which is rectified by a minimal repair, and type-II (catastrophic) failure, which is removed by a corrective maintenance. The imperfect maintenance is carried out to improve the system failure characteristic due to the altered shock process. The preventive maintenance-first and preventive maintenance-last policies are defined as that the system is maintained before any type-II failure occurs at a planned time T i or at the completion of a working time in the i-th maintenance interval, whichever occurs first and last, respectively. At the N-th maintenance, the system is replaced rather than maintained. This paper aim is to minimize the mean cost rate as a measure of policy by determining optimal sequential maintenance parameters for each preventive maintenance policy. All discussions are presented analytically and determined numerically in terms of its existence and uniqueness.
This paper proposes and analyses the generalized sequential preventive maintenance policies for an operating system that works at random processing times and subject to shocks. The shocks arrive according to a non homogeneous Poisson process (NHPP) with varied intensity function in each maintenance interval. As a shock occurs, the system suffers two types of failures with number-dependent probabilities: type-I (minor) failure, which is rectified by a minimal repair, and type-II (catastrophic) failure, which is removed by a corrective maintenance. The imperfect maintenance is carried out to improve the system failure characteristic due to the altered shock process. The preventive maintenance-first and preventive maintenance-last policies are defined as that the system is maintained before any type-II failure occurs at a planned time Ti or at the completion of a working time in the i-th maintenance interval, whichever occurs first and last, respectively. At the N-th maintenance, the system is replaced rather than maintained. This paper aim is to minimize the mean cost rate as a measure of policy by determining optimal sequential maintenance parameters for each preventive maintenance policy. All discussions are presented analytically and determined numerically in terms of its existence and uniqueness.
Author Chen, Yen-Luan
Chang, Chin-Chih
Author_xml – sequence: 1
  givenname: Yen-Luan
  surname: Chen
  fullname: Chen, Yen-Luan
  organization: Department of Marketing Management, Takming University of Science and Technology
– sequence: 2
  givenname: Chin-Chih
  surname: Chang
  fullname: Chang, Chin-Chih
  organization: Department of Chains and Franchising Management, Takming University of Science and Technology
BookMark eNqFkE1LxDAQhoMouK7-BCHguZo0m2yLF0X8AsGLgreQpFM2a5vUJKusv96UXQ960NMMw_POMM8B2nXeAULHlJxSUpEzwgQldSlOS1Lm0XwmKjLfQRPKWVnMKH_ZRZORKUZoHx3EuCSE8nnFJujzcUi2X_U4wtsKXLKqw0OA97F9B9wr6xI45Qzg1oaYsA-4U7kOvrPGQsQfNi2w7QcILZj0M5FhheM6JsgHVno5AsnjuPDmNR6ivVZ1EY62dYqeb66fru6Kh8fb-6vLh8IwVqXCNFBrQ7ViXAjOdTuvNGNC0bIihoumndWmNWoGROu6No0WwBtNlShVVVIQbIpONnuH4POPMcmlXwWXT8pS0IoywQnJFN9QJvgYA7RyCLZXYS0pkaNm-a1ZjprlVnPOnf_KGZtUst6loGz3b_pik7Yuy-rVhw9dI5Nadz60IUu0UbK_V3wB4OWbow
CitedBy_id crossref_primary_10_1080_03610926_2021_1926506
crossref_primary_10_1080_03610926_2024_2397066
crossref_primary_10_1080_03610926_2024_2356061
crossref_primary_10_1007_s10479_023_05236_2
crossref_primary_10_1080_08982112_2023_2222324
crossref_primary_10_1080_03610926_2022_2117988
Cites_doi 10.1007/978-3-540-24808-8
10.1016/j.cie.2013.11.011
10.1016/0377-2217(83)90221-7
10.1016/j.ress.2012.09.004
10.1080/23302674.2014.998316
10.1142/S0218539310003652
10.1007/978-3-319-70456-2
10.1016/j.ress.2017.01.011
10.1016/j.cie.2012.08.003
10.1007/s10479-017-2685-y
