Enrichment at vapour-liquid interfaces of mixtures: establishing a link between nanoscopic and macroscopic properties
Component density profiles at vapour-liquid interfaces of mixtures can exhibit a non-monotonic behaviour with a maximum that can be many times larger than the densities in the bulk phases. This is called enrichment and is usually only observed for low-boiling components. The enrichment is a nanoscop...
Saved in:
Published in | International reviews in physical chemistry Vol. 39; no. 3; pp. 319 - 349 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
02.07.2020
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Component density profiles at vapour-liquid interfaces of mixtures can exhibit a non-monotonic behaviour with a maximum that can be many times larger than the densities in the bulk phases. This is called enrichment and is usually only observed for low-boiling components. The enrichment is a nanoscopic property which can presently not be measured experimentally - in contrast to the classical Gibbs adsorption. The available information on the enrichment stems from molecular simulations, density gradient theory, or density functional theory. The enrichment is highly interesting as it is suspected to influence the mass transfer across interfaces. In the present work, we review the literature data and the existing knowledge on this phenomenon and propose an empirical model to establish a link between the nanoscopic enrichment and macroscopic properties - namely vapour-liquid equilibrium data. The model parameters were determined from a fit to a dataset on the enrichment in about 100 binary Lennard-Jones model mixtures that exhibit different types of phase behaviour, which has recently become available. The model is then tested on the entire set of enrichment data that is available in the literature, which includes also mixtures containing non-spherical, polar, and H-bonding components. The model predicts the enrichment data from the literature (2,000 data points) with an AAD of about 16%, which is below the uncertainty of the enrichment data. This establishes a direct link between measurable macroscopic properties and the nanoscopic enrichment and enables predictions of the enrichment at vapour-liquid interfaces from macroscopic data alone. |
---|---|
AbstractList | Component density profiles at vapour-liquid interfaces of mixtures can exhibit a non-monotonic behaviour with a maximum that can be many times larger than the densities in the bulk phases. This is called enrichment and is usually only observed for low-boiling components. The enrichment is a nanoscopic property which can presently not be measured experimentally - in contrast to the classical Gibbs adsorption. The available information on the enrichment stems from molecular simulations, density gradient theory, or density functional theory. The enrichment is highly interesting as it is suspected to influence the mass transfer across interfaces. In the present work, we review the literature data and the existing knowledge on this phenomenon and propose an empirical model to establish a link between the nanoscopic enrichment and macroscopic properties - namely vapour-liquid equilibrium data. The model parameters were determined from a fit to a dataset on the enrichment in about 100 binary Lennard-Jones model mixtures that exhibit different types of phase behaviour, which has recently become available. The model is then tested on the entire set of enrichment data that is available in the literature, which includes also mixtures containing non-spherical, polar, and H-bonding components. The model predicts the enrichment data from the literature (2,000 data points) with an AAD of about 16%, which is below the uncertainty of the enrichment data. This establishes a direct link between measurable macroscopic properties and the nanoscopic enrichment and enables predictions of the enrichment at vapour-liquid interfaces from macroscopic data alone. |
Author | Hasse, Hans Stephan, Simon |
Author_xml | – sequence: 1 givenname: Simon orcidid: 0000-0002-4578-3569 surname: Stephan fullname: Stephan, Simon organization: Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern – sequence: 2 givenname: Hans surname: Hasse fullname: Hasse, Hans email: Hans.Hasse@mv.uni-kl.de organization: Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern |
BookMark | eNqFkE1P3DAQhq1qkbos_AQkSz0H7HhtkvbSClFAWokLSHuzxo5dTBM72A50_z2OFi4c6FxGM3qf-XgP0cIHbxA6oeSUkoacEbpe14xvT2tSl9Z5CcK_oCVlQlS8pdsFWs6aahZ9RYcpPRJCWU3bJZoufXT6YTA-Y8j4GcYwxap3T5PrsPPZRAvaJBwsHty_PEWTvmOTMqjepQfn_2DAvfN_sTL5xRiPPfiQdBidxuA7PICO7_UYw2hidiYdoQMLfTLHb3mF7n9f3l1cV5vbq5uLX5tKM9bkSqu2FVx1RoFqG1uzds01cKJFw7lStqO0IZx0QrBzyxrGipgqK4ToGGcNsBX6tp9bVj9N5Wz5WN7zZaWs16zAtC7YCv3Yq-ZTUzRWapchu-BzBNdLSuTss3z3Wc4-yzefC80_0GN0A8Tdf7mfe855G-IALyH2ncyw60O0Ebx2SbLPR7wCnh-ZFw |
CitedBy_id | crossref_primary_10_1063_5_0138973 crossref_primary_10_1021_acs_jpcb_3c06309 crossref_primary_10_1016_j_fluid_2022_113596 crossref_primary_10_1080_00268976_2021_1976857 crossref_primary_10_1016_j_molliq_2024_126347 crossref_primary_10_1021_acs_jpcc_4c01765 crossref_primary_10_1016_j_molliq_2024_125217 crossref_primary_10_1016_j_molliq_2022_120401 crossref_primary_10_1016_j_applthermaleng_2022_118472 crossref_primary_10_1016_j_applthermaleng_2022_119682 crossref_primary_10_1016_j_molliq_2021_117505 crossref_primary_10_3390_coatings11111400 crossref_primary_10_1039_D0CP04823B crossref_primary_10_1039_D3CP04406H crossref_primary_10_1021_acs_jced_3c00338 crossref_primary_10_1016_j_applthermaleng_2022_118638 crossref_primary_10_1016_j_surfin_2024_104572 crossref_primary_10_1016_j_ijhydene_2024_10_023 crossref_primary_10_1016_j_applthermaleng_2023_120724 crossref_primary_10_1038_s41598_022_10590_5 crossref_primary_10_1016_j_molliq_2023_122337 crossref_primary_10_1038_s41597_023_02369_8 crossref_primary_10_1007_s10765_022_03038_5 crossref_primary_10_1021_acs_langmuir_4c05338 crossref_primary_10_1016_j_fluid_2025_114338 crossref_primary_10_1016_j_molliq_2023_122532 crossref_primary_10_1016_j_molliq_2024_126312 crossref_primary_10_1021_acs_iecr_2c00249 crossref_primary_10_1063_5_0050936 crossref_primary_10_1016_j_ces_2022_117655 crossref_primary_10_1021_acs_jpcb_3c01370 crossref_primary_10_1360_SSC_2022_0258 crossref_primary_10_1002_aic_18503 crossref_primary_10_1021_acs_jpcb_1c03037 crossref_primary_10_1021_acs_langmuir_2c02805 crossref_primary_10_1016_j_molliq_2024_124025 crossref_primary_10_1021_acs_jcim_0c01324 crossref_primary_10_1016_j_molliq_2022_121031 crossref_primary_10_1016_j_fluid_2022_113536 crossref_primary_10_1021_acs_langmuir_3c00484 crossref_primary_10_1021_acs_langmuir_1c01354 crossref_primary_10_1080_10407782_2024_2332473 crossref_primary_10_1016_j_icheatmasstransfer_2022_106045 crossref_primary_10_1016_j_ijhydene_2024_05_249 crossref_primary_10_1016_j_cep_2021_108501 crossref_primary_10_1039_D3CP02798H crossref_primary_10_3390_thermo2030012 crossref_primary_10_1515_jnet_2024_0010 crossref_primary_10_1063_5_0138741 crossref_primary_10_1515_jnet_2021_0080 crossref_primary_10_1016_j_fluid_2022_113444 crossref_primary_10_3390_molecules27072191 crossref_primary_10_1016_j_fuel_2021_121464 crossref_primary_10_1021_acs_jpcb_4c03759 crossref_primary_10_1021_acs_jced_2c00487 crossref_primary_10_1016_j_molliq_2024_124993 crossref_primary_10_1016_j_fluid_2024_114050 crossref_primary_10_1016_j_ijhydene_2022_09_078 crossref_primary_10_1016_j_colsurfa_2024_134135 crossref_primary_10_1016_j_molliq_2022_118604 crossref_primary_10_3390_atmos13040625 crossref_primary_10_1021_acs_jpcb_2c08752 crossref_primary_10_1039_D4CS00574K crossref_primary_10_1080_00268976_2020_1810798 |
Cites_doi | 10.1063/1.4935339 10.1016/j.fluid.2015.12.043 10.1080/00018737900101365 10.1080/00268979300100411 10.1016/j.jcis.2003.07.023 10.1016/j.fluid.2015.07.026 10.1080/00268978300100191 10.1021/jp507107a 10.1016/j.fluid.2016.11.024 10.1021/ie010954d 10.1080/00268976.2019.1699185 10.1098/rspa.1924.0082 10.1021/ie000773w 10.1016/j.fluid.2017.02.009 10.1016/j.fluid.2003.12.008 10.1021/j100347a051 10.1021/acs.jced.9b00503 10.1021/j100254a041 10.1016/j.fluid.2016.06.038 10.1063/1.4943982 10.1016/j.molliq.2012.12.004 10.1016/j.fluid.2017.06.016 10.1016/S0378-3812(96)03123-8 10.1021/ie049086l 10.1039/C8CP05447A 10.1140/epje/i2009-10544-1 10.1080/08927022.2019.1601191 10.1039/C7CP01182B 10.1021/cr60137a013 10.1039/C5CP03415A 10.1063/1.5078739 10.1063/1.461514 10.1103/PhysRevE.101.012802 10.1021/j100200a053 10.1039/C5CS00736D 10.1080/00268979300102781 10.1021/acs.jpcc.5b05806 10.1021/jp505978p 10.1039/b108535m 10.1007/978-3-662-04092-8 10.1016/j.supflu.2010.09.040 10.1016/j.fluid.2016.09.022 10.1039/f29868201721 10.1080/00268979300102621 10.1021/acs.jctc.7b00489 10.1002/bbpc.19961001112 10.1038/s41598-018-37186-2 10.1016/j.fluid.2017.02.013 10.1021/jp072997z 10.1021/jp045649v 10.1080/00268977900101731 10.1016/j.fluiddyn.2007.12.003 10.1016/0009-2509(72)80096-4 10.1021/jp805566g 10.1016/j.fluid.2015.07.014 10.1016/j.supflu.2017.01.001 10.1080/014423500229882 10.1007/978-3-319-10810-0_42 10.1002/aic.690260502 10.1021/ie0003887 10.1021/acs.energyfuels.8b00488 10.1007/BF03344902 10.1021/ie800959h 10.1016/j.fluid.2004.09.032 10.1016/j.molliq.2014.06.003 10.1016/j.fluid.2013.09.042 10.1002/aic.10502 10.1016/j.supflu.2015.11.001 10.1021/acs.jced.7b01001 10.1560/WW15-PBEW-M3W4-UAGN 10.1021/acs.jcim.9b00620 10.1021/acs.jpcc.8b06332 10.1021/ie970449+ 10.1063/1.4811679 10.1063/1.4851455 10.1080/08927022.2013.842994 10.1021/jp103862v 10.1016/j.fluid.2015.08.026 10.1021/acs.jced.9b00672 10.1021/je5000764 10.1021/ie901209z 10.1063/1.5093603 10.1063/1.4819786 10.1103/PhysRevE.98.063312 10.1021/acs.jpcc.9b05412 10.1021/ie4029895 10.1016/j.molliq.2019.110978 10.1016/S0009-2614(03)00746-2 10.1088/0953-8984/3/20/025 10.1016/j.fluid.2012.07.034 10.1063/1.1955529 10.1021/ma50003a026 10.1021/ie9007437 10.1063/1.1839171 10.1016/j.supflu.2010.10.015 10.1063/1.4885348 10.1021/la9712707 10.1080/00268978800101601 10.1063/1.4947017 10.1063/1.444137 10.1063/1.478490 10.1021/ie00104a021 10.1021/jp108400z 10.1016/j.fluid.2007.10.006 10.1016/j.jct.2015.10.011 10.1063/1.473101 10.1080/00268978400102891 10.1016/j.fluid.2009.04.022 10.1021/acs.jced.9b00006 10.1016/j.jct.2015.12.036 10.1016/0378-3812(89)80308-5 10.1021/acs.jctc.8b00544 10.1063/1.461615 10.1016/j.ijrefrig.2013.12.001 10.1021/jp203838j 10.1088/0959-5309/43/5/301 10.1080/00268979809482207 10.1016/j.physrep.2017.01.002 10.1039/FS9811600045 10.1016/j.molliq.2018.05.009 10.3311/PPch.9061 10.1016/0378-3812(93)87135-N 10.1088/0953-8984/13/21/308 10.1016/j.fluid.2004.09.024 10.1088/0953-8984/3/46/021 10.1080/00268978700102421 10.1063/1.3449143 10.1080/00268976.2018.1447153 10.1039/c1cp21920k 10.1016/j.molliq.2019.112076 10.1016/j.jct.2011.04.005 10.1021/jp3019777 10.1021/jp906953a 10.1021/jp065191s 10.1021/jp103292e 10.1039/D0CP01411G 10.1039/C6CP08031F 10.1016/j.fluid.2018.10.012 10.1007/s10765-019-2544-y 10.1021/jp202276k 10.1021/ie00107a014 10.1063/1.4930276 10.1063/1.470319 10.1021/i160057a011 10.1006/jcis.2000.7314 10.1080/00222348008212827 10.1016/j.fuel.2007.05.049 10.1039/C5CP06562C 10.1039/b412375a 10.1007/s00894-017-3285-0 10.1063/1.1818679 10.1021/acs.jced.6b00637 10.1080/00268979709482082 10.1021/acs.jced.6b00573 10.1016/B978-0-408-24193-9.50005-9 10.1002/aic.10683 10.1016/j.fuel.2018.09.040 10.1063/1.2126592 10.1016/S0378-3812(01)00416-2 10.1098/rspa.1924.0081 10.1016/j.fluid.2007.02.013 10.1063/1.476021 10.1063/1.469111 10.1039/C9CP03231B 10.1016/j.fluid.2016.07.016 10.1016/j.fluid.2020.112583 10.1002/bbpc.19940980312 10.1021/jp066969c 10.1021/j100345a065 10.1021/jp072619u 10.1016/j.fluid.2016.08.007 10.1016/S1570-7946(10)28015-X 10.1016/j.fluid.2015.05.005 10.1080/00268978300100181 10.1016/j.fluid.2012.08.010 10.1063/1.4886398 10.1063/1.444720 10.1016/j.fluid.2012.07.033 10.1080/00268978000103811 10.1039/C6CP08856B 10.1021/acs.jcim.6b00685 10.1016/j.fluid.2016.09.009 10.1021/acs.macromol.9b01995 10.1063/1.478710 10.1016/j.cma.2014.10.023 10.1016/j.ijrefrig.2014.08.003 10.1021/acs.jcim.9b00665 10.1016/j.fluid.2004.02.012 10.1063/1.1699114 10.1016/j.molliq.2014.07.017 10.1063/1.478160 10.1016/j.fluid.2012.06.018 10.1021/cr040361n |
ContentType | Journal Article |
Copyright | 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 2020 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1080/0144235X.2020.1777705 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1366-591X |
EndPage | 349 |
ExternalDocumentID | 10_1080_0144235X_2020_1777705 1777705 |
Genre | Review |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29J 30N 4.4 53G 5GY AAENE AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NW0 O9- P2P PQQKQ RIG RNANH RNS ROSJB RTWRZ S-T SNACF TBQAZ TCY TDBHL TFL TFT TFW TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7U5 8FD L7M TASJS |
ID | FETCH-LOGICAL-c338t-cb9965bdebab98f23945ca50c6855bbfd118050d6637f383365b1bf666d3538a3 |
ISSN | 0144-235X |
IngestDate | Wed Aug 13 07:30:44 EDT 2025 Tue Jul 01 01:55:41 EDT 2025 Thu Apr 24 23:02:19 EDT 2025 Wed Dec 25 09:08:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-cb9965bdebab98f23945ca50c6855bbfd118050d6637f383365b1bf666d3538a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4578-3569 |
PQID | 2431801238 |
PQPubID | 53227 |
PageCount | 31 |
ParticipantIDs | crossref_primary_10_1080_0144235X_2020_1777705 proquest_journals_2431801238 crossref_citationtrail_10_1080_0144235X_2020_1777705 informaworld_taylorfrancis_310_1080_0144235X_2020_1777705 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-02 |
PublicationDateYYYYMMDD | 2020-07-02 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | International reviews in physical chemistry |
PublicationYear | 2020 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0111 CIT0110 Allen M.P. (CIT0165) 1989 CIT0113 CIT0112 CIT0115 CIT0114 CIT0117 CIT0116 CIT0119 CIT0118 CIT0120 CIT0001 CIT0122 CIT0121 CIT0003 CIT0124 CIT0002 CIT0123 CIT0005 CIT0126 CIT0004 CIT0125 CIT0007 CIT0128 CIT0006 CIT0127 CIT0009 CIT0008 CIT0129 CIT0010 CIT0131 CIT0130 CIT0012 CIT0133 CIT0011 CIT0132 CIT0014 CIT0135 CIT0013 CIT0016 CIT0137 CIT0015 CIT0018 CIT0139 CIT0017 CIT0138 Evans R. (CIT0059) 1992 CIT0019 CIT0140 CIT0021 CIT0142 CIT0020 CIT0141 CIT0023 CIT0144 CIT0022 CIT0143 CIT0025 CIT0146 CIT0024 CIT0145 CIT0027 CIT0148 CIT0147 CIT0029 CIT0028 CIT0149 Defay R. (CIT0077) 1966 CIT0209 CIT0208 Karlsson B. (CIT0036) 2017; 7 CIT0201 CIT0200 CIT0203 CIT0202 CIT0205 CIT0204 CIT0207 CIT0206 CIT0100 CIT0109 CIT0102 CIT0101 CIT0104 CIT0103 CIT0106 CIT0105 CIT0108 CIT0107 CIT0072 CIT0193 CIT0071 CIT0192 CIT0074 CIT0195 CIT0073 CIT0194 CIT0076 CIT0197 CIT0075 CIT0196 CIT0078 CIT0199 CIT0198 CIT0070 CIT0191 CIT0190 CIT0079 Neyt J.C. (CIT0136) 2012; 116 CIT0083 Rowlinson J.S. (CIT0057) 1982 CIT0082 CIT0085 CIT0084 CIT0087 CIT0086 CIT0089 CIT0088 CIT0081 CIT0080 Müller E.A. (CIT0134) 2014; 5 CIT0094 CIT0093 CIT0096 CIT0095 CIT0098 CIT0097 CIT0099 CIT0090 CIT0092 CIT0091 CIT0030 CIT0151 CIT0150 CIT0032 CIT0153 CIT0031 CIT0152 CIT0034 CIT0155 CIT0033 CIT0154 CIT0157 CIT0035 CIT0156 CIT0038 CIT0159 CIT0037 CIT0158 CIT0039 CIT0160 CIT0041 CIT0162 CIT0040 CIT0161 CIT0043 CIT0164 CIT0042 CIT0163 CIT0045 CIT0166 CIT0044 CIT0047 CIT0168 CIT0046 CIT0167 CIT0049 CIT0048 CIT0169 CIT0050 CIT0171 CIT0170 CIT0052 CIT0173 CIT0051 CIT0172 CIT0054 CIT0175 CIT0053 CIT0174 CIT0056 CIT0177 CIT0055 CIT0176 Stephan S. (CIT0026) 2018; 69 CIT0058 CIT0179 CIT0178 CIT0061 CIT0182 CIT0060 CIT0181 CIT0063 CIT0184 CIT0062 CIT0183 CIT0065 CIT0186 CIT0064 CIT0185 CIT0067 CIT0188 CIT0066 CIT0187 CIT0180 CIT0069 CIT0068 CIT0189 |
References_xml | – ident: CIT0046 doi: 10.1063/1.4935339 – ident: CIT0200 doi: 10.1016/j.fluid.2015.12.043 – ident: CIT0058 doi: 10.1080/00018737900101365 – ident: CIT0164 doi: 10.1080/00268979300100411 – ident: CIT0143 doi: 10.1016/j.jcis.2003.07.023 – ident: CIT0101 doi: 10.1016/j.fluid.2015.07.026 – ident: CIT0011 doi: 10.1080/00268978300100191 – ident: CIT0029 – ident: CIT0019 doi: 10.1021/jp507107a – ident: CIT0132 doi: 10.1016/j.fluid.2016.11.024 – ident: CIT0168 doi: 10.1021/ie010954d – ident: CIT0154 doi: 10.1080/00268976.2019.1699185 – ident: CIT0161 doi: 10.1098/rspa.1924.0082 – ident: CIT0199 doi: 10.1021/ie000773w – volume: 7 start-page: 1 issue: 6489 year: 2017 ident: CIT0036 publication-title: Sci. Rep. – ident: CIT0075 doi: 10.1016/j.fluid.2017.02.009 – ident: CIT0030 doi: 10.1016/j.fluid.2003.12.008 – ident: CIT0094 doi: 10.1021/j100347a051 – ident: CIT0151 doi: 10.1021/acs.jced.9b00503 – ident: CIT0013 doi: 10.1021/j100254a041 – volume: 69 start-page: 295 year: 2018 ident: CIT0026 publication-title: Chem. Eng. Trans. – ident: CIT0078 doi: 10.1016/j.fluid.2016.06.038 – ident: CIT0068 doi: 10.1063/1.4943982 – ident: CIT0112 doi: 10.1016/j.molliq.2012.12.004 – ident: CIT0089 doi: 10.1016/j.fluid.2017.06.016 – ident: CIT0129 doi: 10.1016/S0378-3812(96)03123-8 – ident: CIT0088 doi: 10.1021/ie049086l – ident: CIT0044 doi: 10.1039/C8CP05447A – ident: CIT0006 doi: 10.1140/epje/i2009-10544-1 – ident: CIT0197 doi: 10.1080/08927022.2019.1601191 – ident: CIT0194 doi: 10.1039/C7CP01182B – ident: CIT0186 doi: 10.1021/cr60137a013 – ident: CIT0105 doi: 10.1039/C5CP03415A – ident: CIT0135 doi: 10.1063/1.5078739 – ident: CIT0147 doi: 10.1063/1.461514 – ident: CIT0014 doi: 10.1103/PhysRevE.101.012802 – volume: 5 start-page: 1267 issue: 7 year: 2014 ident: CIT0134 publication-title: J. Phys. Chem. – ident: CIT0085 doi: 10.1021/j100200a053 – ident: CIT0055 doi: 10.1039/C5CS00736D – ident: CIT0102 doi: 10.1080/00268979300102781 – ident: CIT0152 doi: 10.1021/acs.jpcc.5b05806 – ident: CIT0106 doi: 10.1021/jp505978p – ident: CIT0113 doi: 10.1039/b108535m – ident: CIT0202 doi: 10.1007/978-3-662-04092-8 – ident: CIT0138 doi: 10.1016/j.supflu.2010.09.040 – ident: CIT0146 doi: 10.1016/j.fluid.2016.09.022 – ident: CIT0054 doi: 10.1039/f29868201721 – ident: CIT0060 doi: 10.1080/00268979300102621 – ident: CIT0203 doi: 10.1021/acs.jctc.7b00489 – ident: CIT0084 doi: 10.1002/bbpc.19961001112 – ident: CIT0023 doi: 10.1038/s41598-018-37186-2 – ident: CIT0050 doi: 10.1016/j.fluid.2017.02.013 – ident: CIT0038 doi: 10.1021/jp072997z – ident: CIT0099 doi: 10.1021/jp045649v – volume-title: Fundamentals of Inhomogeneous Fluids year: 1992 ident: CIT0059 – ident: CIT0189 doi: 10.1080/00268977900101731 – ident: CIT0131 doi: 10.1016/j.fluiddyn.2007.12.003 – ident: CIT0185 doi: 10.1016/0009-2509(72)80096-4 – ident: CIT0081 doi: 10.1021/jp805566g – ident: CIT0028 – ident: CIT0074 doi: 10.1016/j.fluid.2015.07.014 – ident: CIT0109 doi: 10.1016/j.supflu.2017.01.001 – ident: CIT0005 doi: 10.1080/014423500229882 – ident: CIT0104 doi: 10.1007/978-3-319-10810-0_42 – ident: CIT0008 doi: 10.1002/aic.690260502 – ident: CIT0167 doi: 10.1021/ie0003887 – ident: CIT0073 doi: 10.1021/acs.energyfuels.8b00488 – ident: CIT0195 doi: 10.1007/BF03344902 – ident: CIT0163 – ident: CIT0120 doi: 10.1021/ie800959h – ident: CIT0114 doi: 10.1016/j.fluid.2004.09.032 – ident: CIT0090 doi: 10.1016/j.molliq.2014.06.003 – ident: CIT0150 doi: 10.1016/j.fluid.2013.09.042 – ident: CIT0169 doi: 10.1002/aic.10502 – ident: CIT0087 doi: 10.1016/j.supflu.2015.11.001 – ident: CIT0051 doi: 10.1021/acs.jced.7b01001 – ident: CIT0133 doi: 10.1560/WW15-PBEW-M3W4-UAGN – ident: CIT0204 doi: 10.1021/acs.jcim.9b00620 – ident: CIT0062 doi: 10.1021/acs.jpcc.8b06332 – ident: CIT0184 doi: 10.1021/ie970449+ – ident: CIT0137 doi: 10.1063/1.4811679 – ident: CIT0180 doi: 10.1063/1.4851455 – ident: CIT0196 doi: 10.1080/08927022.2013.842994 – ident: CIT0041 doi: 10.1021/jp103862v – volume-title: Molecular Theory of Capillarity year: 1982 ident: CIT0057 – ident: CIT0097 doi: 10.1016/j.fluid.2015.08.026 – ident: CIT0033 doi: 10.1021/acs.jced.9b00672 – ident: CIT0020 doi: 10.1021/je5000764 – ident: CIT0140 doi: 10.1021/ie901209z – ident: CIT0025 doi: 10.1063/1.5093603 – ident: CIT0179 doi: 10.1063/1.4819786 – ident: CIT0070 doi: 10.1103/PhysRevE.98.063312 – ident: CIT0083 doi: 10.1021/acs.jpcc.9b05412 – ident: CIT0032 doi: 10.1021/ie4029895 – ident: CIT0111 doi: 10.1016/j.molliq.2019.110978 – ident: CIT0130 doi: 10.1016/S0009-2614(03)00746-2 – ident: CIT0149 doi: 10.1088/0953-8984/3/20/025 – ident: CIT0156 doi: 10.1016/j.fluid.2012.07.034 – ident: CIT0024 doi: 10.1063/1.1955529 – ident: CIT0144 doi: 10.1021/ma50003a026 – ident: CIT0124 doi: 10.1021/ie9007437 – volume: 116 start-page: 10563 issue: 19 year: 2012 ident: CIT0136 publication-title: J. Phys. Chem. – ident: CIT0049 doi: 10.1063/1.1839171 – ident: CIT0157 doi: 10.1016/j.supflu.2010.10.015 – ident: CIT0192 doi: 10.1063/1.4885348 – ident: CIT0031 doi: 10.1021/la9712707 – ident: CIT0174 doi: 10.1080/00268978800101601 – ident: CIT0128 doi: 10.1063/1.4947017 – ident: CIT0155 doi: 10.1063/1.444137 – volume-title: Surface Tension and Adsorption year: 1966 ident: CIT0077 – ident: CIT0153 – ident: CIT0066 doi: 10.1063/1.478490 – ident: CIT0176 doi: 10.1021/ie00104a021 – ident: CIT0108 doi: 10.1021/jp108400z – ident: CIT0035 doi: 10.1016/j.fluid.2007.10.006 – ident: CIT0127 doi: 10.1016/j.jct.2015.10.011 – ident: CIT0181 doi: 10.1063/1.473101 – ident: CIT0012 doi: 10.1080/00268978400102891 – ident: CIT0018 doi: 10.1016/j.fluid.2009.04.022 – ident: CIT0100 doi: 10.1021/acs.jced.9b00006 – ident: CIT0082 doi: 10.1016/j.jct.2015.12.036 – ident: CIT0175 doi: 10.1016/0378-3812(89)80308-5 – ident: CIT0142 – ident: CIT0206 doi: 10.1021/acs.jctc.8b00544 – ident: CIT0158 doi: 10.1063/1.461615 – ident: CIT0116 doi: 10.1016/j.ijrefrig.2013.12.001 – ident: CIT0042 doi: 10.1021/jp203838j – ident: CIT0162 doi: 10.1088/0959-5309/43/5/301 – ident: CIT0182 doi: 10.1080/00268979809482207 – ident: CIT0187 – ident: CIT0056 doi: 10.1016/j.physrep.2017.01.002 – ident: CIT0076 doi: 10.1039/FS9811600045 – ident: CIT0072 doi: 10.1016/j.molliq.2018.05.009 – ident: CIT0118 doi: 10.3311/PPch.9061 – ident: CIT0103 doi: 10.1016/0378-3812(93)87135-N – ident: CIT0069 doi: 10.1088/0953-8984/13/21/308 – ident: CIT0177 doi: 10.1016/j.fluid.2004.09.024 – ident: CIT0148 doi: 10.1088/0953-8984/3/46/021 – ident: CIT0091 doi: 10.1080/00268978700102421 – ident: CIT0125 doi: 10.1063/1.3449143 – ident: CIT0172 doi: 10.1080/00268976.2018.1447153 – ident: CIT0002 doi: 10.1039/c1cp21920k – ident: CIT0043 doi: 10.1016/j.molliq.2019.112076 – ident: CIT0193 doi: 10.1016/j.jct.2011.04.005 – ident: CIT0040 doi: 10.1021/jp3019777 – ident: CIT0095 doi: 10.1021/jp906953a – ident: CIT0209 – ident: CIT0039 doi: 10.1021/jp065191s – ident: CIT0079 doi: 10.1021/jp103292e – ident: CIT0027 doi: 10.1039/D0CP01411G – ident: CIT0107 doi: 10.1039/C6CP08031F – ident: CIT0190 doi: 10.1016/j.fluid.2018.10.012 – ident: CIT0119 doi: 10.1007/s10765-019-2544-y – ident: CIT0022 doi: 10.1021/jp202276k – ident: CIT0178 doi: 10.1021/ie00107a014 – ident: CIT0067 doi: 10.1063/1.4930276 – ident: CIT0037 doi: 10.1063/1.470319 – ident: CIT0173 doi: 10.1021/i160057a011 – ident: CIT0110 doi: 10.1006/jcis.2000.7314 – ident: CIT0159 doi: 10.1080/00222348008212827 – ident: CIT0093 doi: 10.1016/j.fuel.2007.05.049 – ident: CIT0034 doi: 10.1039/C5CP06562C – ident: CIT0001 doi: 10.1039/b412375a – ident: CIT0045 doi: 10.1007/s00894-017-3285-0 – ident: CIT0191 doi: 10.1063/1.1818679 – ident: CIT0071 doi: 10.1021/acs.jced.6b00637 – ident: CIT0183 doi: 10.1080/00268979709482082 – ident: CIT0053 doi: 10.1021/acs.jced.6b00573 – ident: CIT0198 doi: 10.1016/B978-0-408-24193-9.50005-9 – ident: CIT0170 doi: 10.1002/aic.10683 – ident: CIT0121 doi: 10.1016/j.fuel.2018.09.040 – ident: CIT0063 doi: 10.1063/1.2126592 – ident: CIT0201 doi: 10.1016/S0378-3812(01)00416-2 – ident: CIT0160 doi: 10.1098/rspa.1924.0081 – ident: CIT0123 doi: 10.1016/j.fluid.2007.02.013 – ident: CIT0207 doi: 10.1063/1.476021 – ident: CIT0064 doi: 10.1063/1.469111 – ident: CIT0122 doi: 10.1039/C9CP03231B – ident: CIT0016 doi: 10.1016/j.fluid.2016.07.016 – ident: CIT0015 doi: 10.1016/j.fluid.2020.112583 – ident: CIT0061 doi: 10.1002/bbpc.19940980312 – ident: CIT0047 doi: 10.1021/jp066969c – ident: CIT0086 doi: 10.1021/j100345a065 – ident: CIT0171 doi: 10.1021/jp072619u – ident: CIT0017 doi: 10.1016/j.fluid.2016.08.007 – ident: CIT0188 doi: 10.1016/S1570-7946(10)28015-X – ident: CIT0141 doi: 10.1016/j.fluid.2015.05.005 – ident: CIT0010 doi: 10.1080/00268978300100181 – ident: CIT0096 doi: 10.1016/j.fluid.2012.08.010 – ident: CIT0021 doi: 10.1063/1.4886398 – ident: CIT0009 doi: 10.1063/1.444720 – ident: CIT0126 doi: 10.1016/j.fluid.2012.07.033 – ident: CIT0007 doi: 10.1080/00268978000103811 – ident: CIT0003 doi: 10.1039/C6CP08856B – ident: CIT0098 doi: 10.1021/acs.jcim.6b00685 – ident: CIT0145 doi: 10.1016/j.fluid.2016.09.009 – ident: CIT0048 doi: 10.1021/acs.macromol.9b01995 – ident: CIT0065 doi: 10.1063/1.478710 – ident: CIT0092 doi: 10.1016/j.cma.2014.10.023 – ident: CIT0117 doi: 10.1016/j.ijrefrig.2014.08.003 – ident: CIT0205 doi: 10.1021/acs.jcim.9b00665 – ident: CIT0052 doi: 10.1016/j.fluid.2004.02.012 – ident: CIT0166 doi: 10.1063/1.1699114 – ident: CIT0115 doi: 10.1016/j.molliq.2014.07.017 – ident: CIT0080 doi: 10.1063/1.478160 – volume-title: Computer Simulation of Liquids year: 1989 ident: CIT0165 – ident: CIT0139 doi: 10.1016/j.fluid.2012.06.018 – ident: CIT0004 doi: 10.1021/cr040361n – ident: CIT0208 |
SSID | ssj0013219 |
Score | 2.5153553 |
SecondaryResourceType | review_article |
Snippet | Component density profiles at vapour-liquid interfaces of mixtures can exhibit a non-monotonic behaviour with a maximum that can be many times larger than the... Component density profiles at vapour–liquid interfaces of mixtures can exhibit a non-monotonic behaviour with a maximum that can be many times larger than the... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 319 |
SubjectTerms | Bulk density Computer simulation Data points Density functional theory density gradient theory Enrichment Liquid-vapor equilibrium Literature reviews Mass transfer Model testing molecular simulations Properties (attributes) vapour-liquid interface |
Title | Enrichment at vapour-liquid interfaces of mixtures: establishing a link between nanoscopic and macroscopic properties |
URI | https://www.tandfonline.com/doi/abs/10.1080/0144235X.2020.1777705 https://www.proquest.com/docview/2431801238 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9MwGLbKdoAL4lNsDOQDtynVEttpwm0anSI0bZdURFws20lE0UhLlwLixE9A4h_yS3gd23GqThvQQ9SmddP2efp--fFrhF6VLEljUcVBqlIaUKEmgYyYCCKqwPYpWRPVCWTP42xG3xasGI1-DlRL61aO1fdr15X8D6pwDnDVq2T_Adn-TeEE3Ad84QgIw_GvMJ42YMU-GJl4e_hFLGGQUy-Qy_nn9bzs-kGs6k54pafS59_0lEGngwN_IPoalDjUU7m9bKsRzUIvWLHdXD8J7U3N46Uu369aJz786KXwvrJoe5x2EnVHBOW2luuLOkCTpleaeZZmEM93ZdZMNBtVCUhBdcXT57D51gYhA5WSqWPSICKsMG7I2F4SxwFLw2JonE2nI0tCMrC0xFpa47SJ6Xu65Q-sgBKupi821p90HE7gdsS8A3ST_ucX_HR2dsbzaZHfQbsRJB5gOXePszfv3w1mprrNYvov4FaF6X7t111mI97Z6Ia75f27kCZ_gO7bXAQfG2I9RKOqeYTunjicHqOvnmBYtNgQ7PePX4Za2FMLL2rsqPUaD4mFBdbEwpZY2BMLA7HwgFjYE-sJmp1O85MssDt1BIqQpA2UhLSZybKSQqZJHZGUMr3XhooTxqSsS91okB2VEN5OapIQAi8OZQ2pc0nA4wryFO00i6Z6hjCpKBiICiJXAZm6pEksSZTqto9UhTKM9xB1vydXto293k3lkoeu262FgWsYuIVhD437YUvTx-W2AekQLN52jK4NmTm5ZeyBQ5Zbc3HFIwjVdThIkv2bn36O7vl_1AHaaVfr6gVEvq18acn4B-DQr0U |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB615dBeKI9W9AH4AEeHxF5vdpE4oJAqpSWnVsrN2N61GjXdpMmmBX4Wf4U_xMzuGrUg1APqgb3tw5Z3Hp4Ze_wNwKtMJWls8pinLo14ZFyXW6EMF5HDuc9ZL12VIDuMB6fRx5EarcD3cBaG0iophvY1UEQ1V5Ny02J0SIl7Q1GAkGqE4Z3AR1282iGx8ij_eo1h2-Ld4Qfk8WshDvonvQFvKgtwhyFZyZ1FN1_ZLLfGpomn8uCKagO4OFHKWp8RMJpqZ2iOux5jOIkfd6xHVz-TOEMYif2uwgOVxl3SLdke3ti5qIqJ0BA5jTGcGvrbsG_Zw1toqX9Yh8rkHWzCj0CsOtPlvLUsbct9-w1H8v-i5iN42Hjg7H2tMo9hJS-ewHovFL57Cst-gcbhjJZNmSnZlZlhEz4ZXy7HGSN4jbmnPDY29exi_IV2YBZvGZLPhAU9Zhjti7MmB44VppjS6Z-xY0gldmGIFfX9jPZC5gRquwWn9_LX27BWTIv8GTCZR6gUOXprBqNTGyWxlSIlqMPIdWwn3oEoyIh2DXQ7VRCZ6E5AeG14qImHuuHhDrR-NZvV2CV3NUhvCqAuq0UjX1d40fKOtvtBWnUzDS60QPeUXCCZ7P5D1y9hfXDy6VgfHw6P9mCDXlUJ02If1sr5Mn-ObmFpX1R6yODzfYvqT7neY-Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9swDCa6Dth66dY90HbZpkN3VJZIlmMP2GFIG_SFoIcWyE2TZAsN1jpp4nSPf7W_sl800raGtsPQw9BDffNDgkxKIimSHwG2MpWkscljnro04pFxPW6FMlxEDvc-Z710VYDsMN49ifZHarQEP0MuDIVVkg3ta6CIaq-mxT3NfIiIe09GgJBqhNadwEc9vDohrvIg__4Vrbb5x71tZPE7IQY7x_1d3hQW4A4tspI7i1q-sllujU0TT9XBFZUGcHGilLU-I1w01clQGvc8mnASP-5aj5p-JnGDMBL7fQAPY0rspKyRzvCK46KqJUJD5DTGkDT0r2FfE4fXwFL_Eg6VxBs8gV-BVnWgy5f2orRt9-MGjOS9IuZTWG30b_apXjBrsJQXz-BxP5S9ew6LnQJFwykdmjJTskszxSb8bHyxGGeMwDVmnqLY2MSz8_E38r_MPzCkngnHecww8oqzJgKOFaaYUO7P2DEkEjs3xIn6fkqekBlB2r6Akzv565ewXEyKfB2YzCNcEjnqagZtUxslsZUiJaDDyHVtN96AKEwR7Rrgdqofcqa7Ad-14aEmHuqGhxvQ_tNsWiOX3NYgvTr_dFkdGfm6vouWt7Rthcmqm01wrgUqp6QAyWTzP7p-C4-Otgf6cG948ApW6E0VLS1asFzOFvlr1AlL-6ZahQw-3_VM_Q3WM2KK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enrichment+at+vapour%E2%80%93liquid+interfaces+of+mixtures%3A+establishing+a+link+between+nanoscopic+and+macroscopic+properties&rft.jtitle=International+reviews+in+physical+chemistry&rft.au=Simon%2C+Stephan&rft.au=Hasse%2C+Hans&rft.date=2020-07-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0144-235X&rft.eissn=1366-591X&rft.volume=39&rft.issue=3&rft.spage=319&rft.epage=349&rft_id=info:doi/10.1080%2F0144235X.2020.1777705&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-235X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-235X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-235X&client=summon |