Joint Modeling of Longitudinal Imaging and Survival Data
This article considers a joint modeling framework for simultaneously examining the dynamic pattern of longitudinal and ultrahigh-dimensional images and their effects on the survival of interest. A functional mixed effects model is considered to describe the trajectories of longitudinal images. Then,...
Saved in:
Published in | Journal of computational and graphical statistics Vol. 32; no. 2; pp. 402 - 412 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Alexandria
Taylor & Francis
03.04.2023
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article considers a joint modeling framework for simultaneously examining the dynamic pattern of longitudinal and ultrahigh-dimensional images and their effects on the survival of interest. A functional mixed effects model is considered to describe the trajectories of longitudinal images. Then, a high-dimensional functional principal component analysis (HD-FPCA) is adopted to extract the principal eigenimages to reduce the ultrahigh dimensionality of imaging data. Finally, a Cox regression model is used to examine the effects of the longitudinal images and other risk factors on the hazard. A theoretical justification shows that a naive two-stage procedure that separately analyzes each part of the joint model produces biased estimation even if the longitudinal images have no measurement error. We develop a Bayesian joint estimation method coupled with efficient Markov chain Monte Carlo sampling schemes to perform statistical inference for the proposed joint model. A Monte Carlo dynamic prediction procedure is proposed to predict the future survival probabilities of subjects given their historical longitudinal images. The proposed model is assessed through extensive simulation studies and an application to Alzheimer's Disease Neuroimaging Initiative, which turns out to hold the promise of accuracy and possess higher predictive capacity for survival outcome compared with existing methods.
Supplementary materials
for this article are available online. |
---|---|
AbstractList | This article considers a joint modeling framework for simultaneously examining the dynamic pattern of longitudinal and ultrahigh-dimensional images and their effects on the survival of interest. A functional mixed effects model is considered to describe the trajectories of longitudinal images. Then, a high-dimensional functional principal component analysis (HD-FPCA) is adopted to extract the principal eigenimages to reduce the ultrahigh dimensionality of imaging data. Finally, a Cox regression model is used to examine the effects of the longitudinal images and other risk factors on the hazard. A theoretical justification shows that a naive two-stage procedure that separately analyzes each part of the joint model produces biased estimation even if the longitudinal images have no measurement error. We develop a Bayesian joint estimation method coupled with efficient Markov chain Monte Carlo sampling schemes to perform statistical inference for the proposed joint model. A Monte Carlo dynamic prediction procedure is proposed to predict the future survival probabilities of subjects given their historical longitudinal images. The proposed model is assessed through extensive simulation studies and an application to Alzheimer’s Disease Neuroimaging Initiative, which turns out to hold the promise of accuracy and possess higher predictive capacity for survival outcome compared with existing methods. Supplementary materials