10.1080/03610926.2019.1710203
10.1016/j.ejor.2012.05.035
10.1017/S0021900200029843
10.1109/TR.2015.2441095
10.1016/j.ejor.2014.11.018
10.1109/24.85463
10.1080/03610926.2011.648789
10.1016/S0377-2217(03)00409-0
10.1016/S0305-0548(02)00074-6
10.1287/opre.8.1.90
10.1002/nav.3800380604
10.1142/S0218539300000213
10.1016/S0377-2217(96)00099-9
10.2307/3213780
10.1287/opre.29.6.1181
10.1080/00207720110103655
ContentType Journal Article
Copyright 2020 Taylor & Francis Group, LLC 2022
2020 Taylor & Francis Group, LLC
Copyright_xml – notice: 2020 Taylor & Francis Group, LLC 2022
– notice: 2020 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610926.2020.1746807
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1532-415X
EndPage 178
ExternalDocumentID 10_1080_03610926_2020_1746807
1746807
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
TWZ
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~02
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-cde9bc1ba356655bf78b336a1280c56df49cfca4e0bb99cdb6e5db1a62a821e63
ISSN 0361-0926
IngestDate Wed Aug 13 06:34:05 EDT 2025
Tue Jul 01 00:46:49 EDT 2025
Thu Apr 24 22:50:31 EDT 2025
Wed Dec 25 09:06:01 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-cde9bc1ba356655bf78b336a1280c56df49cfca4e0bb99cdb6e5db1a62a821e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2618136500
PQPubID 186202
PageCount 17
ParticipantIDs informaworld_taylorfrancis_310_1080_03610926_2020_1746807
crossref_primary_10_1080_03610926_2020_1746807
proquest_journals_2618136500
crossref_citationtrail_10_1080_03610926_2020_1746807
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-02
PublicationDateYYYYMMDD 2022-01-02
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-02
  day: 02
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Theory and methods
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0031
CIT0012
CIT0011
Nakagawa T. (CIT0013) 2005
CIT0014
CIT0016
CIT0015
CIT0018
CIT0017
Barlow R. E. (CIT0001) 1965
CIT0019
CIT0021
CIT0020
CIT0022
Wang H. (CIT0023) 2007
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
Zhao X. (CIT0030) 2014; 8
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – volume-title: Reliability and Optimal Maintenance
  year: 2007
  ident: CIT0023
– ident: CIT0017
  doi: 10.1007/978-3-540-24808-8
– volume-title: Mathematical Theory of Reliability
  year: 1965
  ident: CIT0001
– ident: CIT0004
  doi: 10.1016/j.cie.2013.11.011
– ident: CIT0015
  doi: 10.1016/0377-2217(83)90221-7
– volume-title: Maintenance Theory of Reliability
  year: 2005
  ident: CIT0013
– ident: CIT0027
  doi: 10.1016/j.ress.2012.09.004
– ident: CIT0005
  doi: 10.1080/23302674.2014.998316
– ident: CIT0007
  doi: 10.1142/S0218539310003652
– ident: CIT0025
  doi: 10.1007/978-3-319-70456-2
– ident: CIT0029
  doi: 10.1016/j.ress.2017.01.011
– ident: CIT0009
  doi: 10.1016/j.cie.2012.08.003
– ident: CIT0008
  doi: 10.1007/s10479-017-2685-y
– ident: CIT0026
  doi: 10.1080/03610926.2019.1710203
– ident: CIT0024
  doi: 10.1016/j.ejor.2012.05.035
– ident: CIT0012
  doi: 10.1017/S0021900200029843
– ident: CIT0028
  doi: 10.1109/TR.2015.2441095
– ident: CIT0031
  doi: 10.1016/j.ejor.2014.11.018
– ident: CIT0014
  doi: 10.1109/24.85463
– ident: CIT0006
  doi: 10.1080/03610926.2011.648789
– ident: CIT0021
  doi: 10.1016/S0377-2217(03)00409-0
– ident: CIT0010
  doi: 10.1016/S0305-0548(02)00074-6
– ident: CIT0002
  doi: 10.1287/opre.8.1.90
– ident: CIT0020
  doi: 10.1002/nav.3800380604
– ident: CIT0022
– volume: 8
  start-page: 413
  issue: 1
  year: 2014
  ident: CIT0030
  publication-title: Applied Mathematics & Information Sciences
– ident: CIT0011
  doi: 10.1142/S0218539300000213
– ident: CIT0018
  doi: 10.1016/S0377-2217(96)00099-9
– ident: CIT0003
  doi: 10.2307/3213780
– ident: CIT0016
  doi: 10.1287/opre.29.6.1181
– ident: CIT0019
  doi: 10.1080/00207720110103655
SSID ssj0015783
Score 2.3197277
Snippet This paper proposes and analyses the generalized sequential preventive maintenance policies for an operating system that works at random processing times and...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 162
SubjectTerms Catastrophic events
Failure
minimal repair
Optimization
Policies
Preventive maintenance
random working time
reliability
replacement
Title Optimum sequential preventive maintenance first or last policies with imperfect maintenance for a system subject to shocks
URI https://www.tandfonline.com/doi/abs/10.1080/03610926.2020.1746807
https://www.proquest.com/docview/2618136500
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaWcikHBAVEoSAfuFVeJXbsjY_VClQhWg5speUU2YmjVqLZapNw6H_gP3f8yIutVB4Xa5WNk9V-nyczzsw3CH2ginKjmCSMGU0SUyqSKqEJlQktk2LBRGTrnc_OxelF8nnN17PZr1HWUtvoeX57b13Jv6AKxwBXWyX7F8j2F4UD8BnwhREQhvGPMP4K6_26vT72-dCN3fy-CZJMP21iqtWCqFxNQHkFXp7NPQdnuXGdGWBNh8q2K_Cct07DeDLDZlcGoefjutV2v8Y6qvUlWNB67NNOakxceq2tUvIC0PNQ_O_eUfhu1b0TvwyFId9NRb60A0uX3R627e1NYLgcb01Q6rYmhkB2tdMlZGTcmIBzJQ0y2J3xpQQcivXYOgc52jELvamNgxX3T-3YNwLaeSCEDEpmVeWpTUmhkc3hEqnvtfub1nb45hF6TCHqsA0xWHTev5QC4-a7bYef3hWEWan2-24wcXUmQrg7D37nzayeoachDMEnnlPP0cxUB-jJWa_hWx-g_W89ii_QbaAaHqiGB6rhEXGwoxrebLGlGu6ohi3VcE-16Qw4WWFPNRyohpsN9lR7iS4-fVwtT0lo20FyxtKG5IWROo-1YhAqcK7LRaoZEwo8oSjnoigTmZe5SkyktZR5oYXhhY6VoCqlsRHsFdqrNpV5jbAyheS0UItIyURpiEYgAC6LlOVGp5zzQ5R0_3CWB01721rlRxZ30rcBmMwCkwVgDtG8n3bjRV0emiDH8GWNY3bpSZ2xB-YedVhnwXbUGRXgWTOIjqI3_3Hpt2h_WHZHaK_ZtuYd-MiNfu-YewfAuLvc
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUqOBQOhdIivutDr9k6duyNjwiBtoXdXkDiZtmOLRDsLtpke-DXM7NOVmyrigP3TJQ44-eZyZs3hHznlstghc6ECC4rQrRZaZXLuC54LKq-UAz7nYcjNbgpft3K21e9MEirxBw6JqGIBVbj5sZidEeJ-wGomzPNkWHAGVJyVIkN5etSqz5OMRBstPyTAB6ZRiQrSJvBpuvi-d9tVs6nFfXSf9B6cQRdbBHfPXxinjz05o3r-ee_dB3f93bb5FMbodLT5FKfyYcw2SGbw6W8a71DNjBETQrPX8jzb0Cd8XxMEysbEOORPrXCUH8CHVtUpEBZj0DjPcSadDqjELI3FOdDALLUFGvB9B7i9xlyS1Yt4GJLk9w0recOq0a0mdL6DnC8_kpuLs6vzwZZO9Eh85AKN5mvgnY-d1ZAFCmli_3SCaEsHJLMS1XFQvvobRGYc1r7yqkgK5dbxW3J86DELlmbTCdhj1AbKi15ZfvM6sI6CFQhN4pVKXxwpZRynxTddzS-lTvHqRuPJu9UUdt1NrjOpl3nfdJbmj0lvY-3DPRrJzHNotAS01QUI96wPeo8yrTQURtIaUvkHjJ28I5bfyMfB9fDK3P1c3R5SDY4Nm1g4YgfkbVmNg_HEEo17mSxV14AWGsSWg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkVA5UCgg-gB84JrFsWNvfKyAVXl06aGVerP8FFW7D22yPfTXd2adrFgq1EPvmShxxp9nJt98Q8gnbrmMVuhCiOiKKiZb1Fa5guuKpyoMhWLY73wyVsfn1Y8L2bMJm45WiTl0ykIRK6zGzT0PqWfEfQbQLZnmSDDgDBk5qsZ-8qcKxcOxi4ON1z8SwCHzhGQFWTPY9E08_7vNxvG0IV56D6xXJ9Boh7j-2TPx5GqwbN3A3_4j6_iol3tJXnTxKT3KDvWKPInTXfL8ZC3u2uySbQxQs77za3L7GzBnspzQzMkGvLim804W6ibSiUU9ChT1iDRdQqRJZwsKAXtLcToE4EpDsRJMLyF6XyCzZNMCLrY0i03TZumwZkTbGW3-AIo3b8j56NvZl-Oim-dQeEiE28KHqJ0vnRUQQ0rp0rB2QigLRyTzUoVUaZ-8rSJzTmsfnIoyuNIqbmteRiXekq3pbBrfEWpj0JIHO2RWV9ZBmAqZUQq18NHVUso9UvWf0fhO7BxnblybstdE7dbZ4Dqbbp33yGBtNs9qHw8Z6L99xLSrMkvKM1GMeMD2sHco0wFHYyChrZF5yNj-I279kTw7_Toyv76Pfx6QbY4dG1g14odkq10s43uIo1r3YbVT7gDl7BD-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimum+sequential+preventive+maintenance+first+or+last+policies+with+imperfect+maintenance+for+a+system+subject+to+shocks&rft.jtitle=Communications+in+statistics.+Theory+and+methods&rft.au=Chen%2C+Yen-Luan&rft.au=Chang%2C+Chin-Chih&rft.date=2022-01-02&rft.pub=Taylor+%26+Francis&rft.issn=0361-0926&rft.eissn=1532-415X&rft.volume=51&rft.issue=1&rft.spage=162&rft.epage=178&rft_id=info:doi/10.1080%2F03610926.2020.1746807&rft.externalDocID=1746807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0926&client=summon