Pylon line spatial correlation assisted transmission line detection

A transmission line is one of the most hazardous objects to low altitude flying aircraft. Due to its extremely tiny size and unsalient visual features, transmission line detection (TLD) is a well-recognized problem. In this paper, a novel TLD method is proposed with the assistance of the spatial cor...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on aerospace and electronic systems Vol. 50; no. 4; pp. 2890 - 2905
Main Authors Zhang, Jun, Shan, Haotian, Cao, Xianbin, Yan, Pingkun, Li, Xuelong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A transmission line is one of the most hazardous objects to low altitude flying aircraft. Due to its extremely tiny size and unsalient visual features, transmission line detection (TLD) is a well-recognized problem. In this paper, a novel TLD method is proposed with the assistance of the spatial correlation between pylon and line for TLD. First, a unidirectional spatial mapping is built up to describe the pylon line spatial correlation. Then, the proposed pylon line spatial correlation and other line features are integrated into a Bayesian framework, which is trained in advance and used to estimate the probability of one line segment belonging to a transmission line. Compared with three other line-based TLD methods, the experimental results demonstrate that the proposed method can obtain better detection performance with higher detection rates and much lower false alarm rates.
AbstractList A transmission line is one of the most hazardous objects to low altitude flying aircraft. Due to its extremely tiny size and unsalient visual features, transmission line detection (TLD) is a well-recognized problem. In this paper, a novel TLD method is proposed with the assistance of the spatial correlation between pylon and line for TLD. First, a unidirectional spatial mapping is built up to describe the pylon line spatial correlation. Then, the proposed pylon line spatial correlation and other line features are integrated into a Bayesian framework, which is trained in advance and used to estimate the probability of one line segment belonging to a transmission line. Compared with three other line-based TLD methods, the experimental results demonstrate that the proposed method can obtain better detection performance with higher detection rates and much lower false alarm rates.
Author Jun Zhang
Xianbin Cao
Haotian Shan
Xuelong Li
Pingkun Yan
Author_xml – sequence: 1
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
– sequence: 2
  givenname: Haotian
  surname: Shan
  fullname: Shan, Haotian
– sequence: 3
  givenname: Xianbin
  surname: Cao
  fullname: Cao, Xianbin
– sequence: 4
  givenname: Pingkun
  surname: Yan
  fullname: Yan, Pingkun
– sequence: 5
  givenname: Xuelong
  surname: Li
  fullname: Li, Xuelong
BookMark eNo9kM1rwzAMxc3oYG22-2CXwM7pLNtx7GMp3QcUNlh3Nq4jQ0qadHZ66H8_h2w7SQ_9noTegsy6vkNC7oEuAah-2q02n0tGQSyB0YqzKzKHsqwKLSmfkTmloArNSrghixgPSQol-JysPy5t3-Vt02EeT3ZobJu7PgRsU58GNsYmDljnQ7BdPDZJ_uE1DuhG6JZce9tGvPutGfl63uzWr8X2_eVtvdoWjnM1FE7thabASu6kwHJfei25165WHKWoyxr23jsmKsYUU4DUCeotSI3OV95KnpHHae8p9N9njIM59OfQpZMGpOSy4jx9nhE6US70MQb05hSaow0XA9SMUZkxKjNGZaaokuVhsjSI-I9LXSmlJP8BqxlnJA
CODEN IEARAX
CitedBy_id crossref_primary_10_1007_s00138_020_01138_6
crossref_primary_10_3390_s22176431
crossref_primary_10_1007_s11554_021_01154_3
crossref_primary_10_1049_rsn2_12090
crossref_primary_10_1117_1_JEI_27_4_043054
crossref_primary_10_1016_j_image_2021_116278
crossref_primary_10_1109_TIM_2023_3341118
crossref_primary_10_1016_j_dsp_2017_10_012
crossref_primary_10_1016_j_image_2022_116634
crossref_primary_10_1109_TIM_2024_3381713
crossref_primary_10_1016_j_patrec_2018_10_010
crossref_primary_10_1109_MIE_2017_2686458
crossref_primary_10_3390_s18092825
crossref_primary_10_1109_TIE_2017_2668994
crossref_primary_10_1109_ACCESS_2019_2923024
crossref_primary_10_3389_fenrg_2022_960842
crossref_primary_10_1109_ACCESS_2021_3101490
crossref_primary_10_1016_j_optlastec_2023_109987
crossref_primary_10_1109_ACCESS_2019_2939025
crossref_primary_10_1109_TAES_2018_2883879
crossref_primary_10_1109_LGRS_2019_2903217
crossref_primary_10_1109_TAES_2023_3313993
crossref_primary_10_11834_jig_220432
crossref_primary_10_3390_rs14061367
crossref_primary_10_1109_LGRS_2023_3345333
crossref_primary_10_1007_s12559_017_9488_y
crossref_primary_10_1016_j_jksuci_2023_101615
crossref_primary_10_1109_TETCI_2018_2849414
crossref_primary_10_3390_rs14184575
crossref_primary_10_1109_MAES_2019_2916293
crossref_primary_10_1109_TBDATA_2022_3227089
crossref_primary_10_1016_j_eswa_2023_121087
Cites_doi 10.1109/TPAMI.2008.300
10.1109/ICAR.2005.1507426
10.1006/cviu.1999.0831
10.1109/LGRS.2007.895714
10.1109/TAES.2003.1188902
10.1109/CVPR.2010.5540235
10.1016/j.cviu.2005.09.012
10.1109/ICPR.2010.114
10.1109/CARPI.2010.5624432
10.1109/CVPR.2005.177
10.1007/3-540-44690-7_15
10.1016/S0262-8856(03)00097-0
10.1023/B:VISI.0000029664.99615.94
10.1109/TAES.1983.309351
10.1109/TAES.2009.5259175
10.1109/TPAMI.1986.4767808
10.1109/7.532250
10.1117/12.668925
10.1117/12.666693
10.1109/ROBOT.2005.1570842
10.1109/TPWRD.2009.2035427
10.1109/TIP.2011.2172798
10.1023/A:1026593302236
10.1109/34.659930
10.1007/s00138-009-0206-y
10.1109/ICIP.2002.1038171
10.1109/DASC.1999.863713
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
DOI 10.1109/TAES.2014.120732
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9603
EndPage 2905
ExternalDocumentID 3625172451
10_1109_TAES_2014_120732
6978886
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAYOK
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
OCL
P2P
RIA
RIE
RIG
RNS
TN5
VH1
XFK
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c338t-c8b4901253c64e5b5f963f9cd83e64d5d1bffc247228281e0c40fa169ecf7fa63
IEDL.DBID RIE
ISSN 0018-9251
IngestDate Thu Oct 10 15:56:25 EDT 2024
Fri Aug 23 01:44:49 EDT 2024
Wed Jun 26 19:28:25 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-c8b4901253c64e5b5f963f9cd83e64d5d1bffc247228281e0c40fa169ecf7fa63
PQID 1663673307
PQPubID 85477
PageCount 16
ParticipantIDs proquest_journals_1663673307
ieee_primary_6978886
crossref_primary_10_1109_TAES_2014_120732
PublicationCentury 2000
PublicationDate 2014-October
2014-10-00
20141001
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-October
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on aerospace and electronic systems
PublicationTitleAbbrev T-AES
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref15
ref36
ref31
ref30
ref33
ref11
ref10
candamo (ref5) 2008
ref2
ref1
heitz (ref24) 2008; 5302
ref17
ref16
ref19
ref18
harris (ref32) 1998
candamo (ref8) 2006; 6230
li (ref26) 2007; 106
jones (ref13) 2006
ref23
gaspar (ref14) 2008
ref25
ref20
jones (ref12) 2005
kasturi (ref7) 2002
ref28
ref27
ref29
ref9
ref4
ref6
eng (ref22) 2004; 2
yonemoto (ref3) 2006; 6226
fu (ref21) 2011; 4
References_xml – ident: ref31
  doi: 10.1109/TPAMI.2008.300
– ident: ref17
  doi: 10.1109/ICAR.2005.1507426
– ident: ref29
  doi: 10.1006/cviu.1999.0831
– ident: ref15
  doi: 10.1109/LGRS.2007.895714
– start-page: 1
  year: 2008
  ident: ref5
  article-title: Wire detection in low-altitude, urban, and low-quality video frames
  publication-title: Proceedings of International Conference on Pattern Recognition
  contributor:
    fullname: candamo
– start-page: 8
  year: 2005
  ident: ref12
  article-title: power line inspection - a uav concept
  publication-title: IEE Forum on Autonomous Systems
  contributor:
    fullname: jones
– ident: ref1
  doi: 10.1109/TAES.2003.1188902
– ident: ref23
  doi: 10.1109/CVPR.2010.5540235
– volume: 106
  start-page: 59
  year: 2007
  ident: ref26
  article-title: Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2005.09.012
  contributor:
    fullname: li
– start-page: 147
  year: 1998
  ident: ref32
  article-title: A combined corner and edge detector
  publication-title: Proceedings of the 4th Alvey Vision Conference
  contributor:
    fullname: harris
– ident: ref20
  doi: 10.1109/ICPR.2010.114
– ident: ref10
  doi: 10.1109/CARPI.2010.5624432
– ident: ref34
  doi: 10.1109/CVPR.2005.177
– ident: ref11
  doi: 10.1007/3-540-44690-7_15
– ident: ref16
  doi: 10.1016/S0262-8856(03)00097-0
– ident: ref35
  doi: 10.1023/B:VISI.0000029664.99615.94
– start-page: 632
  year: 2006
  ident: ref13
  article-title: Modeling and control of a robotic power line inspection vehicle
  publication-title: Proc Int Conf Computers and Applications
  contributor:
    fullname: jones
– ident: ref36
  doi: 10.1109/TAES.1983.309351
– year: 2008
  ident: ref14
  article-title: Hough transform tuned Bayesian classifier for overhead power line inspection
  publication-title: Proceedings of the 19th Annual Symposium of the Pattern Recognition Association of South Africa
  contributor:
    fullname: gaspar
– ident: ref19
  doi: 10.1109/TAES.2009.5259175
– ident: ref27
  doi: 10.1109/TPAMI.1986.4767808
– ident: ref2
  doi: 10.1109/7.532250
– volume: 6230
  year: 2006
  ident: ref8
  article-title: Vision-based on-board collision avoidance system for aircraft navigation
  publication-title: Proceedings of SPIE
  doi: 10.1117/12.668925
  contributor:
    fullname: candamo
– volume: 6226
  year: 2006
  ident: ref3
  article-title: Performance of obstacle detection and collision warning system for civil helicopters
  publication-title: Proceedings of SPIE
  doi: 10.1117/12.666693
  contributor:
    fullname: yonemoto
– ident: ref18
  doi: 10.1109/ROBOT.2005.1570842
– ident: ref9
  doi: 10.1109/TPWRD.2009.2035427
– ident: ref25
  doi: 10.1109/TIP.2011.2172798
– volume: 4
  start-page: 710
  year: 2011
  ident: ref21
  article-title: Obstacle detection algorithms for aviation
  publication-title: IEEE International Conference on Computer Science and Automation Engineering
  contributor:
    fullname: fu
– volume: 2
  start-page: 257
  year: 2004
  ident: ref22
  article-title: A Bayesian framework for robust human detection and occlusion handling using human shape model
  publication-title: Proceedings of the 17th International Conference on Pattern Recognition
  contributor:
    fullname: eng
– volume: 5302
  start-page: 30
  year: 2008
  ident: ref24
  article-title: Learning spatial context: Using stuff to find things
  publication-title: Proc European Conf on Computer Vision
  contributor:
    fullname: heitz
– ident: ref30
  doi: 10.1023/A:1026593302236
– ident: ref28
  doi: 10.1109/34.659930
– ident: ref6
  doi: 10.1007/s00138-009-0206-y
– ident: ref33
  doi: 10.1109/ICIP.2002.1038171
– ident: ref4
  doi: 10.1109/DASC.1999.863713
– year: 2002
  ident: ref7
  article-title: Wire detection algorithms for navigation
  publication-title: NASA technical report
  contributor:
    fullname: kasturi
SSID ssj0014843
Score 2.3249433
Snippet A transmission line is one of the most hazardous objects to low altitude flying aircraft. Due to its extremely tiny size and unsalient visual features,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 2890
SubjectTerms Bayes methods
Correlation
Electric power lines
Feature extraction
Image segmentation
Poles and towers
Power transmission lines
Title Pylon line spatial correlation assisted transmission line detection
URI https://ieeexplore.ieee.org/document/6978886
https://www.proquest.com/docview/1663673307
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgVRCFgjKwIJHWThwnHlHVqkICIdFK3aL4tSCliKYLvx5fnFS8BrYMF8vy3fm-830-A9wIrtIikzTkqdYhoxZ9joiwYElGtObOZmqW7xOfL9nDKll14G53F8YYU5PPzAg_61q-XqstHpWNucCEjXehmwrh72rtKgYsaxhy1DmwC9ptSZKI8eJ--oIkLjaikbPo6FsIqt9U-bUR19FldgiP7bw8qeR1tK3kSH38aNn434kfwUEDM4N7bxfH0DHlCex_aT7Yh8mzy9XLAGFmsEFetZNX-FaHZ8cFDlWjCeigwnDmzAHP1by4NlXN4CpPYTmbLibzsHlSIVQuF61ClUnmEECUxIozk8jEOge0QuksNpzpRFNprYqwg6RLxaghihFbUC6MsqkteHwGvXJdmnMIrIM-hCpRmEQzySNJsLiMjW4TmRleDOC2XeX8zXfOyOuMg4gcNZKjRnKvkQH0cdF2cs16DWDYqiVvXGuTU4eReBq7veni778uYQ-H9oy7IfSq9625csihkte1yXwC45LACw
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHtSDLzSiqD14MbHYbbdLeyQEggrEREi4Nd3XxaQYKRd_vTNtIb4O3nqYZjc7Mzvf7Hw7C3ATC9VJI8lc0dHa5cySz3mxm_Iw8rQWaDMFy3cihjP-OA_nNbjb3IUxxhTkM9Omz6KWrxdqRUdl9yKmhE1swTbi6kiUt7U2NQMeVRw5hi6MYXtdlPTi-2m3_0I0Lt5mPtq0_y0IFa-q_NqKi_gyOIDxemYlreS1vcplW338aNr436kfwn4FNJ1uaRlHUDPZMex9aT_YgN4zZuuZQ0DTWRKzGuUVvdZR8uMcxNVkBNrJKaChQdDJWimuTV5wuLITmA36097QrR5VcBVmo7mrIskRA_hhoAQ3oQwtuqCNlY4CI7gONZPWKp96SGIyxoynuGdTJmKjbMemIjiFerbIzBk4FsGPx1ScmlBzKXzpUXmZWt2GMjIibcLtepWTt7J3RlLkHF6ckEYS0khSaqQJDVq0jVy1Xk1ordWSVM61TBiiJNEJcHc6__uva9gZTsejZPQwebqAXRqm5N-1oJ6_r8wl4ohcXhXm8wka-8NW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pylon+line+spatial+correlation+assisted+transmission+line+detection&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Zhang%2C+Jun&rft.au=Shan%2C+Haotian&rft.au=Cao%2C+Xianbin&rft.au=Yan%2C+Pingkun&rft.date=2014-10-01&rft.issn=0018-9251&rft.volume=50&rft.issue=4&rft.spage=2890&rft.epage=2905&rft_id=info:doi/10.1109%2FTAES.2014.120732&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAES_2014_120732
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon