Number of predictors and multicollinearity: What are their effects on error and bias in regression?

The present Monte Carlo simulation study adds to the literature by analyzing parameter bias, rates of Type I and Type II error, and variance inflation factor (VIF) values produced under various multicollinearity conditions by multiple regressions with two, four, and six predictors. Findings indicate...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 48; no. 1; pp. 27 - 38
Main Authors Lavery, Matthew Ryan, Acharya, Parul, Sivo, Stephen A., Xu, Lihua
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.01.2019
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present Monte Carlo simulation study adds to the literature by analyzing parameter bias, rates of Type I and Type II error, and variance inflation factor (VIF) values produced under various multicollinearity conditions by multiple regressions with two, four, and six predictors. Findings indicate multicollinearity is unrelated to Type I error, but increases Type II error. Investigation of bias suggests that multicollinearity increases the variability in parameter bias, while leading to overall underestimation of parameters. Collinearity also increases VIF. In the case of all diagnostics however, increasing the number of predictors interacts with multicollinearity to compound observed problems.
AbstractList The present Monte Carlo simulation study adds to the literature by analyzing parameter bias, rates of Type I and Type II error, and variance inflation factor (VIF) values produced under various multicollinearity conditions by multiple regressions with two, four, and six predictors. Findings indicate multicollinearity is unrelated to Type I error, but increases Type II error. Investigation of bias suggests that multicollinearity increases the variability in parameter bias, while leading to overall underestimation of parameters. Collinearity also increases VIF. In the case of all diagnostics however, increasing the number of predictors interacts with multicollinearity to compound observed problems.
Author Acharya, Parul
Xu, Lihua
Sivo, Stephen A.
Lavery, Matthew Ryan
Author_xml – sequence: 1
  givenname: Matthew Ryan
  orcidid: 0000-0002-4208-7277
  surname: Lavery
  fullname: Lavery, Matthew Ryan
  email: mlavery@bgsu.edu
  organization: Educational Foundations, College of Education and Human Development, Bowling Green State University, Leadership & Policy
– sequence: 2
  givenname: Parul
  surname: Acharya
  fullname: Acharya, Parul
  organization: College of Education and Health Professions, Columbus State University
– sequence: 3
  givenname: Stephen A.
  surname: Sivo
  fullname: Sivo, Stephen A.
  organization: Department of Educational and Human Sciences, College of Education and Human Performance, University of Central Florida
– sequence: 4
  givenname: Lihua
  surname: Xu
  fullname: Xu, Lihua
  organization: Department of Educational and Human Sciences, College of Education and Human Performance, University of Central Florida
BookMark eNqFkM1OGzEURi1EJcLPIyBZ6nqCrz0z8dBFW6EClRBsqLq0PJ5r4mhip9eOqrx9J4RuuqArb875rnVO2XFMERm7BDEHocWVUC2IDvRcCljMQS1g0YgjNoNGyaqGGo7ZbM9Ue-iEnea8EkIoXesZc4_bdY_Ek-cbwiG4kihzGwe-3o4luDSOIaKlUHbX_OfSFm4JeVliII7eoyuZp8iRKNGr1gebeYic8IUw55Di53P2wdsx48Xbe8Z-3H57vrmvHp7uvt98faicUrpUrulFZ7W1LSywqSX6oZN-gF7JttddW2toNQo5oHTgeoc1Akjh0DY9KIHqjH087G4o_dpiLmaVthSnk0ZKOa0q3cFEfTpQjlLOhN64UGyZPlrIhtGAMPuq5m9Vs69q3qpOdvOPvaGwtrT7r_fl4IXoE63t70TjYIrdjYk82ehCNur9iT8HrZDv
CitedBy_id crossref_primary_10_1109_TSE_2024_3387840
crossref_primary_10_15452_cejnm_2021_12_0039
crossref_primary_10_1038_s41598_021_97621_9
crossref_primary_10_21926_obm_neurobiol_2402216
crossref_primary_10_1061__ASCE_CO_1943_7862_0002183
crossref_primary_10_1007_s40333_024_0098_8
crossref_primary_10_1108_IJMCE_09_2023_0086
crossref_primary_10_3389_fsufs_2025_1510790
crossref_primary_10_1021_acsinfecdis_1c00355
crossref_primary_10_1016_j_chb_2022_107358
crossref_primary_10_22495_jgrv13i4art8
crossref_primary_10_1038_s41443_024_00887_6
crossref_primary_10_18267_j_pep_830
crossref_primary_10_1016_j_jspi_2023_07_001
crossref_primary_10_1080_15481603_2022_2161200
crossref_primary_10_1108_JAAR_06_2021_0150
crossref_primary_10_1109_TR_2023_3295012
crossref_primary_10_1016_j_ijintrel_2023_101857
crossref_primary_10_1016_j_agrformet_2020_108317
crossref_primary_10_1186_s40594_025_00535_5
crossref_primary_10_3389_fpsyg_2023_1153447
crossref_primary_10_3390_land12040800
crossref_primary_10_1007_s10639_023_12341_z
crossref_primary_10_1080_87565641_2021_1914045
crossref_primary_10_1007_s11442_024_2228_9
crossref_primary_10_1016_j_pmip_2024_100139
crossref_primary_10_1016_j_intell_2021_101596
crossref_primary_10_1080_23279095_2024_2385444
crossref_primary_10_1080_09712119_2023_2285852
crossref_primary_10_1016_j_compositesa_2023_107835
crossref_primary_10_1080_13548506_2021_1950784
crossref_primary_10_1523_JNEUROSCI_1042_22_2023
crossref_primary_10_1080_23311975_2024_2302468
crossref_primary_10_3390_ijerph19042323
crossref_primary_10_24818_EA_2020_54_462
crossref_primary_10_3390_bs13110928
crossref_primary_10_1080_02664763_2022_2138838
crossref_primary_10_1016_S2666_7568_23_00056_9
crossref_primary_10_1007_s10803_018_3837_x
crossref_primary_10_3390_ani13030424
crossref_primary_10_1016_j_tate_2024_104715
crossref_primary_10_1093_cid_ciaa403
crossref_primary_10_3390_su15032765
crossref_primary_10_1016_j_fcr_2023_109145
crossref_primary_10_1123_mc_2020_0106
crossref_primary_10_1186_s12884_021_03733_5
crossref_primary_10_1111_fme_12413
crossref_primary_10_1080_01443410_2021_2016635
crossref_primary_10_1016_j_scitotenv_2023_168126
crossref_primary_10_3102_10769986231200155
crossref_primary_10_1016_j_jhydrol_2024_132337
crossref_primary_10_1080_0092623X_2019_1711273
crossref_primary_10_1080_00220973_2019_1708233
crossref_primary_10_1038_s41443_020_00375_7
crossref_primary_10_1016_j_lindif_2023_102319
crossref_primary_10_1080_15564886_2021_1880508
crossref_primary_10_1016_j_healthplace_2020_102284
crossref_primary_10_1111_jbi_14125
crossref_primary_10_3390_land12081615
crossref_primary_10_1016_j_jenvman_2025_124040
crossref_primary_10_1098_rstb_2022_0498
crossref_primary_10_3390_joitmc8040198
crossref_primary_10_1016_j_archger_2020_104279
crossref_primary_10_3390_ani11061835
crossref_primary_10_5194_bg_20_897_2023
crossref_primary_10_1108_CG_11_2019_0335
crossref_primary_10_1177_00187208221116953
crossref_primary_10_1016_j_evolhumbehav_2021_03_007
crossref_primary_10_1016_j_socscimed_2024_117326
crossref_primary_10_1007_s00429_024_02792_6
crossref_primary_10_1364_OE_452948
crossref_primary_10_21926_obm_neurobiol_2401205
crossref_primary_10_1007_s11852_024_01086_7
crossref_primary_10_3390_jtaer19030108
crossref_primary_10_3390_rs15112887
crossref_primary_10_1007_s12144_022_03910_5
crossref_primary_10_7759_s44389_024_02871_z
crossref_primary_10_3390_ijerph192013077
crossref_primary_10_26794_2587_5671_2025_29_1_172_180
crossref_primary_10_3390_f13081168
crossref_primary_10_1016_j_jclepro_2023_140010
crossref_primary_10_15672_hujms_1122113
crossref_primary_10_3390_ijerph18052222
crossref_primary_10_46481_jnsps_2021_304
crossref_primary_10_3389_fpsyg_2020_609571
crossref_primary_10_1080_08870446_2021_1952582
crossref_primary_10_1007_s00704_024_05137_9
crossref_primary_10_1016_j_jretconser_2024_104040
crossref_primary_10_1098_rstb_2020_0535
crossref_primary_10_3390_jrfm14070299
crossref_primary_10_3727_152599521X16192004803485
crossref_primary_10_3390_su151411025
crossref_primary_10_3390_agronomy14010145
crossref_primary_10_1177_0969733021999770
crossref_primary_10_3390_su13179711
crossref_primary_10_1016_j_psychres_2025_116462
crossref_primary_10_53724_ambition_v7n3_05
crossref_primary_10_3389_fpsyg_2019_02900
crossref_primary_10_1007_s00521_023_09400_4
crossref_primary_10_1016_j_heliyon_2024_e27831
crossref_primary_10_1111_caim_12613
crossref_primary_10_1016_j_envsci_2022_06_012
crossref_primary_10_1016_j_jdmm_2024_100853
crossref_primary_10_1038_s41598_024_55049_x
crossref_primary_10_1057_s41264_025_00299_7
crossref_primary_10_3390_jpm13121625
crossref_primary_10_1007_s10764_024_00462_2
crossref_primary_10_1016_j_tate_2021_103555
crossref_primary_10_1177_00131644221108180
crossref_primary_10_3390_math10081231
crossref_primary_10_1177_00472875221119128
crossref_primary_10_1177_09567976241246561
Cites_doi 10.1007/s11135-006-9018-6
10.1002/0470055464
ContentType Journal Article
Copyright 2017 Taylor & Francis Group, LLC 2017
2017 Taylor & Francis Group, LLC
Copyright_xml – notice: 2017 Taylor & Francis Group, LLC 2017
– notice: 2017 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610918.2017.1371750
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 38
ExternalDocumentID 10_1080_03610918_2017_1371750
1371750
Genre Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-c5b09a8aa617e542efd92fd1b326b89648168e02de2c1cbce4e1120cea5b130e3
ISSN 0361-0918
IngestDate Wed Aug 13 06:28:06 EDT 2025
Tue Jul 01 03:09:58 EDT 2025
Thu Apr 24 23:15:51 EDT 2025
Wed Dec 25 09:08:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-c5b09a8aa617e542efd92fd1b326b89648168e02de2c1cbce4e1120cea5b130e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4208-7277
PQID 2226173891
PQPubID 186203
PageCount 12
ParticipantIDs crossref_citationtrail_10_1080_03610918_2017_1371750
proquest_journals_2226173891
crossref_primary_10_1080_03610918_2017_1371750
informaworld_taylorfrancis_310_1080_03610918_2017_1371750
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-02
PublicationDateYYYYMMDD 2019-01-02
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-02
  day: 02
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Bowerman B. L. (cit0004)
Kraha A. (cit0017); 44
Mason C. H. (cit0022); 28
Craney T. A. (cit0007); 14
Ganzach Y. (cit0010); 24
Azen R. (cit0001); 54
Kiers H. (cit0016); 16
Stevens J. P. (cit0027)
Kutner M. H. (cit0019)
Kroll C. N. (cit0018); 49
Gunst R. F. (cit0013)
Marquardt D. W. (cit0023); 29
Biau D. J. (cit0003); 466
Lomax R. G. (cit0021)
Mela C. F. (cit0024); 34
Dormann C. F. (cit0008); 36
Johnson J. W. (cit0014); 5
Robinson C. (cit0026); 35
Johnson J. W. (cit0015); 7
Green S. B. (cit0011); 26
Cohen J. (cit0006); 112
Lauridsen J. (cit0020); 8
Greenland S. (cit0012); 151
Fan X. (cit0009)
cit0005
cit0025
References_xml – volume: 36
  start-page: 27
  issue: 1
  ident: cit0008
  publication-title: 2013
– volume: 29
  start-page: 3
  ident: cit0023
  publication-title: 1975
– volume: 151
  start-page: 531
  issue: 5
  ident: cit0012
  publication-title: 2000
– volume-title: 2002
  ident: cit0009
– ident: cit0025
  doi: 10.1007/s11135-006-9018-6
– volume-title: 1990
  ident: cit0004
– volume: 14
  start-page: 391
  issue: 3
  ident: cit0007
  publication-title: 2002
– volume: 35
  start-page: 6
  issue: 1
  ident: cit0026
  publication-title: 2009
– volume: 26
  start-page: 499
  ident: cit0011
  publication-title: 1991
– volume: 112
  start-page: 155
  issue: 1
  ident: cit0006
  publication-title: 1992
– volume-title: 1980
  ident: cit0013
– volume: 24
  start-page: 615
  issue: 5
  ident: cit0010
  publication-title: 1998
– volume: 16
  start-page: 193
  issue: 2
  ident: cit0016
  publication-title: 2007
– volume: 8
  start-page: 317
  ident: cit0020
  publication-title: 2006
– volume: 7
  start-page: 238
  issue: 3
  ident: cit0015
  publication-title: 2004
– volume-title: 2007
  ident: cit0021
– volume-title: 2007
  ident: cit0027
– ident: cit0005
  doi: 10.1002/0470055464
– volume-title: 2005
  ident: cit0019
– volume: 5
  start-page: 231
  ident: cit0014
  publication-title: 2001
– volume: 466
  start-page: 2282
  issue: 9
  ident: cit0003
  publication-title: 2008
– volume: 34
  start-page: 667
  issue: 6
  ident: cit0024
  publication-title: 2002
– volume: 28
  start-page: 268
  ident: cit0022
  publication-title: 1991
– volume: 54
  start-page: 201
  ident: cit0001
  publication-title: 2001
– volume: 44
  issue: 3
  ident: cit0017
  publication-title: 2012
– volume: 49
  start-page: 3756
  issue: 6
  ident: cit0018
  publication-title: 2013
SSID ssj0003848
Score 2.5251546
Snippet The present Monte Carlo simulation study adds to the literature by analyzing parameter bias, rates of Type I and Type II error, and variance inflation factor...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 27
SubjectTerms Bias
Collinearity
Computer simulation
Error analysis
Monte Carlo simulation
Monte Carlo simulation study
Multicollinearity
Multiple regression
Parameters
Regression analysis
Statistical methods
Title Number of predictors and multicollinearity: What are their effects on error and bias in regression?
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2017.1371750
https://www.proquest.com/docview/2226173891
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbKclkOPAqIXRbkA7coUWI7Ly6oQqAVYnugXam3yHYdqATpqk2Ryr_af8j4kUc3Ky2PS1QlcVplvo5n7G--QehNzEMuSCr8iKXKZ5EgvuCk9LO85ETJRHIjpnMxTc4v2adFvBiNrnuspV0tAvnr1rqSf7EqnAO76irZv7Bs-1A4AZ_BvnAEC8Pxj2w8Ne08DGl5ozdcTOccvRJuaILS6G0DkrXwPyT-WqXb00QvuznQMjkqT202jkspVnxrS1y-WoJsdYP5d1BQYm7VJUlW7TnwZqsfrh1YUy93tTvc6__M4S3vbZWQ6TTufdl3AJ3oIrA9t6HtpuMszlY_1z1OmjcJmiuLnV1Z-Lbj_QUMXTMV-WGX7s4HvUR6LpAmcG_uPLRqXDQBUFm5rMaHs2yAVeeQ097UbnVkBpOGY1lSrTwfGbpfGkQU8lwriXtDj9tduYfuE8hMtGul4bSd_GlmGra1P7wpGtNy7rd9wUE4dCCWOwgOTMQzf4weulQFTyzunqCRqsboUdMGBLtZYYweXLTSv9sxOp61eHiKpEUoXpe4QygGaOABQt9ijU8M-MQGn9jhE68rbPBphml84lWFO3y-e4YuP36Yvz_3XVsPX1Ka1b6MRZjzjHMInlXMiCqXOSmXkYBMQmR5wnQrGBWSpSIykkIqpiApCKXisYCIS9Hn6KhaV-oFwlKVeaxyFkUlAILILJWCMrbkkiaxFOUJYs3bLaTTvNetV74XUSON64xSaKMUzignKGiHXVnRl7sG5H3TFbXBdGnhXNA7xp41di6cb9kWELXD29EcgtP_ePRLdNz94c7QUb3ZqVcQQ9fitUHtb4qEww4
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcqA9UFhAFAr4AMcssWMnMRJCCKi2tLunVurN2N5xVYGyVTZVBY_Fq_BC2I6zoiDUA-qBczSWM_9jj78BeC50rg2rTEZ5hRmnhmVGM5fV0mmGtrQ6gulMZ-XkiH88Fsdr8H14CxPaKkMN7XqgiOirg3GHw-ihJe6l97oBzzJ2ZlVjWviSROSpsXIfv174sm35eu-9l_ELxnY_HL6bZGmyQGZ9SdZlVphc6lprH79RcIZuLpmbU-OTGVPLkodpFJizOTJLrbHI0ecluUUtjHf6WPh1b8BNIcsq2FaRz1bev6jjxK6wxSzscXg19LdtX4qHl9BS_4gOMeTtbsGPgVl9p8vn8XlnxvbbbziS_xc378DtlIGTt73J3IU1bEawNUy3IMnZjWBzukK0XY5gI2TlPaj1PbCzOEeFLBw5a8NNVxhZRDwHSOzPtBHo3P-Zr3BekQCOTnSLJN7JkNRAQxYNwbZdtJHMnOolOW1Iiyd9X3Lz5j4cXQsXHsB6s2jwIRCLTgqUnFJHOWW2rqwpOJ9rW5TCGrcNfNAZZROUe5go8kXRAfE1yVQFmaok020Yr8jOeiyTqwjkrwqpuniI5PqJL6q4gnZn0F6V3OJS-WTUcydcjT_6h6Wfwa3J4fRAHezN9h_Dhv8k46EY24H1rj3HJz5N7MzTaJcEPl236v4EbxVp3A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIqH2QGGholDABzhmiR0nmyAhhCirltIVByr1ZuzJGFWg7CqbqoK34lV4ImzHWVEQ6gH1wDkay5kZz4898w3Ak1yn2oiJSbicUCK5EYnRwiZlZbUgLFAHMJ2jWbF_LN-e5Cdr8H3ohfFllT6Htj1QRLDV_nAvajtUxD1zRtfDWYbCrMmYZy4jydNYV3lIX89d1rZ8cbDnRPxUiOmbD6_3kzhYIEGXkXUJ5iatdKm1c9-US0G2roStuXGxjCmrQvphFJSKmgRyNEiSXFiSIuncOJtPmVv3GlwvfGOn7xpJZyvjn5VhYJffYuL3ODQN_W3bF9zhBbDUP5xD8HjTLfgx8KovdPk8PuvMGL_9BiP5XzHzFtyM8Td71R-Y27BGzQi2htkWLJq6EWwerfBslyPY8DF5D2l9B3AWpqiwuWWL1r9z-YFFzDGAhepMDDDn7s9cfvOceWh0plti4UWGxfIZNm8Yte28DWTmVC_ZacNa-tRXJTcv78LxlXBhG9abeUP3gCHZKqdKcm655ALLCZpMylpjVuRo7A7IQWUURiB3P0_ki-ID3muUqfIyVVGmOzBekS16JJPLCKpf9VF14QrJ9vNeVHYJ7e6gvCoaxaVyoajjjn8Yv_8PSz-GG-_3purdwezwAWy4L1W4ERO7sN61Z_TQxYideRROJYOPV625PwF1WmiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Number+of+predictors+and+multicollinearity%3A+What+are+their+effects+on+error+and+bias+in+regression%3F&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Lavery%2C+Matthew+Ryan&rft.au=Acharya%2C+Parul&rft.au=Sivo%2C+Stephen+A.&rft.au=Xu%2C+Lihua&rft.date=2019-01-02&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=48&rft.issue=1&rft.spage=27&rft.epage=38&rft_id=info:doi/10.1080%2F03610918.2017.1371750&rft.externalDocID=1371750
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon