Joint Modeling of Longitudinal Imaging and Survival Data

This article considers a joint modeling framework for simultaneously examining the dynamic pattern of longitudinal and ultrahigh-dimensional images and their effects on the survival of interest. A functional mixed effects model is considered to describe the trajectories of longitudinal images. Then,...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and graphical statistics Vol. 32; no. 2; pp. 402 - 412
Main Authors Kang, Kai, Song, Xin Yuan
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 03.04.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article considers a joint modeling framework for simultaneously examining the dynamic pattern of longitudinal and ultrahigh-dimensional images and their effects on the survival of interest. A functional mixed effects model is considered to describe the trajectories of longitudinal images. Then, a high-dimensional functional principal component analysis (HD-FPCA) is adopted to extract the principal eigenimages to reduce the ultrahigh dimensionality of imaging data. Finally, a Cox regression model is used to examine the effects of the longitudinal images and other risk factors on the hazard. A theoretical justification shows that a naive two-stage procedure that separately analyzes each part of the joint model produces biased estimation even if the longitudinal images have no measurement error. We develop a Bayesian joint estimation method coupled with efficient Markov chain Monte Carlo sampling schemes to perform statistical inference for the proposed joint model. A Monte Carlo dynamic prediction procedure is proposed to predict the future survival probabilities of subjects given their historical longitudinal images. The proposed model is assessed through extensive simulation studies and an application to Alzheimer's Disease Neuroimaging Initiative, which turns out to hold the promise of accuracy and possess higher predictive capacity for survival outcome compared with existing methods. Supplementary materials for this article are available online.
AbstractList This article considers a joint modeling framework for simultaneously examining the dynamic pattern of longitudinal and ultrahigh-dimensional images and their effects on the survival of interest. A functional mixed effects model is considered to describe the trajectories of longitudinal images. Then, a high-dimensional functional principal component analysis (HD-FPCA) is adopted to extract the principal eigenimages to reduce the ultrahigh dimensionality of imaging data. Finally, a Cox regression model is used to examine the effects of the longitudinal images and other risk factors on the hazard. A theoretical justification shows that a naive two-stage procedure that separately analyzes each part of the joint model produces biased estimation even if the longitudinal images have no measurement error. We develop a Bayesian joint estimation method coupled with efficient Markov chain Monte Carlo sampling schemes to perform statistical inference for the proposed joint model. A Monte Carlo dynamic prediction procedure is proposed to predict the future survival probabilities of subjects given their historical longitudinal images. The proposed model is assessed through extensive simulation studies and an application to Alzheimer’s Disease Neuroimaging Initiative, which turns out to hold the promise of accuracy and possess higher predictive capacity for survival outcome compared with existing methods. Supplementary materials for this article are available online.
This article considers a joint modeling framework for simultaneously examining the dynamic pattern of longitudinal and ultrahigh-dimensional images and their effects on the survival of interest. A functional mixed effects model is considered to describe the trajectories of longitudinal images. Then, a high-dimensional functional principal component analysis (HD-FPCA) is adopted to extract the principal eigenimages to reduce the ultrahigh dimensionality of imaging data. Finally, a Cox regression model is used to examine the effects of the longitudinal images and other risk factors on the hazard. A theoretical justification shows that a naive two-stage procedure that separately analyzes each part of the joint model produces biased estimation even if the longitudinal images have no measurement error. We develop a Bayesian joint estimation method coupled with efficient Markov chain Monte Carlo sampling schemes to perform statistical inference for the proposed joint model. A Monte Carlo dynamic prediction procedure is proposed to predict the future survival probabilities of subjects given their historical longitudinal images. The proposed model is assessed through extensive simulation studies and an application to Alzheimer's Disease Neuroimaging Initiative, which turns out to hold the promise of accuracy and possess higher predictive capacity for survival outcome compared with existing methods. Supplementary materials for this article are available online.
Author Kang, Kai
Song, Xin Yuan
Author_xml – sequence: 1
  givenname: Kai
  surname: Kang
  fullname: Kang, Kai
  organization: Department of Statistics, The Chinese University of Hong Kong
– sequence: 2
  givenname: Xin Yuan
  surname: Song
  fullname: Song, Xin Yuan
  organization: Department of Statistics, The Chinese University of Hong Kong
BookMark eNqFkE9LAzEUxINUsFY_grDgeetLsmmyeFHqv0rFg3oO6SYpKdukZrOVfnt3ab140NM8hpnh8TtFAx-8QegCwxiDgCsMEywmAGMChIwJhk75ERpiRnlOOGaD7u4yeR86QadNswIAPCn5EInn4HzKXoI2tfPLLNhsHvzSpVY7r-pstlbL3ldeZ29t3LptZ96ppM7QsVV1Y84POkIfD_fv06d8_vo4m97O84pSkfJqQRbMVJwAnVBaUKZLDpxZARgzW2hS4FJzrtWiLKngwpSUQaGIVqYAQSwdocv97iaGz9Y0Sa5CG7vXGkkEFoyWrJsdIbZPVTE0TTRWbqJbq7iTGGQPSf5Akj0keYDU9a5_9SqXVHLBp6hc_W_7Zt923oa4Vl8h1lomtatDtFH5yjWS_j3xDesWftw
CitedBy_id crossref_primary_10_1214_24_AOAS1970
crossref_primary_10_1002_sim_10069
crossref_primary_10_1038_s41746_024_01207_4
crossref_primary_10_1177_09622802221137746
crossref_primary_10_1214_23_AOAS1864
Cites_doi 10.1214/009053604000001156
10.1093/biomet/57.1.97
10.1111/biom.12814
10.1093/brain/awn146
10.1080/01621459.2016.1194846
10.1111/j.1541-0420.2010.01546.x
10.1080/01621459.2019.1686391
10.1093/biomet/69.2.331
10.1002/sim.8810
10.1111/j.2517-6161.1972.tb00899.x
10.1214/10-EJS575
10.1016/j.neuroimage.2011.01.075
10.1063/1.1699114
10.1198/016214502753479220
10.5705/ss.2013.063
10.1111/1541-0420.00028
10.1016/j.csda.2018.07.015
10.1214/15-AOAS879
10.1111/j.0006-341X.2005.030814.x
10.1007/978-1-4612-6257-2
10.1080/01621459.2013.788980
10.1016/j.neuroimage.2011.03.040
10.2307/2533439
10.1093/biomet/asx075
10.1111/biom.12748
10.1214/17-AOAS1116
10.1198/016214501753208591
10.1080/01621459.2013.776499
10.1038/ng0594-10b
10.3233/JAD-2011-0040
10.1155/2012/640153
10.1214/14-aoas748
ContentType Journal Article
Copyright 2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2022
2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Copyright_xml – notice: 2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2022
– notice: 2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
DBID AAYXX
CITATION
JQ2
DOI 10.1080/10618600.2022.2102027
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 412
ExternalDocumentID 10_1080_10618600_2022_2102027
2102027
Genre Research Article
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
30N
4.4
5GY
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IAO
IEA
IGG
IGS
IOF
IPNFZ
J.P
JAA
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
UT5
UU3
WZA
XWC
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AMPGV
AMVHM
CITATION
JQ2
TASJS
ID FETCH-LOGICAL-c338t-cb2b5ec7203633435d97075f80115f4d2419d77dab993878e93504a2dae4082f3
ISSN 1061-8600
IngestDate Wed Aug 13 04:26:58 EDT 2025
Tue Jul 01 02:05:31 EDT 2025
Thu Apr 24 23:04:34 EDT 2025
Wed Dec 25 09:03:24 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-cb2b5ec7203633435d97075f80115f4d2419d77dab993878e93504a2dae4082f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2818539534
PQPubID 29738
PageCount 11
ParticipantIDs crossref_primary_10_1080_10618600_2022_2102027
informaworld_taylorfrancis_310_1080_10618600_2022_2102027
proquest_journals_2818539534
crossref_citationtrail_10_1080_10618600_2022_2102027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-03
PublicationDateYYYYMMDD 2023-04-03
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-03
  day: 03
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of computational and graphical statistics
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
CIT0014
Karhunen K. (CIT0013) 2017; 37
CIT0035
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
Li T. (CIT0016) 2018; 28
Tsiatis A. A. (CIT0027) 2004; 14
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0022
  doi: 10.1214/009053604000001156
– ident: CIT0009
  doi: 10.1093/biomet/57.1.97
– ident: CIT0001
  doi: 10.1111/biom.12814
– ident: CIT0023
  doi: 10.1093/brain/awn146
– ident: CIT0028
  doi: 10.1080/01621459.2016.1194846
– ident: CIT0026
  doi: 10.1111/j.1541-0420.2010.01546.x
– ident: CIT0006
  doi: 10.1080/01621459.2019.1686391
– ident: CIT0025
  doi: 10.1093/biomet/69.2.331
– ident: CIT0029
  doi: 10.1002/sim.8810
– ident: CIT0004
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– ident: CIT0007
  doi: 10.1214/10-EJS575
– ident: CIT0035
  doi: 10.1016/j.neuroimage.2011.01.075
– volume: 37
  start-page: 1
  year: 2017
  ident: CIT0013
  publication-title: Annales Academie Scientiarum Fennicae
– ident: CIT0020
  doi: 10.1063/1.1699114
– ident: CIT0018
  doi: 10.1198/016214502753479220
– ident: CIT0008
  doi: 10.5705/ss.2013.063
– ident: CIT0002
  doi: 10.1111/1541-0420.00028
– ident: CIT0015
  doi: 10.1016/j.csda.2018.07.015
– ident: CIT0014
  doi: 10.1214/15-AOAS879
– ident: CIT0010
  doi: 10.1111/j.0006-341X.2005.030814.x
– ident: CIT0019
  doi: 10.1007/978-1-4612-6257-2
– ident: CIT0017
  doi: 10.1080/01621459.2013.788980
– ident: CIT0030
  doi: 10.1016/j.neuroimage.2011.03.040
– ident: CIT0005
  doi: 10.2307/2533439
– ident: CIT0011
  doi: 10.1093/biomet/asx075
– volume: 28
  start-page: 1867
  year: 2018
  ident: CIT0016
  publication-title: Statistica Sinica
– ident: CIT0012
  doi: 10.1111/biom.12748
– ident: CIT0021
  doi: 10.1214/17-AOAS1116
– volume: 14
  start-page: 809
  year: 2004
  ident: CIT0027
  publication-title: Statistica Sinica
– ident: CIT0031
  doi: 10.1198/016214501753208591
– ident: CIT0033
  doi: 10.1080/01621459.2013.776499
– ident: CIT0024
  doi: 10.1038/ng0594-10b
– ident: CIT0003
  doi: 10.3233/JAD-2011-0040
– ident: CIT0032
  doi: 10.1155/2012/640153
– ident: CIT0034
  doi: 10.1214/14-aoas748
SSID ssj0001697
Score 2.3904827
Snippet This article considers a joint modeling framework for simultaneously examining the dynamic pattern of longitudinal and ultrahigh-dimensional images and their...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 402
SubjectTerms Alzheimer's disease
Dimensional analysis
Error analysis
HD-FPCA
Imaging data
Longitudinal response
Markov chains
MCMC methods
Medical imaging
Modelling
Principal components analysis
Regression models
Statistical analysis
Statistical inference
Survival
Time-to-event outcome
Title Joint Modeling of Longitudinal Imaging and Survival Data
URI https://www.tandfonline.com/doi/abs/10.1080/10618600.2022.2102027
https://www.proquest.com/docview/2818539534
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKclkOCBYQ-wDlwA25pLaTOMcV2tVSuuVAKpWTFduJVGlJ0G7CgV_P-JVN1YoFLlHkynE182Vm7MzMh9C7RJapSffDqWYxZuDCsOSVwjNVpYkGlyZtefT1Mr1asfk6WU8m81HWUt_Jqfq1t67kf7QKY6BXUyX7D5odHgoDcA_6hStoGK5_peN5u2k6S2d245OXF63hH-q15br69N1RENnszB5swk9j41wx2r6IVFmGh3A6aGbZdtaucNKM257Og4n2J82fy00YWm-a9996YzFa7xD9eQKhNg2FDggodqg9RvlFxkJCAIB5GruPKVWwmhkmmavLDGb1_thy2N06G8liMnK3zGVR71hyl_poVjOLwUaekKnZnsaulcB25-zlF3G5WixEcbEuHqHHBLYMhs2CxsvBK8880U74-6Gai8cf9i6yFadsdbHd8do2FCmeoadeY9G5A8RzNKmaI_TkemjAe3eEDr8O-nqBuMVJFHAStXU0xknkcRKBxqOAk8jg5CVaXV4UH6-wZ8zAilLeYSWJTCplPq2nlEIkrPMMYsKam8C_ZhrCtVxnmS4lhKU841VOk5iVRJeVIR6v6St00LRN9RpFiZKScEUYLRkrc1ISsOSUU5WXSs94foxYkI9Qvp28YTW5ETPfdTaIVRixCi_WYzQdpv1w_VQempCPhS86i8_aQVPQB-aeBU0J_9reCdv-jOYJZSd__vkUHd6_H2fooLvtqzcQgXbyrYXWb0ARe64
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTgJBEK0oHtSDC2rEtQ9eB2G6Z-mjUQkgcBETb51eZhKjgpHh4tdbNQtBjfHgB1Snp5eqVz1V7wFcBEaHVO7nhU60PIEhzDNxYr22TcLAYUgzeXv0cBR2H0T_MXhc6oWhskrKodOCKCL31XS56TG6Kom7pDQmxkiN6Z3vNylpweRqFdYCGUakYsBbo4U3bpcCK2jikU3VxfPbMF_i0xf20h_eOg9BnW2w1eSLypPn5jwzTfvxjdfxf1-3A1slQmVXxZHahZVkUofN4YLedVaHDYKoBcPzHsT96dMkYySqRq3tbJqywZRUkOaOFLdY7zUXQmI4IXY_R8-EZ5vd6Ezvw0Pndnzd9Uo9Bs9iIpt51vgmSCz9uA05R5zlZISII40JVqbCIRiQLoqcNgh64ihOJA9aQvtOJyRrnfIDqE2mk-QQWGCN8WPrC66F0NLXPvoJTJat1Na1Y9kAUe2CsiVZOWlmvKh2yWlarZKiVVLlKjWguTB7K9g6_jKQy1ussvyZJC00TRT_w_akOg-qvPgzlZNrcRlwcfSPoc9hvTseDtSgN7o7hg2SuM-rhfgJ1LL3eXKKQCgzZ_lJ_wQ4NfRd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oJgYPPlAjiroHr0Xobkt7NCoBBGKiJN42-2gTowKRcvHXO9MHEY3hwA-YTbs7O_NNO_N9AFeeVj61-zm-FQ1HYApzdBAZp2ki37OY0nQ6Hj0Y-p2R6L14RTfhLG-rpBo6zogi0lhNl3tq46Ij7pqqmAATNVZ3rlunmgVrq03Y8ok8nKY4GsNFMG7m-ipo4pBNMcTz3zJL6WmJvPRPsE4zUHsPdPHsWePJW32e6Lr5-kXruNbL7cNujk_ZTeZQB7ARjSuwM1iQu84qUCaAmvE7H0LQm7yOE0aSajTYziYx609IA2luSW-LdT9SGSSGz8Oe5hiX0LPZnUrUEYza98-3HSdXY3AMlrGJY7SrvcjQb1ufc0RZNmwh3ogDApWxsAgFQttqWaUR8gStIAq51xDKtSoiUeuYH0NpPBlHJ8A8o7UbGFdwJYQKXeVilMBS2YTK2GYQVkEUhyBNTlVOihnvspkzmha7JGmXZL5LVagvzKYZV8cqg_DnCcsk_UgSZ4omkq-wrRXuIPNrP5MptRYPPS5O11j6ErYf79qy3x0-nEGZ9O3TViFeg1LyOY_OEQUl-iL1828nJPMB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Modeling+of+Longitudinal+Imaging+and+Survival+Data&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Kang%2C+Kai&rft.au=Xin+Yuan+Song&rft.date=2023-04-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=32&rft.issue=2&rft.spage=402&rft.epage=412&rft_id=info:doi/10.1080%2F10618600.2022.2102027&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon