An inertial proximal splitting method with applications

In this paper, we propose an inertial proximal splitting method for solving the non-convex optimization problem, and the new method employs the idea of inertial proximal point to improve the computational efficiency. Based on the assumptions that the sequence generated by the new method is bounded a...

Full description

Saved in:
Bibliographic Details
Published inOptimization Vol. 73; no. 8; pp. 2555 - 2584
Main Authors Wang, Xiaoquan, Shao, Hu, Liu, Pengjie, Yang, Wenli
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.08.2024
Taylor & Francis LLC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose an inertial proximal splitting method for solving the non-convex optimization problem, and the new method employs the idea of inertial proximal point to improve the computational efficiency. Based on the assumptions that the sequence generated by the new method is bounded and the auxiliary function satisfies the Kurdyka-Łojasiewicz property, the global convergence analysis with a more relaxed parameter range is proved for the proposed method. Moreover, some numerical results on SCAD, image processing and robust PCA non-convex problems are tested to demonstrate the effectiveness and superiority of the proposed method.
AbstractList In this paper, we propose an inertial proximal splitting method for solving the non-convex optimization problem, and the new method employs the idea of inertial proximal point to improve the computational efficiency. Based on the assumptions that the sequence generated by the new method is bounded and the auxiliary function satisfies the Kurdyka–Łojasiewicz property, the global convergence analysis with a more relaxed parameter range is proved for the proposed method. Moreover, some numerical results on SCAD, image processing and robust PCA non-convex problems are tested to demonstrate the effectiveness and superiority of the proposed method.
Author Liu, Pengjie
Shao, Hu
Yang, Wenli
Wang, Xiaoquan
Author_xml – sequence: 1
  givenname: Xiaoquan
  surname: Wang
  fullname: Wang, Xiaoquan
  organization: China University of Mining and Technology
– sequence: 2
  givenname: Hu
  surname: Shao
  fullname: Shao, Hu
  email: shaohu@cumt.edu.cn
  organization: China University of Mining and Technology
– sequence: 3
  givenname: Pengjie
  surname: Liu
  fullname: Liu, Pengjie
  organization: China University of Mining and Technology
– sequence: 4
  givenname: Wenli
  surname: Yang
  fullname: Yang, Wenli
  email: yangwl19@cumt.edu.cn
  organization: China University of Mining and Technology
BookMark eNqFkE1LAzEURYNUsK3-BGHA9dSXj5lMcGMpfkHBja5DmsnYlGkyZiK1_96MrRsXusojnPve5UzQyHlnELrEMMNQwTUQSrGgbEbSNCOEghDsBI0xEJEzwYoRGg9MPkBnaNL3GwCCS8LGiM9dZp0J0ao264L_tNs09F1rY7TuLduauPZ1trNxnakufWsVrXf9OTptVNubi-M7Ra_3dy-Lx3z5_PC0mC9zTWkVc801N4Xiq6JZYVFSUROlVjUXvCx5VRhVK2gYZ5gbACaa2mBdACS0FhQM0Cm6OuxN3d4_TB_lxn8El05KChXHuOKkStTNgdLB930wjdQ2fheNQdlWYpCDKfljSg6m5NFUShe_0l1IGsL-39ztIWdd48NW7XxoaxnVvvWhCcppm0r-veILK7GA0A
CitedBy_id crossref_primary_10_1007_s10957_024_02539_7
Cites_doi 10.1016/j.cam.2017.11.033
10.1137/130942954
10.15960/j.cnki.issn.1007-6093.2019.03.010
10.1287/moor.1100.0449
10.1561/2200000016
10.1007/s10898-019-00819-5
10.12386/A20210081
10.1080/02331934.2019.1704754
10.1007/s10898-020-00943-7
10.1007/s40305-022-00411-x
10.1109/TII.2021.3125964
10.1007/s10957-021-01919-7