for this article are available online. This article considers a joint modeling framework for simultaneously examining the dynamic pattern of longitudinal and ultrahigh-dimensional images and their effects on the survival of interest. A functional mixed effects model is considered to describe the trajectories of longitudinal images. Then, a high-dimensional functional principal component analysis (HD-FPCA) is adopted to extract the principal eigenimages to reduce the ultrahigh dimensionality of imaging data. Finally, a Cox regression model is used to examine the effects of the longitudinal images and other risk factors on the hazard. A theoretical justification shows that a naive two-stage procedure that separately analyzes each part of the joint model produces biased estimation even if the longitudinal images have no measurement error. We develop a Bayesian joint estimation method coupled with efficient Markov chain Monte Carlo sampling schemes to perform statistical inference for the proposed joint model. A Monte Carlo dynamic prediction procedure is proposed to predict the future survival probabilities of subjects given their historical longitudinal images. The proposed model is assessed through extensive simulation studies and an application to Alzheimer's Disease Neuroimaging Initiative, which turns out to hold the promise of accuracy and possess higher predictive capacity for survival outcome compared with existing methods. Supplementary materials for this article are available online. |
Author | Kang, Kai Song, Xin Yuan |
Author_xml | – sequence: 1 givenname: Kai surname: Kang fullname: Kang, Kai organization: Department of Statistics, The Chinese University of Hong Kong – sequence: 2 givenname: Xin Yuan surname: Song fullname: Song, Xin Yuan organization: Department of Statistics, The Chinese University of Hong Kong |
BookMark | eNqFkE9LAzEUxINUsFY_grDgeetLsmmyeFHqv0rFg3oO6SYpKdukZrOVfnt3ab140NM8hpnh8TtFAx-8QegCwxiDgCsMEywmAGMChIwJhk75ERpiRnlOOGaD7u4yeR86QadNswIAPCn5EInn4HzKXoI2tfPLLNhsHvzSpVY7r-pstlbL3ldeZ29t3LptZ96ppM7QsVV1Y84POkIfD_fv06d8_vo4m97O84pSkfJqQRbMVJwAnVBaUKZLDpxZARgzW2hS4FJzrtWiLKngwpSUQaGIVqYAQSwdocv97iaGz9Y0Sa5CG7vXGkkEFoyWrJsdIbZPVTE0TTRWbqJbq7iTGGQPSf5Akj0keYDU9a5_9SqXVHLBp6hc_W_7Zt923oa4Vl8h1lomtatDtFH5yjWS_j3xDesWftw |
CitedBy_id | crossref_primary_10_1214_24_AOAS1970 crossref_primary_10_1002_sim_10069 crossref_primary_10_1038_s41746_024_01207_4 crossref_primary_10_1177_09622802221137746 crossref_primary_10_1214_23_AOAS1864 |
Cites_doi | 10.1214/009053604000001156 10.1093/biomet/57.1.97 10.1111/biom.12814 10.1093/brain/awn146 10.1080/01621459.2016.1194846 10.1111/j.1541-0420.2010.01546.x 10.1080/01621459.2019.1686391 10.1093/biomet/69.2.331 10.1002/sim.8810 10.1111/j.2517-6161.1972.tb00899.x 10.1214/10-EJS575 10.1016/j.neuroimage.2011.01.075 10.1063/1.1699114 10.1198/016214502753479220 10.5705/ss.2013.063 10.1111/1541-0420.00028 10.1016/j.csda.2018.07.015 10.1214/15-AOAS879 10.1111/j.0006-341X.2005.030814.x 10.1007/978-1-4612-6257-2 10.1080/01621459.2013.788980 10.1016/j.neuroimage.2011.03.040 10.2307/2533439 10.1093/biomet/asx075 10.1111/biom.12748 10.1214/17-AOAS1116 10.1198/016214501753208591 10.1080/01621459.2013.776499 10.1038/ng0594-10b 10.3233/JAD-2011-0040 10.1155/2012/640153 10.1214/14-aoas748 |
ContentType | Journal Article |
Copyright | 2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2022 2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America |
Copyright_xml | – notice: 2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2022 – notice: 2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1080/10618600.2022.2102027 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1537-2715 |
EndPage | 412 |
ExternalDocumentID | 10_1080_10618600_2022_2102027 2102027 |
Genre | Research Article |
GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 30N 4.4 5GY AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABTAI ABXUL ABXYU ABYWD ACGFO ACGFS ACIWK ACMTB ACTIO ACTMH ADCVX ADGTB AEGXH AELLO AENEX AEOZL AEPSL AEUPB AEYOC AFVYC AGDLA AGMYJ AHDZW AIAGR AIJEM AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARCSS AVBZW AWYRJ BLEHA CCCUG CS3 D0L DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IAO IEA IGG IGS IOF IPNFZ J.P JAA KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS UT5 UU3 WZA XWC ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AMPGV AMVHM CITATION JQ2 TASJS |
ID | FETCH-LOGICAL-c338t-cb2b5ec7203633435d97075f80115f4d2419d77dab993878e93504a2dae4082f3 |
ISSN | 1061-8600 |
IngestDate | Wed Aug 13 04:26:58 EDT 2025 Tue Jul 01 02:05:31 EDT 2025 Thu Apr 24 23:04:34 EDT 2025 Wed Dec 25 09:03:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-cb2b5ec7203633435d97075f80115f4d2419d77dab993878e93504a2dae4082f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2818539534 |
PQPubID | 29738 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1080_10618600_2022_2102027 informaworld_taylorfrancis_310_1080_10618600_2022_2102027 proquest_journals_2818539534 crossref_citationtrail_10_1080_10618600_2022_2102027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-03 |
PublicationDateYYYYMMDD | 2023-04-03 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Alexandria |
PublicationPlace_xml | – name: Alexandria |
PublicationTitle | Journal of computational and graphical statistics |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 CIT0014 Karhunen K. (CIT0013) 2017; 37 CIT0035 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 Li T. (CIT0016) 2018; 28 Tsiatis A. A. (CIT0027) 2004; 14 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
References_xml | – ident: CIT0022 doi: 10.1214/009053604000001156 – ident: CIT0009 doi: 10.1093/biomet/57.1.97 – ident: CIT0001 doi: 10.1111/biom.12814 – ident: CIT0023 doi: 10.1093/brain/awn146 – ident: CIT0028 doi: 10.1080/01621459.2016.1194846 – ident: CIT0026 doi: 10.1111/j.1541-0420.2010.01546.x – ident: CIT0006 doi: 10.1080/01621459.2019.1686391 – ident: CIT0025 doi: 10.1093/biomet/69.2.331 – ident: CIT0029 doi: 10.1002/sim.8810 – ident: CIT0004 doi: 10.1111/j.2517-6161.1972.tb00899.x – ident: CIT0007 doi: 10.1214/10-EJS575 – ident: CIT0035 doi: 10.1016/j.neuroimage.2011.01.075 – volume: 37 start-page: 1 year: 2017 ident: CIT0013 publication-title: Annales Academie Scientiarum Fennicae – ident: CIT0020 doi: 10.1063/1.1699114 – ident: CIT0018 doi: 10.1198/016214502753479220 – ident: CIT0008 doi: 10.5705/ss.2013.063 – ident: CIT0002 doi: 10.1111/1541-0420.00028 – ident: CIT0015 doi: 10.1016/j.csda.2018.07.015 – ident: CIT0014 doi: 10.1214/15-AOAS879 – ident: CIT0010 doi: 10.1111/j.0006-341X.2005.030814.x – ident: CIT0019 doi: 10.1007/978-1-4612-6257-2 – ident: CIT0017 doi: 10.1080/01621459.2013.788980 – ident: CIT0030 doi: 10.1016/j.neuroimage.2011.03.040 – ident: CIT0005 doi: 10.2307/2533439 – ident: CIT0011 doi: 10.1093/biomet/asx075 – volume: 28 start-page: 1867 year: 2018 ident: CIT0016 publication-title: Statistica Sinica – ident: CIT0012 doi: 10.1111/biom.12748 – ident: CIT0021 doi: 10.1214/17-AOAS1116 – volume: 14 start-page: 809 year: 2004 ident: CIT0027 publication-title: Statistica Sinica – ident: CIT0031 doi: 10.1198/016214501753208591 – ident: CIT0033 doi: 10.1080/01621459.2013.776499 – ident: CIT0024 doi: 10.1038/ng0594-10b – ident: CIT0003 doi: 10.3233/JAD-2011-0040 – ident: CIT0032 doi: 10.1155/2012/640153 – ident: CIT0034 doi: 10.1214/14-aoas748 |
SSID | ssj0001697 |
Score | 2.3904827 |
Snippet | This article considers a joint modeling framework for simultaneously examining the dynamic pattern of longitudinal and ultrahigh-dimensional images and their... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 402 |
SubjectTerms | Alzheimer's disease Dimensional analysis Error analysis HD-FPCA Imaging data Longitudinal response Markov chains MCMC methods Medical imaging Modelling Principal components analysis Regression models Statistical analysis Statistical inference Survival Time-to-event outcome |
Title | Joint Modeling of Longitudinal Imaging and Survival Data |
URI | https://www.tandfonline.com/doi/abs/10.1080/10618600.2022.2102027 https://www.proquest.com/docview/2818539534 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKclkOCBYQ-wDlwA25pLaTOMcV2tVSuuVAKpWTFduJVGlJ0G7CgV_P-JVN1YoFLlHkynE182Vm7MzMh9C7RJapSffDqWYxZuDCsOSVwjNVpYkGlyZtefT1Mr1asfk6WU8m81HWUt_Jqfq1t67kf7QKY6BXUyX7D5odHgoDcA_6hStoGK5_peN5u2k6S2d245OXF63hH-q15br69N1RENnszB5swk9j41wx2r6IVFmGh3A6aGbZdtaucNKM257Og4n2J82fy00YWm-a9996YzFa7xD9eQKhNg2FDggodqg9RvlFxkJCAIB5GruPKVWwmhkmmavLDGb1_thy2N06G8liMnK3zGVR71hyl_poVjOLwUaekKnZnsaulcB25-zlF3G5WixEcbEuHqHHBLYMhs2CxsvBK8880U74-6Gai8cf9i6yFadsdbHd8do2FCmeoadeY9G5A8RzNKmaI_TkemjAe3eEDr8O-nqBuMVJFHAStXU0xknkcRKBxqOAk8jg5CVaXV4UH6-wZ8zAilLeYSWJTCplPq2nlEIkrPMMYsKam8C_ZhrCtVxnmS4lhKU841VOk5iVRJeVIR6v6St00LRN9RpFiZKScEUYLRkrc1ISsOSUU5WXSs94foxYkI9Qvp28YTW5ETPfdTaIVRixCi_WYzQdpv1w_VQempCPhS86i8_aQVPQB-aeBU0J_9reCdv-jOYJZSd__vkUHd6_H2fooLvtqzcQgXbyrYXWb0ARe64 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTgJBEK0oHtSDC2rEtQ9eB2G6Z-mjUQkgcBETb51eZhKjgpHh4tdbNQtBjfHgB1Snp5eqVz1V7wFcBEaHVO7nhU60PIEhzDNxYr22TcLAYUgzeXv0cBR2H0T_MXhc6oWhskrKodOCKCL31XS56TG6Kom7pDQmxkiN6Z3vNylpweRqFdYCGUakYsBbo4U3bpcCK2jikU3VxfPbMF_i0xf20h_eOg9BnW2w1eSLypPn5jwzTfvxjdfxf1-3A1slQmVXxZHahZVkUofN4YLedVaHDYKoBcPzHsT96dMkYySqRq3tbJqywZRUkOaOFLdY7zUXQmI4IXY_R8-EZ5vd6Ezvw0Pndnzd9Uo9Bs9iIpt51vgmSCz9uA05R5zlZISII40JVqbCIRiQLoqcNgh64ihOJA9aQvtOJyRrnfIDqE2mk-QQWGCN8WPrC66F0NLXPvoJTJat1Na1Y9kAUe2CsiVZOWlmvKh2yWlarZKiVVLlKjWguTB7K9g6_jKQy1ussvyZJC00TRT_w_akOg-qvPgzlZNrcRlwcfSPoc9hvTseDtSgN7o7hg2SuM-rhfgJ1LL3eXKKQCgzZ_lJ_wQ4NfRd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oJgYPPlAjiroHr0Xobkt7NCoBBGKiJN42-2gTowKRcvHXO9MHEY3hwA-YTbs7O_NNO_N9AFeeVj61-zm-FQ1HYApzdBAZp2ki37OY0nQ6Hj0Y-p2R6L14RTfhLG-rpBo6zogi0lhNl3tq46Ij7pqqmAATNVZ3rlunmgVrq03Y8ok8nKY4GsNFMG7m-ipo4pBNMcTz3zJL6WmJvPRPsE4zUHsPdPHsWePJW32e6Lr5-kXruNbL7cNujk_ZTeZQB7ARjSuwM1iQu84qUCaAmvE7H0LQm7yOE0aSajTYziYx609IA2luSW-LdT9SGSSGz8Oe5hiX0LPZnUrUEYza98-3HSdXY3AMlrGJY7SrvcjQb1ufc0RZNmwh3ogDApWxsAgFQttqWaUR8gStIAq51xDKtSoiUeuYH0NpPBlHJ8A8o7UbGFdwJYQKXeVilMBS2YTK2GYQVkEUhyBNTlVOihnvspkzmha7JGmXZL5LVagvzKYZV8cqg_DnCcsk_UgSZ4omkq-wrRXuIPNrP5MptRYPPS5O11j6ErYf79qy3x0-nEGZ9O3TViFeg1LyOY_OEQUl-iL1828nJPMB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Modeling+of+Longitudinal+Imaging+and+Survival+Data&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Kang%2C+Kai&rft.au=Xin+Yuan+Song&rft.date=2023-04-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=32&rft.issue=2&rft.spage=402&rft.epage=412&rft_id=info:doi/10.1080%2F10618600.2022.2102027&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon |