Enrichment at vapour-liquid interfaces of mixtures: establishing a link between nanoscopic and macroscopic properties

Component density profiles at vapour-liquid interfaces of mixtures can exhibit a non-monotonic behaviour with a maximum that can be many times larger than the densities in the bulk phases. This is called enrichment and is usually only observed for low-boiling components. The enrichment is a nanoscop...

Full description

Saved in:
Bibliographic Details
Published inInternational reviews in physical chemistry Vol. 39; no. 3; pp. 319 - 349
Main Authors Stephan, Simon, Hasse, Hans
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 02.07.2020
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Component density profiles at vapour-liquid interfaces of mixtures can exhibit a non-monotonic behaviour with a maximum that can be many times larger than the densities in the bulk phases. This is called enrichment and is usually only observed for low-boiling components. The enrichment is a nanoscopic property which can presently not be measured experimentally - in contrast to the classical Gibbs adsorption. The available information on the enrichment stems from molecular simulations, density gradient theory, or density functional theory. The enrichment is highly interesting as it is suspected to influence the mass transfer across interfaces. In the present work, we review the literature data and the existing knowledge on this phenomenon and propose an empirical model to establish a link between the nanoscopic enrichment and macroscopic properties - namely vapour-liquid equilibrium data. The model parameters were determined from a fit to a dataset on the enrichment in about 100 binary Lennard-Jones model mixtures that exhibit different types of phase behaviour, which has recently become available. The model is then tested on the entire set of enrichment data that is available in the literature, which includes also mixtures containing non-spherical, polar, and H-bonding components. The model predicts the enrichment data from the literature (2,000 data points) with an AAD of about 16%, which is below the uncertainty of the enrichment data. This establishes a direct link between measurable macroscopic properties and the nanoscopic enrichment and enables predictions of the enrichment at vapour-liquid interfaces from macroscopic data alone.
AbstractList Component density profiles at vapour-liquid interfaces of mixtures can exhibit a non-monotonic behaviour with a maximum that can be many times larger than the densities in the bulk phases. This is called enrichment and is usually only observed for low-boiling components. The enrichment is a nanoscopic property which can presently not be measured experimentally - in contrast to the classical Gibbs adsorption. The available information on the enrichment stems from molecular simulations, density gradient theory, or density functional theory. The enrichment is highly interesting as it is suspected to influence the mass transfer across interfaces. In the present work, we review the literature data and the existing knowledge on this phenomenon and propose an empirical model to establish a link between the nanoscopic enrichment and macroscopic properties - namely vapour-liquid equilibrium data. The model parameters were determined from a fit to a dataset on the enrichment in about 100 binary Lennard-Jones model mixtures that exhibit different types of phase behaviour, which has recently become available. The model is then tested on the entire set of enrichment data that is available in the literature, which includes also mixtures containing non-spherical, polar, and H-bonding components. The model predicts the enrichment data from the literature (2,000 data points) with an AAD of about 16%, which is below the uncertainty of the enrichment data. This establishes a direct link between measurable macroscopic properties and the nanoscopic enrichment and enables predictions of the enrichment at vapour-liquid interfaces from macroscopic data alone.
Author Hasse, Hans
Stephan, Simon
Author_xml – sequence: 1
  givenname: Simon
  orcidid: 0000-0002-4578-3569
  surname: Stephan
  fullname: Stephan, Simon
  organization: Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern
– sequence: 2
  givenname: Hans
  surname: Hasse
  fullname: Hasse, Hans
  email: Hans.Hasse@mv.uni-kl.de
  organization: Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern
BookMark eNqFkE1P3DAQhq1qkbos_AQkSz0H7HhtkvbSClFAWokLSHuzxo5dTBM72A50_z2OFi4c6FxGM3qf-XgP0cIHbxA6oeSUkoacEbpe14xvT2tSl9Z5CcK_oCVlQlS8pdsFWs6aahZ9RYcpPRJCWU3bJZoufXT6YTA-Y8j4GcYwxap3T5PrsPPZRAvaJBwsHty_PEWTvmOTMqjepQfn_2DAvfN_sTL5xRiPPfiQdBidxuA7PICO7_UYw2hidiYdoQMLfTLHb3mF7n9f3l1cV5vbq5uLX5tKM9bkSqu2FVx1RoFqG1uzds01cKJFw7lStqO0IZx0QrBzyxrGipgqK4ToGGcNsBX6tp9bVj9N5Wz5WN7zZaWs16zAtC7YCv3Yq-ZTUzRWapchu-BzBNdLSuTss3z3Wc4-yzefC80_0GN0A8Tdf7mfe855G-IALyH2ncyw60O0Ebx2SbLPR7wCnh-ZFw
CitedBy_id crossref_primary_10_1063_5_0138973
crossref_primary_10_1021_acs_jpcb_3c06309
crossref_primary_10_1016_j_fluid_2022_113596
crossref_primary_10_1080_00268976_2021_1976857
crossref_primary_10_1016_j_molliq_2024_126347
crossref_primary_10_1021_acs_jpcc_4c01765
crossref_primary_10_1016_j_molliq_2024_125217
crossref_primary_10_1016_j_molliq_2022_120401
crossref_primary_10_1016_j_applthermaleng_2022_118472
crossref_primary_10_1016_j_applthermaleng_2022_119682
crossref_primary_10_1016_j_molliq_2021_117505
crossref_primary_10_3390_coatings11111400
crossref_primary_10_1039_D0CP04823B
crossref_primary_10_1039_D3CP04406H
crossref_primary_10_1021_acs_jced_3c00338
crossref_primary_10_1016_j_applthermaleng_2022_118638
crossref_primary_10_1016_j_surfin_2024_104572
crossref_primary_10_1016_j_ijhydene_2024_10_023
crossref_primary_10_1016_j_applthermaleng_2023_120724
crossref_primary_10_1038_s41598_022_10590_5
crossref_primary_10_1016_j_molliq_2023_122337
crossref_primary_10_1038_s41597_023_02369_8
crossref_primary_10_1007_s10765_022_03038_5
crossref_primary_10_1021_acs_langmuir_4c05338
crossref_primary_10_1016_j_fluid_2025_114338
crossref_primary_10_1016_j_molliq_2023_122532
crossref_primary_10_1016_j_molliq_2024_126312
crossref_primary_10_1021_acs_iecr_2c00249
crossref_primary_10_1063_5_0050936
crossref_primary_10_1016_j_ces_2022_117655
crossref_primary_10_1021_acs_jpcb_3c01370
crossref_primary_10_1360_SSC_2022_0258
crossref_primary_10_1002_aic_18503
crossref_primary_10_1021_acs_jpcb_1c03037
crossref_primary_10_1021_acs_langmuir_2c02805
crossref_primary_10_1016_j_molliq_2024_124025
crossref_primary_10_1021_acs_jcim_0c01324
crossref_primary_10_1016_j_molliq_2022_121031
crossref_primary_10_1016_j_fluid_2022_113536
crossref_primary_10_1021_acs_langmuir_3c00484
crossref_primary_10_1021_acs_langmuir_1c01354
crossref_primary_10_1080_10407782_2024_2332473
crossref_primary_10_1016_j_icheatmasstransfer_2022_106045
crossref_primary_10_1016_j_ijhydene_2024_05_249
crossref_primary_10_1016_j_cep_2021_108501
crossref_primary_10_1039_D3CP02798H
crossref_primary_10_3390_thermo2030012
crossref_primary_10_1515_jnet_2024_0010
crossref_primary_10_1063_5_0138741
crossref_primary_10_1515_jnet_2021_0080
crossref_primary_10_1016_j_fluid_2022_113444
crossref_primary_10_3390_molecules27072191
crossref_primary_10_1016_j_fuel_2021_121464
crossref_primary_10_1021_acs_jpcb_4c03759
crossref_primary_10_1021_acs_jced_2c00487
crossref_primary_10_1016_j_molliq_2024_124993
crossref_primary_10_1016_j_fluid_2024_114050
crossref_primary_10_1016_j_ijhydene_2022_09_078
crossref_primary_10_1016_j_colsurfa_2024_134135
crossref_primary_10_1016_j_molliq_2022_118604
crossref_primary_10_3390_atmos13040625
crossref_primary_10_1021_acs_jpcb_2c08752
crossref_primary_10_1039_D4CS00574K
crossref_primary_10_1080_00268976_2020_1810798
Cites_doi 10.1063/1.4935339
10.1016/j.fluid.2015.12.043
10.1080/00018737900101365
10.1080/00268979300100411
10.1016/j.jcis.2003.07.023
10.1016/j.fluid.2015.07.026
10.1080/00268978300100191
10.1021/jp507107a
10.1016/j.fluid.2016.11.024
10.1021/ie010954d
10.1080/00268976.2019.1699185
10.1098/rspa.1924.0082
10.1021/ie000773w
10.1016/j.fluid.2017.02.009
10.1016/j.fluid.2003.12.008
10.1021/j100347a051
10.1021/acs.jced.9b00503
10.1021/j100254a041
10.1016/j.fluid.2016.06.038
10.1063/1.4943982
10.1016/j.molliq.2012.12.004
10.1016/j.fluid.2017.06.016
10.1016/S0378-3812(96)03123-8
10.1021/ie049086l
10.1039/C8CP05447A
10.1140/epje/i2009-10544-1
10.1080/08927022.2019.1601191
10.1039/C7CP01182B
10.1021/cr60137a013
10.1039/C5CP03415A
10.1063/1.5078739
10.1063/1.461514
10.1103/PhysRevE.101.012802
10.1021/j100200a053
10.1039/C5CS00736D
10.1080/00268979300102781
10.1021/acs.jpcc.5b05806
10.1021/jp505978p
10.1039/b108535m
10.1007/978-3-662-04092-8
10.1016/j.supflu.2010.09.040
10.1016/j.fluid.2016.09.022
10.1039/f29868201721
10.1080/00268979300102621
10.1021/acs.jctc.7b00489
10.1002/bbpc.19961001112
10.1038/s41598-018-37186-2
10.1016/j.fluid.2017.02.013
10.1021/jp072997z
10.1021/jp045649v
10.1080/00268977900101731
10.1016/j.fluiddyn.2007.12.003
10.1016/0009-2509(72)80096-4
10.1021/jp805566g
10.1016/j.fluid.2015.07.014
10.1016/j.supflu.2017.01.001
10.1080/014423500229882
10.1007/978-3-319-10810-0_42
10.1002/aic.690260502
10.1021/ie0003887
10.1021/acs.energyfuels.8b00488
10.1007/BF03344902
10.1021/ie800959h
10.1016/j.fluid.2004.09.032
10.1016/j.molliq.2014.06.003
10.1016/j.fluid.2013.09.042
10.1002/aic.10502
10.1016/j.supflu.2015.11.001
10.1021/acs.jced.7b01001
10.1560/WW15-PBEW-M3W4-UAGN
10.1021/acs.jcim.9b00620
10.1021/acs.jpcc.8b06332
10.1021/ie970449+
10.1063/1.4811679
10.1063/1.4851455
10.1080/08927022.2013.842994
10.1021/jp103862v
10.1016/j.fluid.2015.08.026
10.1021/acs.jced.9b00672
10.1021/je5000764
10.1021/ie901209z
10.1063/1.5093603
10.1063/1.4819786
10.1103/PhysRevE.98.063312
10.1021/acs.jpcc.9b05412
10.1021/ie4029895
10.1016/j.molliq.2019.110978
10.1016/S0009-2614(03)00746-2
10.1088/0953-8984/3/20/025
10.1016/j.fluid.2012.07.034
10.1063/1.1955529
10.1021/ma50003a026
10.1021/ie9007437
10.1063/1.1839171
10.1016/j.supflu.2010.10.015
10.1063/1.4885348
10.1021/la9712707
10.1080/00268978800101601
10.1063/1.4947017
10.1063/1.444137
10.1063/1.478490
10.1021/ie00104a021
10.1021/jp108400z
10.1016/j.fluid.2007.10.006
10.1016/j.jct.2015.10.011
10.1063/1.473101
10.1080/00268978400102891
10.1016/j.fluid.2009.04.022
10.1021/acs.jced.9b00006
10.1016/j.jct.2015.12.036
10.1016/0378-3812(89)80308-5
10.1021/acs.jctc.8b00544
10.1063/1.461615
10.1016/j.ijrefrig.2013.12.001
10.1021/jp203838j
10.1088/0959-5309/43/5/301
10.1080/00268979809482207
10.1016/j.physrep.2017.01.002
10.1039/FS9811600045
10.1016/j.molliq.2018.05.009
10.3311/PPch.9061
10.1016/0378-3812(93)87135-N
10.1088/0953-8984/13/21/308
10.1016/j.fluid.2004.09.024
10.1088/0953-8984/3/46/021
10.1080/00268978700102421
10.1063/1.3449143
10.1080/00268976.2018.1447153
10.1039/c1cp21920k
10.1016/j.molliq.2019.112076
10.1016/j.jct.2011.04.005
10.1021/jp3019777
10.1021/jp906953a
10.1021/jp065191s
10.1021/jp103292e
10.1039/D0CP01411G
10.1039/C6CP08031F
10.1016/j.fluid.2018.10.012
10.1007/s10765-019-2544-y
10.1021/jp202276k
10.1021/ie00107a014
10.1063/1.4930276
10.1063/1.470319
10.1021/i160057a011
10.1006/jcis.2000.7314
10.1080/00222348008212827
10.1016/j.fuel.2007.05.049
10.1039/C5CP06562C
10.1039/b412375a
10.1007/s00894-017-3285-0
10.1063/1.1818679
10.1021/acs.jced.6b00637
10.1080/00268979709482082
10.1021/acs.jced.6b00573
10.1016/B978-0-408-24193-9.50005-9
10.1002/aic.10683
10.1016/j.fuel.2018.09.040
10.1063/1.2126592
10.1016/S0378-3812(01)00416-2
10.1098/rspa.1924.0081
10.1016/j.fluid.2007.02.013
10.1063/1.476021
10.1063/1.469111
10.1039/C9CP03231B
10.1016/j.fluid.2016.07.016
10.1016/j.fluid.2020.112583
10.1002/bbpc.19940980312
10.1021/jp066969c
10.1021/j100345a065
10.1021/jp072619u
10.1016/j.fluid.2016.08.007
10.1016/S1570-7946(10)28015-X
10.1016/j.fluid.2015.05.005
10.1080/00268978300100181
10.1016/j.fluid.2012.08.010
10.1063/1.4886398
10.1063/1.444720
10.1016/j.fluid.2012.07.033
10.1080/00268978000103811
10.1039/C6CP08856B
10.1021/acs.jcim.6b00685
10.1016/j.fluid.2016.09.009
10.1021/acs.macromol.9b01995
10.1063/1.478710
10.1016/j.cma.2014.10.023
10.1016/j.ijrefrig.2014.08.003
10.1021/acs.jcim.9b00665
10.1016/j.fluid.2004.02.012
10.1063/1.1699114
10.1016/j.molliq.2014.07.017
10.1063/1.478160
10.1016/j.fluid.2012.06.018
10.1021/cr040361n
ContentType Journal Article
Copyright 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
2020 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
– notice: 2020 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1080/0144235X.2020.1777705
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1366-591X
EndPage 349
ExternalDocumentID 10_1080_0144235X_2020_1777705
1777705
Genre Review
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29J
30N
4.4
53G
5GY
AAENE
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NW0
O9-
P2P
PQQKQ
RIG
RNANH
RNS
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TCY
TDBHL
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7U5
8FD
L7M
TASJS
ID FETCH-LOGICAL-c338t-cb9965bdebab98f23945ca50c6855bbfd118050d6637f383365b1bf666d3538a3
ISSN 0144-235X
IngestDate Wed Aug 13 07:30:44 EDT 2025
Tue Jul 01 01:55:41 EDT 2025
Thu Apr 24 23:02:19 EDT 2025
Wed Dec 25 09:08:50 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-cb9965bdebab98f23945ca50c6855bbfd118050d6637f383365b1bf666d3538a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4578-3569
PQID 2431801238
PQPubID 53227
PageCount 31
ParticipantIDs crossref_primary_10_1080_0144235X_2020_1777705
proquest_journals_2431801238
crossref_citationtrail_10_1080_0144235X_2020_1777705
informaworld_taylorfrancis_310_1080_0144235X_2020_1777705
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-02
PublicationDateYYYYMMDD 2020-07-02
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-02
  day: 02
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International reviews in physical chemistry
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0111
CIT0110
Allen M.P. (CIT0165) 1989
CIT0113
CIT0112
CIT0115
CIT0114
CIT0117
CIT0116
CIT0119
CIT0118
CIT0120
CIT0001
CIT0122
CIT0121
CIT0003
CIT0124
CIT0002
CIT0123
CIT0005
CIT0126
CIT0004
CIT0125
CIT0007
CIT0128
CIT0006
CIT0127
CIT0009
CIT0008
CIT0129
CIT0010
CIT0131
CIT0130
CIT0012
CIT0133
CIT0011
CIT0132
CIT0014
CIT0135
CIT0013
CIT0016
CIT0137
CIT0015
CIT0018
CIT0139
CIT0017
CIT0138
Evans R. (CIT0059) 1992
CIT0019
CIT0140
CIT0021
CIT0142
CIT0020
CIT0141
CIT0023
CIT0144
CIT0022
CIT0143
CIT0025
CIT0146
CIT0024
CIT0145
CIT0027
CIT0148
CIT0147
CIT0029
CIT0028
CIT0149
Defay R. (CIT0077) 1966
CIT0209
CIT0208
Karlsson B. (CIT0036) 2017; 7
CIT0201
CIT0200
CIT0203
CIT0202
CIT0205
CIT0204
CIT0207
CIT0206
CIT0100
CIT0109
CIT0102
CIT0101
CIT0104
CIT0103
CIT0106
CIT0105
CIT0108
CIT0107
CIT0072
CIT0193
CIT0071
CIT0192
CIT0074
CIT0195
CIT0073
CIT0194
CIT0076
CIT0197
CIT0075
CIT0196
CIT0078
CIT0199
CIT0198
CIT0070
CIT0191
CIT0190
CIT0079
Neyt J.C. (CIT0136) 2012; 116
CIT0083
Rowlinson J.S. (CIT0057) 1982
CIT0082
CIT0085
CIT0084
CIT0087
CIT0086
CIT0089
CIT0088
CIT0081
CIT0080
Müller E.A. (CIT0134) 2014; 5
CIT0094
CIT0093
CIT0096
CIT0095
CIT0098
CIT0097
CIT0099
CIT0090
CIT0092
CIT0091
CIT0030
CIT0151
CIT0150
CIT0032
CIT0153
CIT0031
CIT0152
CIT0034
CIT0155
CIT0033
CIT0154
CIT0157
CIT0035
CIT0156
CIT0038
CIT0159
CIT0037
CIT0158
CIT0039
CIT0160
CIT0041
CIT0162
CIT0040
CIT0161
CIT0043
CIT0164
CIT0042
CIT0163
CIT0045
CIT0166
CIT0044
CIT0047
CIT0168
CIT0046
CIT0167
CIT0049
CIT0048
CIT0169
CIT0050
CIT0171
CIT0170
CIT0052
CIT0173
CIT0051
CIT0172
CIT0054
CIT0175
CIT0053
CIT0174
CIT0056
CIT0177
CIT0055
CIT0176
Stephan S. (CIT0026) 2018; 69
CIT0058
CIT0179
CIT0178
CIT0061
CIT0182
CIT0060
CIT0181
CIT0063
CIT0184
CIT0062
CIT0183
CIT0065
CIT0186
CIT0064
CIT0185
CIT0067
CIT0188
CIT0066
CIT0187
CIT0180
CIT0069
CIT0068
CIT0189
References_xml – ident: CIT0046
  doi: 10.1063/1.4935339
– ident: CIT0200
  doi: 10.1016/j.fluid.2015.12.043
– ident: CIT0058
  doi: 10.1080/00018737900101365
– ident: CIT0164
  doi: 10.1080/00268979300100411
– ident: CIT0143
  doi: 10.1016/j.jcis.2003.07.023
– ident: CIT0101
  doi: 10.1016/j.fluid.2015.07.026
– ident: CIT0011
  doi: 10.1080/00268978300100191
– ident: CIT0029
– ident: CIT0019
  doi: 10.1021/jp507107a
– ident: CIT0132
  doi: 10.1016/j.fluid.2016.11.024
– ident: CIT0168
  doi: 10.1021/ie010954d
– ident: CIT0154
  doi: 10.1080/00268976.2019.1699185
– ident: CIT0161
  doi: 10.1098/rspa.1924.0082
– ident: CIT0199
  doi: 10.1021/ie000773w
– volume: 7
  start-page: 1
  issue: 6489
  year: 2017
  ident: CIT0036
  publication-title: Sci. Rep.
– ident: CIT0075
  doi: 10.1016/j.fluid.2017.02.009
– ident: CIT0030
  doi: 10.1016/j.fluid.2003.12.008
– ident: CIT0094
  doi: 10.1021/j100347a051
– ident: CIT0151
  doi: 10.1021/acs.jced.9b00503
– ident: CIT0013
  doi: 10.1021/j100254a041
– volume: 69
  start-page: 295
  year: 2018
  ident: CIT0026
  publication-title: Chem. Eng. Trans.
– ident: CIT0078
  doi: 10.1016/j.fluid.2016.06.038
– ident: CIT0068
  doi: 10.1063/1.4943982
– ident: CIT0112
  doi: 10.1016/j.molliq.2012.12.004
– ident: CIT0089
  doi: 10.1016/j.fluid.2017.06.016
– ident: CIT0129
  doi: 10.1016/S0378-3812(96)03123-8
– ident: CIT0088
  doi: 10.1021/ie049086l
– ident: CIT0044
  doi: 10.1039/C8CP05447A
– ident: CIT0006
  doi: 10.1140/epje/i2009-10544-1
– ident: CIT0197
  doi: 10.1080/08927022.2019.1601191
– ident: CIT0194
  doi: 10.1039/C7CP01182B
– ident: CIT0186
  doi: 10.1021/cr60137a013
– ident: CIT0105
  doi: 10.1039/C5CP03415A
– ident: CIT0135
  doi: 10.1063/1.5078739
– ident: CIT0147
  doi: 10.1063/1.461514
– ident: CIT0014
  doi: 10.1103/PhysRevE.101.012802
– volume: 5
  start-page: 1267
  issue: 7
  year: 2014
  ident: CIT0134
  publication-title: J. Phys. Chem.
– ident: CIT0085
  doi: 10.1021/j100200a053
– ident: CIT0055
  doi: 10.1039/C5CS00736D
– ident: CIT0102
  doi: 10.1080/00268979300102781
– ident: CIT0152
  doi: 10.1021/acs.jpcc.5b05806
– ident: CIT0106
  doi: 10.1021/jp505978p
– ident: CIT0113
  doi: 10.1039/b108535m
– ident: CIT0202
  doi: 10.1007/978-3-662-04092-8
– ident: CIT0138
  doi: 10.1016/j.supflu.2010.09.040
– ident: CIT0146
  doi: 10.1016/j.fluid.2016.09.022
– ident: CIT0054
  doi: 10.1039/f29868201721
– ident: CIT0060
  doi: 10.1080/00268979300102621
– ident: CIT0203
  doi: 10.1021/acs.jctc.7b00489
– ident: CIT0084
  doi: 10.1002/bbpc.19961001112
– ident: CIT0023
  doi: 10.1038/s41598-018-37186-2
– ident: CIT0050
  doi: 10.1016/j.fluid.2017.02.013
– ident: CIT0038
  doi: 10.1021/jp072997z
– ident: CIT0099
  doi: 10.1021/jp045649v
– volume-title: Fundamentals of Inhomogeneous Fluids
  year: 1992
  ident: CIT0059
– ident: CIT0189
  doi: 10.1080/00268977900101731
– ident: CIT0131
  doi: 10.1016/j.fluiddyn.2007.12.003
– ident: CIT0185
  doi: 10.1016/0009-2509(72)80096-4
– ident: CIT0081
  doi: 10.1021/jp805566g
– ident: CIT0028
– ident: CIT0074
  doi: 10.1016/j.fluid.2015.07.014
– ident: CIT0109
  doi: 10.1016/j.supflu.2017.01.001
– ident: CIT0005
  doi: 10.1080/014423500229882
– ident: CIT0104
  doi: 10.1007/978-3-319-10810-0_42
– ident: CIT0008
  doi: 10.1002/aic.690260502
– ident: CIT0167
  doi: 10.1021/ie0003887
– ident: CIT0073
  doi: 10.1021/acs.energyfuels.8b00488
– ident: CIT0195
  doi: 10.1007/BF03344902
– ident: CIT0163
– ident: CIT0120
  doi: 10.1021/ie800959h
– ident: CIT0114
  doi: 10.1016/j.fluid.2004.09.032
– ident: CIT0090
  doi: 10.1016/j.molliq.2014.06.003
– ident: CIT0150
  doi: 10.1016/j.fluid.2013.09.042
– ident: CIT0169
  doi: 10.1002/aic.10502
– ident: CIT0087
  doi: 10.1016/j.supflu.2015.11.001
– ident: CIT0051
  doi: 10.1021/acs.jced.7b01001
– ident: CIT0133
  doi: 10.1560/WW15-PBEW-M3W4-UAGN
– ident: CIT0204
  doi: 10.1021/acs.jcim.9b00620
– ident: CIT0062
  doi: 10.1021/acs.jpcc.8b06332
– ident: CIT0184
  doi: 10.1021/ie970449+
– ident: CIT0137
  doi: 10.1063/1.4811679
– ident: CIT0180
  doi: 10.1063/1.4851455
– ident: CIT0196
  doi: 10.1080/08927022.2013.842994
– ident: CIT0041
  doi: 10.1021/jp103862v
– volume-title: Molecular Theory of Capillarity
  year: 1982
  ident: CIT0057
– ident: CIT0097
  doi: 10.1016/j.fluid.2015.08.026
– ident: CIT0033
  doi: 10.1021/acs.jced.9b00672
– ident: CIT0020
  doi: 10.1021/je5000764
– ident: CIT0140
  doi: 10.1021/ie901209z
– ident: CIT0025
  doi: 10.1063/1.5093603
– ident: CIT0179
  doi: 10.1063/1.4819786
– ident: CIT0070
  doi: 10.1103/PhysRevE.98.063312
– ident: CIT0083
  doi: 10.1021/acs.jpcc.9b05412
– ident: CIT0032
  doi: 10.1021/ie4029895
– ident: CIT0111
  doi: 10.1016/j.molliq.2019.110978
– ident: CIT0130
  doi: 10.1016/S0009-2614(03)00746-2
– ident: CIT0149
  doi: 10.1088/0953-8984/3/20/025
– ident: CIT0156
  doi: 10.1016/j.fluid.2012.07.034
– ident: CIT0024
  doi: 10.1063/1.1955529
– ident: CIT0144
  doi: 10.1021/ma50003a026
– ident: CIT0124
  doi: 10.1021/ie9007437
– volume: 116
  start-page: 10563
  issue: 19
  year: 2012
  ident: CIT0136
  publication-title: J. Phys. Chem.
– ident: CIT0049
  doi: 10.1063/1.1839171
– ident: CIT0157
  doi: 10.1016/j.supflu.2010.10.015
– ident: CIT0192
  doi: 10.1063/1.4885348
– ident: CIT0031
  doi: 10.1021/la9712707
– ident: CIT0174
  doi: 10.1080/00268978800101601
– ident: CIT0128
  doi: 10.1063/1.4947017
– ident: CIT0155
  doi: 10.1063/1.444137
– volume-title: Surface Tension and Adsorption
  year: 1966
  ident: CIT0077
– ident: CIT0153
– ident: CIT0066
  doi: 10.1063/1.478490
– ident: CIT0176
  doi: 10.1021/ie00104a021
– ident: CIT0108
  doi: 10.1021/jp108400z
– ident: CIT0035
  doi: 10.1016/j.fluid.2007.10.006
– ident: CIT0127
  doi: 10.1016/j.jct.2015.10.011
– ident: CIT0181
  doi: 10.1063/1.473101
– ident: CIT0012
  doi: 10.1080/00268978400102891
– ident: CIT0018
  doi: 10.1016/j.fluid.2009.04.022
– ident: CIT0100
  doi: 10.1021/acs.jced.9b00006
– ident: CIT0082
  doi: 10.1016/j.jct.2015.12.036
– ident: CIT0175
  doi: 10.1016/0378-3812(89)80308-5
– ident: CIT0142
– ident: CIT0206
  doi: 10.1021/acs.jctc.8b00544
– ident: CIT0158
  doi: 10.1063/1.461615
– ident: CIT0116
  doi: 10.1016/j.ijrefrig.2013.12.001
– ident: CIT0042
  doi: 10.1021/jp203838j
– ident: CIT0162
  doi: 10.1088/0959-5309/43/5/301
– ident: CIT0182
  doi: 10.1080/00268979809482207
– ident: CIT0187
– ident: CIT0056
  doi: 10.1016/j.physrep.2017.01.002
– ident: CIT0076
  doi: 10.1039/FS9811600045
– ident: CIT0072
  doi: 10.1016/j.molliq.2018.05.009
– ident: CIT0118
  doi: 10.3311/PPch.9061
– ident: CIT0103
  doi: 10.1016/0378-3812(93)87135-N
– ident: CIT0069
  doi: 10.1088/0953-8984/13/21/308
– ident: CIT0177
  doi: 10.1016/j.fluid.2004.09.024
– ident: CIT0148
  doi: 10.1088/0953-8984/3/46/021
– ident: CIT0091
  doi: 10.1080/00268978700102421
– ident: CIT0125
  doi: 10.1063/1.3449143
– ident: CIT0172
  doi: 10.1080/00268976.2018.1447153
– ident: CIT0002
  doi: 10.1039/c1cp21920k
– ident: CIT0043
  doi: 10.1016/j.molliq.2019.112076
– ident: CIT0193
  doi: 10.1016/j.jct.2011.04.005
– ident: CIT0040
  doi: 10.1021/jp3019777
– ident: CIT0095
  doi: 10.1021/jp906953a
– ident: CIT0209
– ident: CIT0039
  doi: 10.1021/jp065191s
– ident: CIT0079
  doi: 10.1021/jp103292e
– ident: CIT0027
  doi: 10.1039/D0CP01411G
– ident: CIT0107
  doi: 10.1039/C6CP08031F
– ident: CIT0190
  doi: 10.1016/j.fluid.2018.10.012
– ident: CIT0119
  doi: 10.1007/s10765-019-2544-y
– ident: CIT0022
  doi: 10.1021/jp202276k
– ident: CIT0178
  doi: 10.1021/ie00107a014
– ident: CIT0067
  doi: 10.1063/1.4930276
– ident: CIT0037
  doi: 10.1063/1.470319
– ident: CIT0173
  doi: 10.1021/i160057a011
– ident: CIT0110
  doi: 10.1006/jcis.2000.7314
– ident: CIT0159
  doi: 10.1080/00222348008212827
– ident: CIT0093
  doi: 10.1016/j.fuel.2007.05.049
– ident: CIT0034
  doi: 10.1039/C5CP06562C
– ident: CIT0001
  doi: 10.1039/b412375a
– ident: CIT0045
  doi: 10.1007/s00894-017-3285-0
– ident: CIT0191
  doi: 10.1063/1.1818679
– ident: CIT0071
  doi: 10.1021/acs.jced.6b00637
– ident: CIT0183
  doi: 10.1080/00268979709482082
– ident: CIT0053
  doi: 10.1021/acs.jced.6b00573
– ident: CIT0198
  doi: 10.1016/B978-0-408-24193-9.50005-9
– ident: CIT0170
  doi: 10.1002/aic.10683
– ident: CIT0121
  doi: 10.1016/j.fuel.2018.09.040
– ident: CIT0063
  doi: 10.1063/1.2126592
– ident: CIT0201
  doi: 10.1016/S0378-3812(01)00416-2
– ident: CIT0160
  doi: 10.1098/rspa.1924.0081
– ident: CIT0123
  doi: 10.1016/j.fluid.2007.02.013
– ident: CIT0207
  doi: 10.1063/1.476021
– ident: CIT0064
  doi: 10.1063/1.469111
– ident: CIT0122
  doi: 10.1039/C9CP03231B
– ident: CIT0016
  doi: 10.1016/j.fluid.2016.07.016
– ident: CIT0015
  doi: 10.1016/j.fluid.2020.112583
– ident: CIT0061
  doi: 10.1002/bbpc.19940980312
– ident: CIT0047
  doi: 10.1021/jp066969c
– ident: CIT0086
  doi: 10.1021/j100345a065
– ident: CIT0171
  doi: 10.1021/jp072619u
– ident: CIT0017
  doi: 10.1016/j.fluid.2016.08.007
– ident: CIT0188
  doi: 10.1016/S1570-7946(10)28015-X
– ident: CIT0141
  doi: 10.1016/j.fluid.2015.05.005
– ident: CIT0010
  doi: 10.1080/00268978300100181
– ident: CIT0096
  doi: 10.1016/j.fluid.2012.08.010
– ident: CIT0021
  doi: 10.1063/1.4886398
– ident: CIT0009
  doi: 10.1063/1.444720
– ident: CIT0126
  doi: 10.1016/j.fluid.2012.07.033
– ident: CIT0007
  doi: 10.1080/00268978000103811
– ident: CIT0003
  doi: 10.1039/C6CP08856B
– ident: CIT0098
  doi: 10.1021/acs.jcim.6b00685
– ident: CIT0145
  doi: 10.1016/j.fluid.2016.09.009
– ident: CIT0048
  doi: 10.1021/acs.macromol.9b01995
– ident: CIT0065
  doi: 10.1063/1.478710
– ident: CIT0092
  doi: 10.1016/j.cma.2014.10.023
– ident: CIT0117
  doi: 10.1016/j.ijrefrig.2014.08.003
– ident: CIT0205
  doi: 10.1021/acs.jcim.9b00665
– ident: CIT0052
  doi: 10.1016/j.fluid.2004.02.012
– ident: CIT0166
  doi: 10.1063/1.1699114
– ident: CIT0115
  doi: 10.1016/j.molliq.2014.07.017
– ident: CIT0080
  doi: 10.1063/1.478160
– volume-title: Computer Simulation of Liquids
  year: 1989
  ident: CIT0165
– ident: CIT0139
  doi: 10.1016/j.fluid.2012.06.018
– ident: CIT0004
  doi: 10.1021/cr040361n
– ident: CIT0208
SSID ssj0013219
Score 2.5153553
SecondaryResourceType review_article
Snippet Component density profiles at vapour-liquid interfaces of mixtures can exhibit a non-monotonic behaviour with a maximum that can be many times larger than the...
Component density profiles at vapour–liquid interfaces of mixtures can exhibit a non-monotonic behaviour with a maximum that can be many times larger than the...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 319
SubjectTerms Bulk density
Computer simulation
Data points
Density functional theory
density gradient theory
Enrichment
Liquid-vapor equilibrium
Literature reviews
Mass transfer
Model testing
molecular simulations
Properties (attributes)
vapour-liquid interface
Title Enrichment at vapour-liquid interfaces of mixtures: establishing a link between nanoscopic and macroscopic properties
URI https://www.tandfonline.com/doi/abs/10.1080/0144235X.2020.1777705
https://www.proquest.com/docview/2431801238
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9MwGLbKdoAL4lNsDOQDtynVEttpwm0anSI0bZdURFws20lE0UhLlwLixE9A4h_yS3gd23GqThvQQ9SmddP2efp--fFrhF6VLEljUcVBqlIaUKEmgYyYCCKqwPYpWRPVCWTP42xG3xasGI1-DlRL61aO1fdr15X8D6pwDnDVq2T_Adn-TeEE3Ad84QgIw_GvMJ42YMU-GJl4e_hFLGGQUy-Qy_nn9bzs-kGs6k54pafS59_0lEGngwN_IPoalDjUU7m9bKsRzUIvWLHdXD8J7U3N46Uu369aJz786KXwvrJoe5x2EnVHBOW2luuLOkCTpleaeZZmEM93ZdZMNBtVCUhBdcXT57D51gYhA5WSqWPSICKsMG7I2F4SxwFLw2JonE2nI0tCMrC0xFpa47SJ6Xu65Q-sgBKupi821p90HE7gdsS8A3ST_ucX_HR2dsbzaZHfQbsRJB5gOXePszfv3w1mprrNYvov4FaF6X7t111mI97Z6Ia75f27kCZ_gO7bXAQfG2I9RKOqeYTunjicHqOvnmBYtNgQ7PePX4Za2FMLL2rsqPUaD4mFBdbEwpZY2BMLA7HwgFjYE-sJmp1O85MssDt1BIqQpA2UhLSZybKSQqZJHZGUMr3XhooTxqSsS91okB2VEN5OapIQAi8OZQ2pc0nA4wryFO00i6Z6hjCpKBiICiJXAZm6pEksSZTqto9UhTKM9xB1vydXto293k3lkoeu262FgWsYuIVhD437YUvTx-W2AekQLN52jK4NmTm5ZeyBQ5Zbc3HFIwjVdThIkv2bn36O7vl_1AHaaVfr6gVEvq18acn4B-DQr0U
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB615dBeKI9W9AH4AEeHxF5vdpE4oJAqpSWnVsrN2N61GjXdpMmmBX4Wf4U_xMzuGrUg1APqgb3tw5Z3Hp4Ze_wNwKtMJWls8pinLo14ZFyXW6EMF5HDuc9ZL12VIDuMB6fRx5EarcD3cBaG0iophvY1UEQ1V5Ny02J0SIl7Q1GAkGqE4Z3AR1282iGx8ij_eo1h2-Ld4Qfk8WshDvonvQFvKgtwhyFZyZ1FN1_ZLLfGpomn8uCKagO4OFHKWp8RMJpqZ2iOux5jOIkfd6xHVz-TOEMYif2uwgOVxl3SLdke3ti5qIqJ0BA5jTGcGvrbsG_Zw1toqX9Yh8rkHWzCj0CsOtPlvLUsbct9-w1H8v-i5iN42Hjg7H2tMo9hJS-ewHovFL57Cst-gcbhjJZNmSnZlZlhEz4ZXy7HGSN4jbmnPDY29exi_IV2YBZvGZLPhAU9Zhjti7MmB44VppjS6Z-xY0gldmGIFfX9jPZC5gRquwWn9_LX27BWTIv8GTCZR6gUOXprBqNTGyWxlSIlqMPIdWwn3oEoyIh2DXQ7VRCZ6E5AeG14qImHuuHhDrR-NZvV2CV3NUhvCqAuq0UjX1d40fKOtvtBWnUzDS60QPeUXCCZ7P5D1y9hfXDy6VgfHw6P9mCDXlUJ02If1sr5Mn-ObmFpX1R6yODzfYvqT7neY-Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9swDCa6Dth66dY90HbZpkN3VJZIlmMP2GFIG_SFoIcWyE2TZAsN1jpp4nSPf7W_sl800raGtsPQw9BDffNDgkxKIimSHwG2MpWkscljnro04pFxPW6FMlxEDvc-Z710VYDsMN49ifZHarQEP0MuDIVVkg3ta6CIaq-mxT3NfIiIe09GgJBqhNadwEc9vDohrvIg__4Vrbb5x71tZPE7IQY7x_1d3hQW4A4tspI7i1q-sllujU0TT9XBFZUGcHGilLU-I1w01clQGvc8mnASP-5aj5p-JnGDMBL7fQAPY0rspKyRzvCK46KqJUJD5DTGkDT0r2FfE4fXwFL_Eg6VxBs8gV-BVnWgy5f2orRt9-MGjOS9IuZTWG30b_apXjBrsJQXz-BxP5S9ew6LnQJFwykdmjJTskszxSb8bHyxGGeMwDVmnqLY2MSz8_E38r_MPzCkngnHecww8oqzJgKOFaaYUO7P2DEkEjs3xIn6fkqekBlB2r6Akzv565ewXEyKfB2YzCNcEjnqagZtUxslsZUiJaDDyHVtN96AKEwR7Rrgdqofcqa7Ad-14aEmHuqGhxvQ_tNsWiOX3NYgvTr_dFkdGfm6vouWt7Rthcmqm01wrgUqp6QAyWTzP7p-C4-Otgf6cG948ApW6E0VLS1asFzOFvlr1AlL-6ZahQw-3_VM_Q3WM2KK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enrichment+at+vapour%E2%80%93liquid+interfaces+of+mixtures%3A+establishing+a+link+between+nanoscopic+and+macroscopic+properties&rft.jtitle=International+reviews+in+physical+chemistry&rft.au=Simon%2C+Stephan&rft.au=Hasse%2C+Hans&rft.date=2020-07-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0144-235X&rft.eissn=1366-591X&rft.volume=39&rft.issue=3&rft.spage=319&rft.epage=349&rft_id=info:doi/10.1080%2F0144235X.2020.1777705&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-235X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-235X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-235X&client=summon