10.1109/SSP.2011.5967677
10.1109/TII.9424
10.1016/j.apnum.2021.09.011
10.1007/s10589-019-00073-1
10.1007/s12190-022-01799-8
10.1016/0167-2789(92)90242-F
10.1016/j.amc.2015.01.017
10.1007/s12190-021-01590-1
10.1016/j.apnum.2022.10.015
10.1080/00207160.2016.1227432
10.3934/jimo.2022170
10.1007/s10444-015-9408-1
10.1080/00207160.2020.1812585
10.1142/S0217595915500116
10.1137/140990309
10.1007/978-3-642-02431-3
10.1007/s10589-015-9770-4
10.1007/s10444-017-9574-4
10.1137/15100463X
10.1109/TNNLS.2012.2197412
10.1007/s11432-017-9367-6
10.1016/j.cam.2022.114821
10.1007/s10444-018-9591-y
10.1007/s10957-020-01782-y
10.1002/(ISSN)1097-0312
10.1007/BF01128757
10.1007/s11075-019-00731-9
10.1051/M2AN/197509R200411
10.1007/s10107-014-0826-5
10.12386/A2021sxxb0084
10.4208/csiam-am
10.1007/s10589-021-00338-8
10.1007/s10589-017-9971-0
10.1007/BF03178906
10.1137/140974237
10.1198/016214501753382273
10.1137/140998135
10.1007/s10107-013-0701-9
10.1137/120886753
10.1007/s10851-015-0565-0
10.1142/S0217595920400096
10.1109/TIT.2012.2212415
10.1080/10556788.2014.992432
10.1016/j.rser.2021.111687
10.1016/j.apnum.2020.07.008
10.1007/s11464-017-0631-6
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/02331934.2023.2230994
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4945
EndPage 2584
ExternalDocumentID 10_1080_02331934_2023_2230994
2230994
Genre Research Article
GrantInformation_xml – fundername: Postgraduate Research & Innovation Program of Jiangsu Province
  grantid: KYCX22_2491
– fundername: Graduate Innovation Program of China University of Mining and Technology
  grantid: 2022WLKXJ021
– fundername: National Natural Science Foundation of China
  grantid: 72071202
GroupedDBID .7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7SC
7TB
8FD
AMVHM
FR3
H8D
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-c7c7e5a7b5fb19639d2aabd79766785eada0f47417e0049fde1c500196d930e03
ISSN 0233-1934
IngestDate Wed Aug 13 10:48:06 EDT 2025
Thu Apr 24 23:09:49 EDT 2025
Tue Jul 01 03:52:14 EDT 2025
Wed Dec 25 09:08:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-c7c7e5a7b5fb19639d2aabd79766785eada0f47417e0049fde1c500196d930e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3087118728
PQPubID 27961
PageCount 30
ParticipantIDs crossref_citationtrail_10_1080_02331934_2023_2230994
crossref_primary_10_1080_02331934_2023_2230994
informaworld_taylorfrancis_310_1080_02331934_2023_2230994
proquest_journals_3087118728
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-02
PublicationDateYYYYMMDD 2024-08-02
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-02
  day: 02
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Optimization
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References e_1_3_3_52_1
e_1_3_3_50_1
e_1_3_3_18_1
e_1_3_3_39_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_58_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_56_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_54_1
e_1_3_3_40_1
e_1_3_3_61_1
e_1_3_3_7_1
e_1_3_3_9_1
e_1_3_3_29_1
e_1_3_3_25_1
e_1_3_3_48_1
e_1_3_3_27_1
e_1_3_3_46_1
Goncalves MLN (e_1_3_3_53_1) 2019; 15
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_30_1
Nesterov Y. (e_1_3_3_51_1) 2013
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_59_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_57_1
e_1_3_3_34_1
e_1_3_3_55_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_41_1
e_1_3_3_60_1
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_28_1
e_1_3_3_24_1
e_1_3_3_49_1
e_1_3_3_26_1
e_1_3_3_47_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
References_xml – ident: e_1_3_3_14_1
  doi: 10.1016/j.cam.2017.11.033
– ident: e_1_3_3_37_1
  doi: 10.1137/130942954
– ident: e_1_3_3_10_1
  doi: 10.15960/j.cnki.issn.1007-6093.2019.03.010
– ident: e_1_3_3_49_1
  doi: 10.1287/moor.1100.0449
– ident: e_1_3_3_7_1
  doi: 10.1561/2200000016
– ident: e_1_3_3_3_1
  doi: 10.1007/s10898-019-00819-5
– ident: e_1_3_3_34_1
  doi: 10.12386/A20210081
– ident: e_1_3_3_16_1
  doi: 10.1080/02331934.2019.1704754
– ident: e_1_3_3_41_1
  doi: 10.1007/s10898-020-00943-7
– ident: e_1_3_3_36_1
  doi: 10.1007/s40305-022-00411-x
– ident: e_1_3_3_4_1
  doi: 10.1109/TII.2021.3125964
– ident: e_1_3_3_55_1
  doi: 10.1007/s10957-021-01919-7
– ident: e_1_3_3_59_1
  doi: 10.1109/SSP.2011.5967677
– ident: e_1_3_3_5_1
  doi: 10.1109/TII.9424
– ident: e_1_3_3_11_1
  doi: 10.1016/j.apnum.2021.09.011
– ident: e_1_3_3_42_1
  doi: 10.1007/s10589-019-00073-1
– ident: e_1_3_3_43_1
  doi: 10.1007/s12190-022-01799-8
– ident: e_1_3_3_57_1
  doi: 10.1016/0167-2789(92)90242-F
– ident: e_1_3_3_40_1
  doi: 10.1016/j.amc.2015.01.017
– ident: e_1_3_3_45_1
  doi: 10.1007/s12190-021-01590-1
– ident: e_1_3_3_27_1
  doi: 10.1016/j.apnum.2022.10.015
– ident: e_1_3_3_32_1
  doi: 10.1080/00207160.2016.1227432
– ident: e_1_3_3_33_1
  doi: 10.3934/jimo.2022170
– ident: e_1_3_3_18_1
  doi: 10.1007/s10444-015-9408-1
– ident: e_1_3_3_46_1
  doi: 10.1080/00207160.2020.1812585
– ident: e_1_3_3_26_1
  doi: 10.1142/S0217595915500116
– ident: e_1_3_3_30_1
  doi: 10.1137/140990309
– ident: e_1_3_3_50_1
  doi: 10.1007/978-3-642-02431-3
– ident: e_1_3_3_20_1
  doi: 10.1007/s10589-015-9770-4
– ident: e_1_3_3_17_1
  doi: 10.1007/s10444-017-9574-4
– ident: e_1_3_3_44_1
  doi: 10.1137/15100463X
– ident: e_1_3_3_58_1
  doi: 10.1109/TNNLS.2012.2197412
– ident: e_1_3_3_31_1
  doi: 10.1007/s11432-017-9367-6
– ident: e_1_3_3_47_1
  doi: 10.1016/j.cam.2022.114821
– ident: e_1_3_3_23_1
  doi: 10.1007/s10444-018-9591-y
– ident: e_1_3_3_48_1
  doi: 10.1007/s10957-020-01782-y
– volume: 15
  start-page: 379
  issue: 3
  year: 2019
  ident: e_1_3_3_53_1
  article-title: Convergence rate bounds for a proximal ADMM with over-relaxation stepsize parameter for solving nonconvex linearly constrained problems
  publication-title: Pac J Optim
– ident: e_1_3_3_61_1
  doi: 10.1002/(ISSN)1097-0312
– ident: e_1_3_3_39_1
  doi: 10.1007/BF01128757
– ident: e_1_3_3_21_1
  doi: 10.1007/s11075-019-00731-9
– ident: e_1_3_3_6_1
  doi: 10.1051/M2AN/197509R200411
– ident: e_1_3_3_9_1
  doi: 10.1007/s10107-014-0826-5
– ident: e_1_3_3_35_1
  doi: 10.12386/A2021sxxb0084
– ident: e_1_3_3_24_1
  doi: 10.4208/csiam-am
– ident: e_1_3_3_19_1
  doi: 10.1007/s10589-021-00338-8
– ident: e_1_3_3_25_1
  doi: 10.1007/s10589-017-9971-0
– ident: e_1_3_3_56_1
  doi: 10.1007/BF03178906
– ident: e_1_3_3_13_1
  doi: 10.1137/140974237
– ident: e_1_3_3_2_1
  doi: 10.1198/016214501753382273
– ident: e_1_3_3_29_1
  doi: 10.1137/140998135
– ident: e_1_3_3_52_1
  doi: 10.1007/s10107-013-0701-9
– ident: e_1_3_3_12_1
  doi: 10.1137/120886753
– ident: e_1_3_3_38_1
  doi: 10.1007/s10851-015-0565-0
– ident: e_1_3_3_22_1
  doi: 10.1142/S0217595920400096
– ident: e_1_3_3_60_1
  doi: 10.1109/TIT.2012.2212415
– ident: e_1_3_3_28_1
  doi: 10.1080/10556788.2014.992432
– ident: e_1_3_3_8_1
  doi: 10.1016/j.rser.2021.111687
– volume-title: Introductory lectures on convex optimization: a basic course
  year: 2013
  ident: e_1_3_3_51_1
– ident: e_1_3_3_15_1
  doi: 10.1016/j.apnum.2020.07.008
– ident: e_1_3_3_54_1
  doi: 10.1007/s11464-017-0631-6
SSID ssj0021624
Score 2.3786628
Snippet In this paper, we propose an inertial proximal splitting method for solving the non-convex optimization problem, and the new method employs the idea of...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2555
SubjectTerms Convexity
global convergence
Image processing
inertial proximal point method
Kurdyka-Łojasiewicz property
Multi-block non-convex optimization
Splitting
splitting method
Title An inertial proximal splitting method with applications
URI https://www.tandfonline.com/doi/abs/10.1080/02331934.2023.2230994
https://www.proquest.com/docview/3087118728
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTuQwELWY5jJzQGyjYVUOXNNKvMTxscWiFhJwAETDJbIdZ6ZHEBBKS4ivpxw7C4vYLlYUyc5SL-VXlVoQ2okVKQROi1DFxoSUcRJKQkiohRFE4lgnddO-o-NkfE4PJ2zShfLW2SWVGurHN_NKviNVOAdytVmyX5BsuyicgGOQL4wgYRg_JeORDVO0gdE2ner-9mF6Y7M_gFa6YGbXHdqnr_V-VPcJ6QmojBufi9k5150CmEwlbBsdfE7_ydqxOp61YTzTmQvyLf_-n7YQufTzL6ynpO9WwLQOaut7GjFIDNids_aN0442VoYKV_-xUZ-uE4mHSdrXhcwV4PX7KmauF9wrne2DHOF69nJD2899CKQFqCvtNqnmx_yLvauNKIybUqd-mcwuk_llfqB5DFYEHqD50Xjv6qK1yOOk7nrcPmuT4mWLr791P8_Iy7PStq-28pqfnC2iBW9YBCOHkiU0Z8pl9KtXbnIF8VEZNHgJGrwELV4Ch5fA4iXo42UVnR_sn-2OQ984I9SEpFWoueaGSa5YoayGFTmWUuUcqCdwEwbKQ0YFBS7JjbUQi9zEmtWVknJBIhOR32hQ3pbmDwq4NDSheaoKg6lmTOaJFCotIhhMJPAaos0bybSvKm-bm1xn70pkDQ3baXeurMpHE0T_dWdV7c8qXPOZjHwwd7ORTea_XpgSpRyMa47T9a_eywb62X0xm2hQ3c_MFlDTSm17gD0B9zWCTw
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1GeGVgTktiO47FCVAXaTq3ULbIdW0KUgCBd-PWcnaRqQahDlyhSdJZzOfseOX8fQreRxIbHqfFlpLVPKMO-wBj7imuORRypxJH2DYZJb0yeJnSycBbGtlXaHNpUQBFur7aL2xajm5a4O_AzYDnYlkRiHICDgzCHbKItyhNmWQxwOJwnXVHiiG2tiG9lmlM8_w2z5J-W0Ev_7NbOBXX3kWomX3WevAazUgbq-xeu43pvd4D26gjV61QmdYg2dHGEdhdwC48R6xSePTQIu8PUs9N5eYObL4hnXRe1V9FSe7bG6y3-IT9B4-7D6L7n1wwMvoLUtfQVU0xTwSQ10i5VnsdCyJxBDANOjoIVitAQCEqYtqmGyXWkqIPcyTkOdYhPUat4L_QZ8pjQJCF5Ko2OiaJU5IngMjUhXHTI4zYijd4zVcOTW5aMaRY1KKa1XjKrl6zWSxsFc7GPCp9jlQBf_KhZ6QojpmIxyfAK2cvGArJ6qYNICDlnlLI4PV9j6Bu03RsN-ln_cfh8gXbgEXFthvElapWfM30FoU8pr51t_wBsnfMb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSAgG3ohCgQysDklsx8lYAVV5VQxUYotsx5YQJVQ0Xfj1nJ2kakGIoUsUKTrLudz5Hrn7DqGLUBKTRonBMtQaU8YJFoQQrFKdEhGFKnZD-x4HcX9I715YU004qcsqbQxtKqAId1Zb5R7npqmIuwQzA4JDbEYkIj7YN_By6Cpaiy14uO3iCAazmCuM3VxbS4ItTdPE89cyC-ZpAbz012HtLFBvG8lm71XhyZs_LaWvvn7AOi71cjtoq_ZPvW4lULtoRRd7aHMOtXAf8W7h2ZZBOBtGnt3N6zvcTMCbdTXUXjWU2rMZXm_-__gBGvZunq_6uJ6_gBUEriVWXHHNBJfMSKuoaR4JIXMOHgyYOAYyKAJDwSXh2gYaJtehYg5wJ09JoANyiFrFR6GPkMeFpjHNE2l0RBVjIo9FKhMTwEUHadRGtGF7pmpwcjsjY5SFDYZpzZfM8iWr-dJG_oxsXKFz_EeQzn_TrHRpEVPNMMnIP7SdRgCyWtGBJICIM0x4lBwvsfQ5Wn-67mUPt4P7E7QBT6irMYw6qFV-TvUp-D2lPHOS_Q1qM_G_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inertial+proximal+splitting+method+with+applications&rft.jtitle=Optimization&rft.au=Wang%2C+Xiaoquan&rft.au=Shao%2C+Hu&rft.au=Liu%2C+Pengjie&rft.au=Yang%2C+Wenli&rft.date=2024-08-02&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=73&rft.issue=8&rft.spage=2555&rft.epage=2584&rft_id=info:doi/10.1080%2F02331934.2023.2230994&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02331934_2023_2230994
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon