Pylon line spatial correlation assisted transmission line detection
A transmission line is one of the most hazardous objects to low altitude flying aircraft. Due to its extremely tiny size and unsalient visual features, transmission line detection (TLD) is a well-recognized problem. In this paper, a novel TLD method is proposed with the assistance of the spatial cor...
Saved in:
Published in | IEEE transactions on aerospace and electronic systems Vol. 50; no. 4; pp. 2890 - 2905 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A transmission line is one of the most hazardous objects to low altitude flying aircraft. Due to its extremely tiny size and unsalient visual features, transmission line detection (TLD) is a well-recognized problem. In this paper, a novel TLD method is proposed with the assistance of the spatial correlation between pylon and line for TLD. First, a unidirectional spatial mapping is built up to describe the pylon line spatial correlation. Then, the proposed pylon line spatial correlation and other line features are integrated into a Bayesian framework, which is trained in advance and used to estimate the probability of one line segment belonging to a transmission line. Compared with three other line-based TLD methods, the experimental results demonstrate that the proposed method can obtain better detection performance with higher detection rates and much lower false alarm rates. |
---|---|
AbstractList | A transmission line is one of the most hazardous objects to low altitude flying aircraft. Due to its extremely tiny size and unsalient visual features, transmission line detection (TLD) is a well-recognized problem. In this paper, a novel TLD method is proposed with the assistance of the spatial correlation between pylon and line for TLD. First, a unidirectional spatial mapping is built up to describe the pylon line spatial correlation. Then, the proposed pylon line spatial correlation and other line features are integrated into a Bayesian framework, which is trained in advance and used to estimate the probability of one line segment belonging to a transmission line. Compared with three other line-based TLD methods, the experimental results demonstrate that the proposed method can obtain better detection performance with higher detection rates and much lower false alarm rates. |
Author | Jun Zhang Xianbin Cao Haotian Shan Xuelong Li Pingkun Yan |
Author_xml | – sequence: 1 givenname: Jun surname: Zhang fullname: Zhang, Jun – sequence: 2 givenname: Haotian surname: Shan fullname: Shan, Haotian – sequence: 3 givenname: Xianbin surname: Cao fullname: Cao, Xianbin – sequence: 4 givenname: Pingkun surname: Yan fullname: Yan, Pingkun – sequence: 5 givenname: Xuelong surname: Li fullname: Li, Xuelong |
BookMark | eNo9kM1rwzAMxc3oYG22-2CXwM7pLNtx7GMp3QcUNlh3Nq4jQ0qadHZ66H8_h2w7SQ_9noTegsy6vkNC7oEuAah-2q02n0tGQSyB0YqzKzKHsqwKLSmfkTmloArNSrghixgPSQol-JysPy5t3-Vt02EeT3ZobJu7PgRsU58GNsYmDljnQ7BdPDZJ_uE1DuhG6JZce9tGvPutGfl63uzWr8X2_eVtvdoWjnM1FE7thabASu6kwHJfei25165WHKWoyxr23jsmKsYUU4DUCeotSI3OV95KnpHHae8p9N9njIM59OfQpZMGpOSy4jx9nhE6US70MQb05hSaow0XA9SMUZkxKjNGZaaokuVhsjSI-I9LXSmlJP8BqxlnJA |
CODEN | IEARAX |
CitedBy_id | crossref_primary_10_1007_s00138_020_01138_6 crossref_primary_10_3390_s22176431 crossref_primary_10_1007_s11554_021_01154_3 crossref_primary_10_1049_rsn2_12090 crossref_primary_10_1117_1_JEI_27_4_043054 crossref_primary_10_1016_j_image_2021_116278 crossref_primary_10_1109_TIM_2023_3341118 crossref_primary_10_1016_j_dsp_2017_10_012 crossref_primary_10_1016_j_image_2022_116634 crossref_primary_10_1109_TIM_2024_3381713 crossref_primary_10_1016_j_patrec_2018_10_010 crossref_primary_10_1109_MIE_2017_2686458 crossref_primary_10_3390_s18092825 crossref_primary_10_1109_TIE_2017_2668994 crossref_primary_10_1109_ACCESS_2019_2923024 crossref_primary_10_3389_fenrg_2022_960842 crossref_primary_10_1109_ACCESS_2021_3101490 crossref_primary_10_1016_j_optlastec_2023_109987 crossref_primary_10_1109_ACCESS_2019_2939025 crossref_primary_10_1109_TAES_2018_2883879 crossref_primary_10_1109_LGRS_2019_2903217 crossref_primary_10_1109_TAES_2023_3313993 crossref_primary_10_11834_jig_220432 crossref_primary_10_3390_rs14061367 crossref_primary_10_1109_LGRS_2023_3345333 crossref_primary_10_1007_s12559_017_9488_y crossref_primary_10_1016_j_jksuci_2023_101615 crossref_primary_10_1109_TETCI_2018_2849414 crossref_primary_10_3390_rs14184575 crossref_primary_10_1109_MAES_2019_2916293 crossref_primary_10_1109_TBDATA_2022_3227089 crossref_primary_10_1016_j_eswa_2023_121087 |
Cites_doi | 10.1109/TPAMI.2008.300 10.1109/ICAR.2005.1507426 10.1006/cviu.1999.0831 10.1109/LGRS.2007.895714 10.1109/TAES.2003.1188902 10.1109/CVPR.2010.5540235 10.1016/j.cviu.2005.09.012 10.1109/ICPR.2010.114 10.1109/CARPI.2010.5624432 10.1109/CVPR.2005.177 10.1007/3-540-44690-7_15 10.1016/S0262-8856(03)00097-0 10.1023/B:VISI.0000029664.99615.94 10.1109/TAES.1983.309351 10.1109/TAES.2009.5259175 10.1109/TPAMI.1986.4767808 10.1109/7.532250 10.1117/12.668925 10.1117/12.666693 10.1109/ROBOT.2005.1570842 10.1109/TPWRD.2009.2035427 10.1109/TIP.2011.2172798 10.1023/A:1026593302236 10.1109/34.659930 10.1007/s00138-009-0206-y 10.1109/ICIP.2002.1038171 10.1109/DASC.1999.863713 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M |
DOI | 10.1109/TAES.2014.120732 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9603 |
EndPage | 2905 |
ExternalDocumentID | 3625172451 10_1109_TAES_2014_120732 6978886 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 41~ 5GY 5VS 6IK 97E AAJGR AASAJ AAYOK ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 OCL P2P RIA RIE RIG RNS TN5 VH1 XFK AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M |
ID | FETCH-LOGICAL-c338t-c8b4901253c64e5b5f963f9cd83e64d5d1bffc247228281e0c40fa169ecf7fa63 |
IEDL.DBID | RIE |
ISSN | 0018-9251 |
IngestDate | Thu Oct 10 15:56:25 EDT 2024 Fri Aug 23 01:44:49 EDT 2024 Wed Jun 26 19:28:25 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c338t-c8b4901253c64e5b5f963f9cd83e64d5d1bffc247228281e0c40fa169ecf7fa63 |
PQID | 1663673307 |
PQPubID | 85477 |
PageCount | 16 |
ParticipantIDs | proquest_journals_1663673307 ieee_primary_6978886 crossref_primary_10_1109_TAES_2014_120732 |
PublicationCentury | 2000 |
PublicationDate | 2014-October 2014-10-00 20141001 |
PublicationDateYYYYMMDD | 2014-10-01 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-October |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on aerospace and electronic systems |
PublicationTitleAbbrev | T-AES |
PublicationYear | 2014 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref15 ref36 ref31 ref30 ref33 ref11 ref10 candamo (ref5) 2008 ref2 ref1 heitz (ref24) 2008; 5302 ref17 ref16 ref19 ref18 harris (ref32) 1998 candamo (ref8) 2006; 6230 li (ref26) 2007; 106 jones (ref13) 2006 ref23 gaspar (ref14) 2008 ref25 ref20 jones (ref12) 2005 kasturi (ref7) 2002 ref28 ref27 ref29 ref9 ref4 ref6 eng (ref22) 2004; 2 yonemoto (ref3) 2006; 6226 fu (ref21) 2011; 4 |
References_xml | – ident: ref31 doi: 10.1109/TPAMI.2008.300 – ident: ref17 doi: 10.1109/ICAR.2005.1507426 – ident: ref29 doi: 10.1006/cviu.1999.0831 – ident: ref15 doi: 10.1109/LGRS.2007.895714 – start-page: 1 year: 2008 ident: ref5 article-title: Wire detection in low-altitude, urban, and low-quality video frames publication-title: Proceedings of International Conference on Pattern Recognition contributor: fullname: candamo – start-page: 8 year: 2005 ident: ref12 article-title: power line inspection - a uav concept publication-title: IEE Forum on Autonomous Systems contributor: fullname: jones – ident: ref1 doi: 10.1109/TAES.2003.1188902 – ident: ref23 doi: 10.1109/CVPR.2010.5540235 – volume: 106 start-page: 59 year: 2007 ident: ref26 article-title: Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2005.09.012 contributor: fullname: li – start-page: 147 year: 1998 ident: ref32 article-title: A combined corner and edge detector publication-title: Proceedings of the 4th Alvey Vision Conference contributor: fullname: harris – ident: ref20 doi: 10.1109/ICPR.2010.114 – ident: ref10 doi: 10.1109/CARPI.2010.5624432 – ident: ref34 doi: 10.1109/CVPR.2005.177 – ident: ref11 doi: 10.1007/3-540-44690-7_15 – ident: ref16 doi: 10.1016/S0262-8856(03)00097-0 – ident: ref35 doi: 10.1023/B:VISI.0000029664.99615.94 – start-page: 632 year: 2006 ident: ref13 article-title: Modeling and control of a robotic power line inspection vehicle publication-title: Proc Int Conf Computers and Applications contributor: fullname: jones – ident: ref36 doi: 10.1109/TAES.1983.309351 – year: 2008 ident: ref14 article-title: Hough transform tuned Bayesian classifier for overhead power line inspection publication-title: Proceedings of the 19th Annual Symposium of the Pattern Recognition Association of South Africa contributor: fullname: gaspar – ident: ref19 doi: 10.1109/TAES.2009.5259175 – ident: ref27 doi: 10.1109/TPAMI.1986.4767808 – ident: ref2 doi: 10.1109/7.532250 – volume: 6230 year: 2006 ident: ref8 article-title: Vision-based on-board collision avoidance system for aircraft navigation publication-title: Proceedings of SPIE doi: 10.1117/12.668925 contributor: fullname: candamo – volume: 6226 year: 2006 ident: ref3 article-title: Performance of obstacle detection and collision warning system for civil helicopters publication-title: Proceedings of SPIE doi: 10.1117/12.666693 contributor: fullname: yonemoto – ident: ref18 doi: 10.1109/ROBOT.2005.1570842 – ident: ref9 doi: 10.1109/TPWRD.2009.2035427 – ident: ref25 doi: 10.1109/TIP.2011.2172798 – volume: 4 start-page: 710 year: 2011 ident: ref21 article-title: Obstacle detection algorithms for aviation publication-title: IEEE International Conference on Computer Science and Automation Engineering contributor: fullname: fu – volume: 2 start-page: 257 year: 2004 ident: ref22 article-title: A Bayesian framework for robust human detection and occlusion handling using human shape model publication-title: Proceedings of the 17th International Conference on Pattern Recognition contributor: fullname: eng – volume: 5302 start-page: 30 year: 2008 ident: ref24 article-title: Learning spatial context: Using stuff to find things publication-title: Proc European Conf on Computer Vision contributor: fullname: heitz – ident: ref30 doi: 10.1023/A:1026593302236 – ident: ref28 doi: 10.1109/34.659930 – ident: ref6 doi: 10.1007/s00138-009-0206-y – ident: ref33 doi: 10.1109/ICIP.2002.1038171 – ident: ref4 doi: 10.1109/DASC.1999.863713 – year: 2002 ident: ref7 article-title: Wire detection algorithms for navigation publication-title: NASA technical report contributor: fullname: kasturi |
SSID | ssj0014843 |
Score | 2.3249433 |
Snippet | A transmission line is one of the most hazardous objects to low altitude flying aircraft. Due to its extremely tiny size and unsalient visual features,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 2890 |
SubjectTerms | Bayes methods Correlation Electric power lines Feature extraction Image segmentation Poles and towers Power transmission lines |
Title | Pylon line spatial correlation assisted transmission line detection |
URI | https://ieeexplore.ieee.org/document/6978886 https://www.proquest.com/docview/1663673307 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgVRCFgjKwIJHWThwnHlHVqkICIdFK3aL4tSCliKYLvx5fnFS8BrYMF8vy3fm-830-A9wIrtIikzTkqdYhoxZ9joiwYElGtObOZmqW7xOfL9nDKll14G53F8YYU5PPzAg_61q-XqstHpWNucCEjXehmwrh72rtKgYsaxhy1DmwC9ptSZKI8eJ--oIkLjaikbPo6FsIqt9U-bUR19FldgiP7bw8qeR1tK3kSH38aNn434kfwUEDM4N7bxfH0DHlCex_aT7Yh8mzy9XLAGFmsEFetZNX-FaHZ8cFDlWjCeigwnDmzAHP1by4NlXN4CpPYTmbLibzsHlSIVQuF61ClUnmEECUxIozk8jEOge0QuksNpzpRFNprYqwg6RLxaghihFbUC6MsqkteHwGvXJdmnMIrIM-hCpRmEQzySNJsLiMjW4TmRleDOC2XeX8zXfOyOuMg4gcNZKjRnKvkQH0cdF2cs16DWDYqiVvXGuTU4eReBq7veni778uYQ-H9oy7IfSq9625csihkte1yXwC45LACw |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHtSDLzSiqD14MbHYbbdLeyQEggrEREi4Nd3XxaQYKRd_vTNtIb4O3nqYZjc7Mzvf7Hw7C3ATC9VJI8lc0dHa5cySz3mxm_Iw8rQWaDMFy3cihjP-OA_nNbjb3IUxxhTkM9Omz6KWrxdqRUdl9yKmhE1swTbi6kiUt7U2NQMeVRw5hi6MYXtdlPTi-2m3_0I0Lt5mPtq0_y0IFa-q_NqKi_gyOIDxemYlreS1vcplW338aNr436kfwn4FNJ1uaRlHUDPZMex9aT_YgN4zZuuZQ0DTWRKzGuUVvdZR8uMcxNVkBNrJKaChQdDJWimuTV5wuLITmA36097QrR5VcBVmo7mrIskRA_hhoAQ3oQwtuqCNlY4CI7gONZPWKp96SGIyxoynuGdTJmKjbMemIjiFerbIzBk4FsGPx1ScmlBzKXzpUXmZWt2GMjIibcLtepWTt7J3RlLkHF6ckEYS0khSaqQJDVq0jVy1Xk1ordWSVM61TBiiJNEJcHc6__uva9gZTsejZPQwebqAXRqm5N-1oJ6_r8wl4ohcXhXm8wka-8NW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pylon+line+spatial+correlation+assisted+transmission+line+detection&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Zhang%2C+Jun&rft.au=Shan%2C+Haotian&rft.au=Cao%2C+Xianbin&rft.au=Yan%2C+Pingkun&rft.date=2014-10-01&rft.issn=0018-9251&rft.volume=50&rft.issue=4&rft.spage=2890&rft.epage=2905&rft_id=info:doi/10.1109%2FTAES.2014.120732&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAES_2014_120732 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon |