Mechanistic insights into allosteric regulation of the reductase component of p -hydroxyphenylacetate 3-hydroxylase by p -hydroxyphenylacetate: a model for effector-controlled activity of redox enzymes

Understanding how an enzyme regulates its function through substrate or allosteric regulation is crucial for controlling metabolic pathways. Some flavin-dependent monooxygenases (FDMOs) have evolved an allosteric mechanism to produce reduced flavin while minimizing the use of NADH and the production...

Full description

Saved in:
Bibliographic Details
Published inRSC chemical biology Vol. 6; no. 1; pp. 81 - 93
Main Authors Visitsatthawong, Surawit, Anuwan, Piyanuch, Lawan, Narin, Chaiyen, Pimchai, Wongnate, Thanyaporn
Format Journal Article
LanguageEnglish
Published England RSC 02.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding how an enzyme regulates its function through substrate or allosteric regulation is crucial for controlling metabolic pathways. Some flavin-dependent monooxygenases (FDMOs) have evolved an allosteric mechanism to produce reduced flavin while minimizing the use of NADH and the production of harmful hydrogen peroxide (H 2 O 2 ). In this work, we investigated in-depth mechanisms of how the reductase component (C1) of p -hydroxyphenylacetate (HPA) 3-hydroxylase (HPAH) from Acinetobacter baumanii is allosterically controlled by the binding of HPA, which is a substrate of its monooxygenase counterpart (C2). The C1 structure can be divided into three regions: the N-terminal domain (flavin reductase); a flexible loop; and the C-terminal domain, which is homologous to NadR, a repressor protein having HPA as an effector. The binding of HPA to NadR induces a conformational change in the recognition helix, causing it to disengage from the NadA gene. The HPA binding site of C1 is located at the C-terminal domain, which can be divided into five helices. Molecular dynamics simulations performed on HPA-docked C1 elucidated the allosteric mechanism. The carboxylate group of HPA maintains the salt bridge between helix 2 and the flexible loop. This maintenance shortens the loop between helices 2 and 3, causing helix 3 to disengage from the N-terminal domain. The aromatic ring of HPA induces a conformational change in helices 1 and 5, pulling helix 4, analogous to the recognition helix in NadR, away from the N-terminal domain. A Y189A mutation, obtained from site-saturation mutagenesis, confirms that HPA with an unsuitable conformation cannot induce the conformational change of C1. Additionally, an HPA-independent effect is observed, in which Arg20, an NADH binding residue on the N-terminal domain, occasionally disengages from helix 4. This model provides valuable insights into the allosteric regulation of two-component FDMOs and aromatic effector systems.
AbstractList Understanding how an enzyme regulates its function through substrate or allosteric regulation is crucial for controlling metabolic pathways. Some flavin-dependent monooxygenases (FDMOs) have evolved an allosteric mechanism to produce reduced flavin while minimizing the use of NADH and the production of harmful hydrogen peroxide (H O ). In this work, we investigated in-depth mechanisms of how the reductase component (C1) of -hydroxyphenylacetate (HPA) 3-hydroxylase (HPAH) from is allosterically controlled by the binding of HPA, which is a substrate of its monooxygenase counterpart (C2). The C1 structure can be divided into three regions: the N-terminal domain (flavin reductase); a flexible loop; and the C-terminal domain, which is homologous to NadR, a repressor protein having HPA as an effector. The binding of HPA to NadR induces a conformational change in the recognition helix, causing it to disengage from the NadA gene. The HPA binding site of C1 is located at the C-terminal domain, which can be divided into five helices. Molecular dynamics simulations performed on HPA-docked C1 elucidated the allosteric mechanism. The carboxylate group of HPA maintains the salt bridge between helix 2 and the flexible loop. This maintenance shortens the loop between helices 2 and 3, causing helix 3 to disengage from the N-terminal domain. The aromatic ring of HPA induces a conformational change in helices 1 and 5, pulling helix 4, analogous to the recognition helix in NadR, away from the N-terminal domain. A Y189A mutation, obtained from site-saturation mutagenesis, confirms that HPA with an unsuitable conformation cannot induce the conformational change of C1. Additionally, an HPA-independent effect is observed, in which Arg20, an NADH binding residue on the N-terminal domain, occasionally disengages from helix 4. This model provides valuable insights into the allosteric regulation of two-component FDMOs and aromatic effector systems.
Understanding how an enzyme regulates its function through substrate or allosteric regulation is crucial for controlling metabolic pathways. Some flavin-dependent monooxygenases (FDMOs) have evolved an allosteric mechanism to produce reduced flavin while minimizing the use of NADH and the production of harmful hydrogen peroxide (H2O2). In this work, we investigated in-depth mechanisms of how the reductase component (C1) of p-hydroxyphenylacetate (HPA) 3-hydroxylase (HPAH) from Acinetobacter baumanii is allosterically controlled by the binding of HPA, which is a substrate of its monooxygenase counterpart (C2). The C1 structure can be divided into three regions: the N-terminal domain (flavin reductase); a flexible loop; and the C-terminal domain, which is homologous to NadR, a repressor protein having HPA as an effector. The binding of HPA to NadR induces a conformational change in the recognition helix, causing it to disengage from the NadA gene. The HPA binding site of C1 is located at the C-terminal domain, which can be divided into five helices. Molecular dynamics simulations performed on HPA-docked C1 elucidated the allosteric mechanism. The carboxylate group of HPA maintains the salt bridge between helix 2 and the flexible loop. This maintenance shortens the loop between helices 2 and 3, causing helix 3 to disengage from the N-terminal domain. The aromatic ring of HPA induces a conformational change in helices 1 and 5, pulling helix 4, analogous to the recognition helix in NadR, away from the N-terminal domain. A Y189A mutation, obtained from site-saturation mutagenesis, confirms that HPA with an unsuitable conformation cannot induce the conformational change of C1. Additionally, an HPA-independent effect is observed, in which Arg20, an NADH binding residue on the N-terminal domain, occasionally disengages from helix 4. This model provides valuable insights into the allosteric regulation of two-component FDMOs and aromatic effector systems.Understanding how an enzyme regulates its function through substrate or allosteric regulation is crucial for controlling metabolic pathways. Some flavin-dependent monooxygenases (FDMOs) have evolved an allosteric mechanism to produce reduced flavin while minimizing the use of NADH and the production of harmful hydrogen peroxide (H2O2). In this work, we investigated in-depth mechanisms of how the reductase component (C1) of p-hydroxyphenylacetate (HPA) 3-hydroxylase (HPAH) from Acinetobacter baumanii is allosterically controlled by the binding of HPA, which is a substrate of its monooxygenase counterpart (C2). The C1 structure can be divided into three regions: the N-terminal domain (flavin reductase); a flexible loop; and the C-terminal domain, which is homologous to NadR, a repressor protein having HPA as an effector. The binding of HPA to NadR induces a conformational change in the recognition helix, causing it to disengage from the NadA gene. The HPA binding site of C1 is located at the C-terminal domain, which can be divided into five helices. Molecular dynamics simulations performed on HPA-docked C1 elucidated the allosteric mechanism. The carboxylate group of HPA maintains the salt bridge between helix 2 and the flexible loop. This maintenance shortens the loop between helices 2 and 3, causing helix 3 to disengage from the N-terminal domain. The aromatic ring of HPA induces a conformational change in helices 1 and 5, pulling helix 4, analogous to the recognition helix in NadR, away from the N-terminal domain. A Y189A mutation, obtained from site-saturation mutagenesis, confirms that HPA with an unsuitable conformation cannot induce the conformational change of C1. Additionally, an HPA-independent effect is observed, in which Arg20, an NADH binding residue on the N-terminal domain, occasionally disengages from helix 4. This model provides valuable insights into the allosteric regulation of two-component FDMOs and aromatic effector systems.
Understanding how an enzyme regulates its function through substrate or allosteric regulation is crucial for controlling metabolic pathways. Some flavin-dependent monooxygenases (FDMOs) have evolved an allosteric mechanism to produce reduced flavin while minimizing the use of NADH and the production of harmful hydrogen peroxide (H 2 O 2 ). In this work, we investigated in-depth mechanisms of how the reductase component (C1) of p -hydroxyphenylacetate (HPA) 3-hydroxylase (HPAH) from Acinetobacter baumanii is allosterically controlled by the binding of HPA, which is a substrate of its monooxygenase counterpart (C2). The C1 structure can be divided into three regions: the N-terminal domain (flavin reductase); a flexible loop; and the C-terminal domain, which is homologous to NadR, a repressor protein having HPA as an effector. The binding of HPA to NadR induces a conformational change in the recognition helix, causing it to disengage from the NadA gene. The HPA binding site of C1 is located at the C-terminal domain, which can be divided into five helices. Molecular dynamics simulations performed on HPA-docked C1 elucidated the allosteric mechanism. The carboxylate group of HPA maintains the salt bridge between helix 2 and the flexible loop. This maintenance shortens the loop between helices 2 and 3, causing helix 3 to disengage from the N-terminal domain. The aromatic ring of HPA induces a conformational change in helices 1 and 5, pulling helix 4, analogous to the recognition helix in NadR, away from the N-terminal domain. A Y189A mutation, obtained from site-saturation mutagenesis, confirms that HPA with an unsuitable conformation cannot induce the conformational change of C1. Additionally, an HPA-independent effect is observed, in which Arg20, an NADH binding residue on the N-terminal domain, occasionally disengages from helix 4. This model provides valuable insights into the allosteric regulation of two-component FDMOs and aromatic effector systems.
Understanding how an enzyme regulates its function through substrate or allosteric regulation is crucial for controlling metabolic pathways. Some flavin-dependent monooxygenases (FDMOs) have evolved an allosteric mechanism to produce reduced flavin while minimizing the use of NADH and the production of harmful hydrogen peroxide (H 2 O 2 ). In this work, we investigated in-depth mechanisms of how the reductase component (C1) of p -hydroxyphenylacetate (HPA) 3-hydroxylase (HPAH) from Acinetobacter baumanii is allosterically controlled by the binding of HPA, which is a substrate of its monooxygenase counterpart (C2). The C1 structure can be divided into three regions: the N-terminal domain (flavin reductase); a flexible loop; and the C-terminal domain, which is homologous to NadR, a repressor protein having HPA as an effector. The binding of HPA to NadR induces a conformational change in the recognition helix, causing it to disengage from the NadA gene. The HPA binding site of C1 is located at the C-terminal domain, which can be divided into five helices. Molecular dynamics simulations performed on HPA-docked C1 elucidated the allosteric mechanism. The carboxylate group of HPA maintains the salt bridge between helix 2 and the flexible loop. This maintenance shortens the loop between helices 2 and 3, causing helix 3 to disengage from the N-terminal domain. The aromatic ring of HPA induces a conformational change in helices 1 and 5, pulling helix 4, analogous to the recognition helix in NadR, away from the N-terminal domain. A Y189A mutation, obtained from site-saturation mutagenesis, confirms that HPA with an unsuitable conformation cannot induce the conformational change of C1. Additionally, an HPA-independent effect is observed, in which Arg20, an NADH binding residue on the N-terminal domain, occasionally disengages from helix 4. This model provides valuable insights into the allosteric regulation of two-component FDMOs and aromatic effector systems. This study uncovers allosteric regulation in the reductase component (C1) of HPA 3-hydroxylase from Acinetobacter baumannii , where HPA binding enhances flavin production while reducing NADH consumption and H₂O₂ formation.
Author Visitsatthawong, Surawit
Anuwan, Piyanuch
Lawan, Narin
Chaiyen, Pimchai
Wongnate, Thanyaporn
Author_xml – sequence: 1
  givenname: Surawit
  surname: Visitsatthawong
  fullname: Visitsatthawong, Surawit
  organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand
– sequence: 2
  givenname: Piyanuch
  surname: Anuwan
  fullname: Anuwan, Piyanuch
  organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand
– sequence: 3
  givenname: Narin
  orcidid: 0000-0003-0940-9278
  surname: Lawan
  fullname: Lawan, Narin
  organization: Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
– sequence: 4
  givenname: Pimchai
  orcidid: 0000-0002-8533-1604
  surname: Chaiyen
  fullname: Chaiyen, Pimchai
  organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand
– sequence: 5
  givenname: Thanyaporn
  orcidid: 0000-0001-5072-9738
  surname: Wongnate
  fullname: Wongnate, Thanyaporn
  organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39649338$$D View this record in MEDLINE/PubMed
BookMark eNp1kk2P1iAQx4lZ467rXvwAhqMxqULpQ4sXo4_vWeNFz4TS4SmGQgW62foN_VbS7IvrwQtMZn78_zNhHqIjHzwg9JiS55Qw8eJts39DSE3Z53vopOaMVYS34uhOfIzOUvpBCrSjVIj2ATpmgjeCse4E_f4CelTepmw1tj7Zw5hTCXLAyrmQMsRSiHBYnMo2eBwMziOUzLDorBJgHaa5tOTzVppxNa5DDJfrPIJfndKQVQbMbtJue9Kv_wNfYoWnMIDDJkQMxoDOIVY6-ByDczBgpbO9sHnd3EoT4RKD_7VOkB6h-0a5BGfX9yn6_v7dt_3H6vzrh0_71-eVLgPnSu84bzkjRqkadFtOIQzrakV60nOhtCGCmZ5QTWrVqmbooREghr7Z8YbXwE7RqyvdeeknGHSZPCon52gnFVcZlJX_Vrwd5SFcSEo57TpOi8LTa4UYfi6Qspxs0uCc8hCWJBlt-K4VHdnQJ3fNbl1uPrAAz64AHUNKEcwtQoncFkT-XRD2B5BltIE
Cites_doi 10.1016/S0021-9258(17)33523-8
10.1103/PhysRevB.37.785
10.1016/j.bbrc.2005.09.081
10.1002/prot.21534
10.1016/S0021-9258(18)50419-1
10.1074/jbc.RA119.011884
10.1016/j.abb.2018.06.010
10.1021/bi7006614
10.1074/jbc.M109.056135
10.1111/j.1432-1033.1991.tb16238.x
10.1021/bi9826613
10.1016/j.abb.2009.11.028
10.1074/jbc.274.47.33355
10.1002/0471250953.bi0814s24
10.1016/j.abb.2013.12.005
10.1021/bi971427u
10.1021/bi052313i
10.1021/acs.chemrev.7b00650
10.1016/j.jbc.2023.105413
10.1128/JB.00307-09
10.1016/0022-2836(89)90158-7
10.1074/jbc.M111.284463
10.1107/S1744309112016909
10.1074/jbc.M112.354472
10.1093/nar/gkh381
10.1093/nar/gkad1011
10.1080/10409238.2017.1344612
10.1111/febs.16340
10.1016/j.enzmictec.2013.02.012
10.1063/1.455064
10.1007/978-1-4939-1714-3_25
10.1021/j100096a001
10.1016/j.molcatb.2016.09.003
10.1016/j.abb.2014.05.009
10.1038/s41586-024-07487-w
10.1126/science.7939628
10.1002/cbic.201900413
10.1002/(SICI)1097-0134(199612)26:4<363::AID-PROT1>3.0.CO;2-D
10.1021/bi962325r
10.1021/bi00199a044
10.1016/S0021-9258(19)45081-3
10.1002/pro.5560031210
10.1016/j.abb.2004.09.029
10.1021/bi012073g
10.1016/j.biotechadv.2021.107712
10.1021/bi500480n
10.1074/jbc.M512385200
10.3389/fmicb.2018.03050
10.1021/jacs.5b04328
10.1074/jbc.M313765200
10.1111/j.1432-1033.1993.tb18125.x
10.1063/1.464913
10.1021/jp973084f
10.1128/jb.174.4.1179-1188.1992
10.1021/bi051119t
10.1002/jcc.21334
10.1007/BF00533485
10.1063/1.460447
10.1016/S0021-9258(18)35687-4
10.1016/j.bbaexp.2004.08.003
10.1021/bi035734d
10.1016/j.jbiotec.2006.03.044
10.1046/j.1432-1033.2001.02490.x
10.1021/bi050615e
10.1002/jcc.20289
10.1016/S0021-9258(18)71580-9
10.1021/bi9715122
10.1021/bi00370a012
10.1073/pnas.0608381104
10.1016/j.abb.2010.02.007
10.1016/j.cub.2013.01.013
10.1371/journal.ppat.1005557
10.3390/biology7030042
10.1073/pnas.022640199
10.1074/jbc.M111.241836
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
This journal is © The Royal Society of Chemistry 2025 RSC
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: This journal is © The Royal Society of Chemistry 2025 RSC
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1039/D4CB00213J
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2633-0679
EndPage 93
ExternalDocumentID PMC11618861
39649338
10_1039_D4CB00213J
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: Unassigned
GroupedDBID AAFWJ
AARTK
AAYXX
ABIQK
AFPKN
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
CITATION
EBS
GROUPED_DOAJ
H13
M~E
OK1
PGMZT
RPM
RSCEA
RVUXY
NPM
7X8
5PM
ID FETCH-LOGICAL-c338t-c5667630faa2ec7aa299f382a0b0b69acf093fb01c02a7a4dbe49e9db456462e3
ISSN 2633-0679
IngestDate Thu Aug 21 18:35:03 EDT 2025
Fri Jul 11 06:31:15 EDT 2025
Thu Apr 03 07:02:36 EDT 2025
Tue Jul 01 04:10:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This journal is © The Royal Society of Chemistry.
This article is licensed under a Creative Commons Attribution-Non Commercial 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-c5667630faa2ec7aa299f382a0b0b69acf093fb01c02a7a4dbe49e9db456462e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8533-1604
0000-0001-5072-9738
0000-0003-0940-9278
OpenAccessLink http://dx.doi.org/10.1039/d4cb00213j
PMID 39649338
PQID 3146579801
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11618861
proquest_miscellaneous_3146579801
pubmed_primary_39649338
crossref_primary_10_1039_D4CB00213J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-02
PublicationDateYYYYMMDD 2025-01-02
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-02
  day: 02
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle RSC chemical biology
PublicationTitleAlternate RSC Chem Biol
PublicationYear 2025
Publisher RSC
Publisher_xml – name: RSC
References Kim (D4CB00213J/cit47/1) 2008; 70
Trott (D4CB00213J/cit61/1) 2010; 31
Sucharitakul (D4CB00213J/cit39/1) 2014; 555–556
Petersson (D4CB00213J/cit55/1) 1988; 89
Frederick (D4CB00213J/cit17/1) 2005; 44
Liguori (D4CB00213J/cit45/1) 2016; 12
Palfey (D4CB00213J/cit16/1) 1999; 38
Palfey (D4CB00213J/cit18/1) 2002; 41
Heine (D4CB00213J/cit36/1) 2018; 7
Lee (D4CB00213J/cit51/1) 1988; 37
Tongsook (D4CB00213J/cit70/1) 2011; 286
Hariharan (D4CB00213J/cit53/1) 1973; 28
Morris (D4CB00213J/cit57/1) 2008; 24
Pongpamorn (D4CB00213J/cit64/1) 2019; 20
van Berkel (D4CB00213J/cit23/1) 1994; 3
van Berkel (D4CB00213J/cit3/1) 2006; 124
Schreuder (D4CB00213J/cit20/1) 1989; 208
Eschrich (D4CB00213J/cit75/1) 1993; 216
Wang (D4CB00213J/cit77/1) 2002; 99
Thotsaporn (D4CB00213J/cit37/1) 2016; 134
Sanner (D4CB00213J/cit58/1) 1999; 17
Chenprakhon (D4CB00213J/cit73/1) 2014; 53
Grove (D4CB00213J/cit43/1) 2013; 23
Entsch (D4CB00213J/cit25/1) 1976; 251
Arunachalam (D4CB00213J/cit29/1) 1992; 267
Becke (D4CB00213J/cit50/1) 1993; 98
Chaiyen (D4CB00213J/cit67/1) 2001; 268
Phongsak (D4CB00213J/cit42/1) 2012; 287
Abramson (D4CB00213J/cit78/1) 2024; 630
Powlowski (D4CB00213J/cit8/1) 1989; 264
Suske (D4CB00213J/cit12/1) 1999; 274
Phintha (D4CB00213J/cit2/1) 2023; 299
Thotsaporn (D4CB00213J/cit31/1) 2004; 1680
Romero (D4CB00213J/cit1/1) 2018; 118
Chaiyen (D4CB00213J/cit9/1) 1997; 36
Visitsatthawong (D4CB00213J/cit40/1) 2015; 137
Gatti (D4CB00213J/cit21/1) 1994; 266
Manstein (D4CB00213J/cit76/1) 1986; 25
Husain (D4CB00213J/cit26/1) 1979; 254
Palfey (D4CB00213J/cit6/1) 2010; 493
Huijbers (D4CB00213J/cit4/1) 2014; 544
Thotsaporn (D4CB00213J/cit74/1) 2011; 286
Varadi (D4CB00213J/cit34/1) 2023; 52
Paul (D4CB00213J/cit5/1) 2021; 51
Sucharitakul (D4CB00213J/cit38/1) 2007; 46
Uetz (D4CB00213J/cit28/1) 1992; 174
Yuenyao (D4CB00213J/cit33/1) 2018; 653
van den Heuvel (D4CB00213J/cit48/1) 2004; 279
Hooft (D4CB00213J/cit60/1) 1996; 26
Vervoort (D4CB00213J/cit24/1) 1991; 200
Ellis (D4CB00213J/cit35/1) 2010; 497
Pitsawong (D4CB00213J/cit69/1) 2020; 295
Dolinsky (D4CB00213J/cit59/1) 2004; 32
Permsirivisarn (D4CB00213J/cit79/1) 2022; 289
Webb (D4CB00213J/cit49/1) 2010; 285
Deochand (D4CB00213J/cit44/1) 2017; 52
Sullivan (D4CB00213J/cit66/1) 2013; 53
MacKerell (D4CB00213J/cit62/1) 1998; 102
Stephens (D4CB00213J/cit52/1) 1994; 98
Chaiyen (D4CB00213J/cit11/1) 2004; 43
Petersson (D4CB00213J/cit54/1) 1991; 94
Alfieri (D4CB00213J/cit72/1) 2007; 104
Sucharitakul (D4CB00213J/cit71/1) 2006; 281
Chaiyen (D4CB00213J/cit30/1) 2001; 268
Oonanant (D4CB00213J/cit32/1) 2012; 68
Sucharitakul (D4CB00213J/cit41/1) 2005; 44
Howell (D4CB00213J/cit13/1) 1972; 247
Okai (D4CB00213J/cit46/1) 2006; 45
Schreuder (D4CB00213J/cit22/1) 1994; 33
Ballou (D4CB00213J/cit7/1) 2005; 338
Ballou (D4CB00213J/cit19/1) 1997; 36
Tischler (D4CB00213J/cit27/1) 2009; 191
Dutta (D4CB00213J/cit68/1) 2015; 1229
Chaiyen (D4CB00213J/cit10/1) 1997; 36
Thotsaporn (D4CB00213J/cit65/1) 2004; 1680
Entsch (D4CB00213J/cit15/1) 2005; 433
Frisch (D4CB00213J/cit56/1) 2016
Westphal (D4CB00213J/cit14/1) 2018; 9
Phillips (D4CB00213J/cit63/1) 2005; 26
References_xml – volume: 251
  start-page: 2550
  year: 1976
  ident: D4CB00213J/cit25/1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)33523-8
– volume: 37
  start-page: 785
  year: 1988
  ident: D4CB00213J/cit51/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.37.785
– volume: 338
  start-page: 590
  year: 2005
  ident: D4CB00213J/cit7/1
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2005.09.081
– volume: 70
  start-page: 718
  year: 2008
  ident: D4CB00213J/cit47/1
  publication-title: Proteins
  doi: 10.1002/prot.21534
– volume: 254
  start-page: 6657
  year: 1979
  ident: D4CB00213J/cit26/1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)50419-1
– volume: 295
  start-page: 3965
  year: 2020
  ident: D4CB00213J/cit69/1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.011884
– volume: 653
  start-page: 24
  year: 2018
  ident: D4CB00213J/cit33/1
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2018.06.010
– volume: 46
  start-page: 8611
  year: 2007
  ident: D4CB00213J/cit38/1
  publication-title: Biochemistry
  doi: 10.1021/bi7006614
– volume: 285
  start-page: 2014
  year: 2010
  ident: D4CB00213J/cit49/1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.056135
– volume-title: Gaussian 16 Rev. C.01
  year: 2016
  ident: D4CB00213J/cit56/1
– volume: 200
  start-page: 731
  year: 1991
  ident: D4CB00213J/cit24/1
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1991.tb16238.x
– volume: 38
  start-page: 1153
  year: 1999
  ident: D4CB00213J/cit16/1
  publication-title: Biochemistry
  doi: 10.1021/bi9826613
– volume: 493
  start-page: 26
  year: 2010
  ident: D4CB00213J/cit6/1
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2009.11.028
– volume: 274
  start-page: 33355
  year: 1999
  ident: D4CB00213J/cit12/1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.47.33355
– volume: 24
  start-page: 8.14.11
  year: 2008
  ident: D4CB00213J/cit57/1
  publication-title: Curr. Protoc. Bioinf.
  doi: 10.1002/0471250953.bi0814s24
– volume: 544
  start-page: 2
  year: 2014
  ident: D4CB00213J/cit4/1
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2013.12.005
– volume: 36
  start-page: 15713
  year: 1997
  ident: D4CB00213J/cit19/1
  publication-title: Biochemistry
  doi: 10.1021/bi971427u
– volume: 45
  start-page: 5103
  year: 2006
  ident: D4CB00213J/cit46/1
  publication-title: Biochemistry
  doi: 10.1021/bi052313i
– volume: 118
  start-page: 1742
  year: 2018
  ident: D4CB00213J/cit1/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00650
– volume: 299
  start-page: 105413
  year: 2023
  ident: D4CB00213J/cit2/1
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2023.105413
– volume: 191
  start-page: 4996
  year: 2009
  ident: D4CB00213J/cit27/1
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00307-09
– volume: 208
  start-page: 679
  year: 1989
  ident: D4CB00213J/cit20/1
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(89)90158-7
– volume: 286
  start-page: 44491
  year: 2011
  ident: D4CB00213J/cit70/1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.284463
– volume: 68
  start-page: 720
  year: 2012
  ident: D4CB00213J/cit32/1
  publication-title: Acta Crystallogr., Sect. F:Struct. Biol. Cryst. Commun.
  doi: 10.1107/S1744309112016909
– volume: 287
  start-page: 26213
  year: 2012
  ident: D4CB00213J/cit42/1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.354472
– volume: 32
  start-page: W665
  year: 2004
  ident: D4CB00213J/cit59/1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh381
– volume: 52
  start-page: D368
  year: 2023
  ident: D4CB00213J/cit34/1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkad1011
– volume: 52
  start-page: 595
  year: 2017
  ident: D4CB00213J/cit44/1
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.1080/10409238.2017.1344612
– volume: 289
  start-page: 3217
  year: 2022
  ident: D4CB00213J/cit79/1
  publication-title: FEBS J.
  doi: 10.1111/febs.16340
– volume: 53
  start-page: 70
  year: 2013
  ident: D4CB00213J/cit66/1
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2013.02.012
– volume: 89
  start-page: 2193
  year: 1988
  ident: D4CB00213J/cit55/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.455064
– volume: 1229
  start-page: 315
  year: 2015
  ident: D4CB00213J/cit68/1
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-1714-3_25
– volume: 98
  start-page: 11623
  year: 1994
  ident: D4CB00213J/cit52/1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100096a001
– volume: 134
  start-page: 353
  year: 2016
  ident: D4CB00213J/cit37/1
  publication-title: J. Mol. Catal. B: Enzym.
  doi: 10.1016/j.molcatb.2016.09.003
– volume: 555–556
  start-page: 33
  year: 2014
  ident: D4CB00213J/cit39/1
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2014.05.009
– volume: 630
  start-page: 493
  year: 2024
  ident: D4CB00213J/cit78/1
  publication-title: Nature
  doi: 10.1038/s41586-024-07487-w
– volume: 266
  start-page: 110
  year: 1994
  ident: D4CB00213J/cit21/1
  publication-title: Science
  doi: 10.1126/science.7939628
– volume: 20
  start-page: 3020
  year: 2019
  ident: D4CB00213J/cit64/1
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201900413
– volume: 26
  start-page: 363
  year: 1996
  ident: D4CB00213J/cit60/1
  publication-title: Proteins
  doi: 10.1002/(SICI)1097-0134(199612)26:4<363::AID-PROT1>3.0.CO;2-D
– volume: 36
  start-page: 2612
  year: 1997
  ident: D4CB00213J/cit9/1
  publication-title: Biochemistry
  doi: 10.1021/bi962325r
– volume: 33
  start-page: 10161
  year: 1994
  ident: D4CB00213J/cit22/1
  publication-title: Biochemistry
  doi: 10.1021/bi00199a044
– volume: 247
  start-page: 4340
  year: 1972
  ident: D4CB00213J/cit13/1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)45081-3
– volume: 3
  start-page: 2245
  year: 1994
  ident: D4CB00213J/cit23/1
  publication-title: Protein Sci.
  doi: 10.1002/pro.5560031210
– volume: 433
  start-page: 297
  year: 2005
  ident: D4CB00213J/cit15/1
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2004.09.029
– volume: 17
  start-page: 57
  year: 1999
  ident: D4CB00213J/cit58/1
  publication-title: J. Mol. Graphics Modell.
– volume: 41
  start-page: 8438
  year: 2002
  ident: D4CB00213J/cit18/1
  publication-title: Biochemistry
  doi: 10.1021/bi012073g
– volume: 51
  start-page: 107712
  year: 2021
  ident: D4CB00213J/cit5/1
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2021.107712
– volume: 53
  start-page: 4084
  year: 2014
  ident: D4CB00213J/cit73/1
  publication-title: Biochemistry
  doi: 10.1021/bi500480n
– volume: 281
  start-page: 17044
  year: 2006
  ident: D4CB00213J/cit71/1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M512385200
– volume: 9
  start-page: 3050
  year: 2018
  ident: D4CB00213J/cit14/1
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.03050
– volume: 137
  start-page: 9363
  year: 2015
  ident: D4CB00213J/cit40/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04328
– volume: 279
  start-page: 12860
  year: 2004
  ident: D4CB00213J/cit48/1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M313765200
– volume: 216
  start-page: 137
  year: 1993
  ident: D4CB00213J/cit75/1
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1993.tb18125.x
– volume: 98
  start-page: 5648
  year: 1993
  ident: D4CB00213J/cit50/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 102
  start-page: 3586
  year: 1998
  ident: D4CB00213J/cit62/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp973084f
– volume: 174
  start-page: 1179
  year: 1992
  ident: D4CB00213J/cit28/1
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.174.4.1179-1188.1992
– volume: 44
  start-page: 13304
  year: 2005
  ident: D4CB00213J/cit17/1
  publication-title: Biochemistry
  doi: 10.1021/bi051119t
– volume: 31
  start-page: 455
  year: 2010
  ident: D4CB00213J/cit61/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21334
– volume: 28
  start-page: 213
  year: 1973
  ident: D4CB00213J/cit53/1
  publication-title: Theor. Chim. Acta
  doi: 10.1007/BF00533485
– volume: 94
  start-page: 6081
  year: 1991
  ident: D4CB00213J/cit54/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.460447
– volume: 267
  start-page: 25848
  year: 1992
  ident: D4CB00213J/cit29/1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)35687-4
– volume: 1680
  start-page: 60
  year: 2004
  ident: D4CB00213J/cit31/1
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbaexp.2004.08.003
– volume: 43
  start-page: 3933
  year: 2004
  ident: D4CB00213J/cit11/1
  publication-title: Biochemistry
  doi: 10.1021/bi035734d
– volume: 124
  start-page: 670
  year: 2006
  ident: D4CB00213J/cit3/1
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2006.03.044
– volume: 268
  start-page: 5550
  year: 2001
  ident: D4CB00213J/cit30/1
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1033.2001.02490.x
– volume: 44
  start-page: 10434
  year: 2005
  ident: D4CB00213J/cit41/1
  publication-title: Biochemistry
  doi: 10.1021/bi050615e
– volume: 26
  start-page: 1781
  year: 2005
  ident: D4CB00213J/cit63/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20289
– volume: 264
  start-page: 16008
  year: 1989
  ident: D4CB00213J/cit8/1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)71580-9
– volume: 36
  start-page: 13856
  year: 1997
  ident: D4CB00213J/cit10/1
  publication-title: Biochemistry
  doi: 10.1021/bi9715122
– volume: 25
  start-page: 6807
  year: 1986
  ident: D4CB00213J/cit76/1
  publication-title: Biochemistry
  doi: 10.1021/bi00370a012
– volume: 104
  start-page: 1177
  year: 2007
  ident: D4CB00213J/cit72/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0608381104
– volume: 497
  start-page: 1
  year: 2010
  ident: D4CB00213J/cit35/1
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2010.02.007
– volume: 23
  start-page: R142
  year: 2013
  ident: D4CB00213J/cit43/1
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2013.01.013
– volume: 1680
  start-page: 60
  year: 2004
  ident: D4CB00213J/cit65/1
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbaexp.2004.08.003
– volume: 12
  start-page: e1005557
  year: 2016
  ident: D4CB00213J/cit45/1
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1005557
– volume: 7
  start-page: 42
  year: 2018
  ident: D4CB00213J/cit36/1
  publication-title: Biology
  doi: 10.3390/biology7030042
– volume: 268
  start-page: 5550
  year: 2001
  ident: D4CB00213J/cit67/1
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1033.2001.02490.x
– volume: 99
  start-page: 608
  year: 2002
  ident: D4CB00213J/cit77/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.022640199
– volume: 286
  start-page: 28170
  year: 2011
  ident: D4CB00213J/cit74/1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.241836
SSID ssj0002511997
Score 2.2791448
Snippet Understanding how an enzyme regulates its function through substrate or allosteric regulation is crucial for controlling metabolic pathways. Some...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 81
SubjectTerms Chemistry
Title Mechanistic insights into allosteric regulation of the reductase component of p -hydroxyphenylacetate 3-hydroxylase by p -hydroxyphenylacetate: a model for effector-controlled activity of redox enzymes
URI https://www.ncbi.nlm.nih.gov/pubmed/39649338
https://www.proquest.com/docview/3146579801
https://pubmed.ncbi.nlm.nih.gov/PMC11618861
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCQLzCo1oEt8jF8fq13EpoVVVpQGqCcrN2_SBGrRMlNsH9g_CzmFl7HYcEqXCxovX6lfnWOzP-9htC3sLY60dOKI1-YtkQoAhuSFs6RiSRgeHChKaE5y9G7tnEPp86007nV4u1VOTyKLzZu67kf6wKbWBXXCX7D5ZtTgoN8BvsC1uwMGxvZeOLGNftKqllJJVjnI30KnAn8XM6SiAogeavdYkuzQdYolxrLhRR_Xoxz2o6wMKYlRGyWpD2VWJ6HR3RHtPNV3gEeKv7-1WrplVhnUpGXBFF5kujJsNfgWeLiyi-1xwQFCr90Yuzm1KvQdEy4ZeDXqhlDGqNKA2LL-kqzVdYolysay7xZbEU67Qh7xxnxbrK6X5OS5EVYZPuHop6x0gs02ZIDGYiLeP6gGv4O9N2HsRyVB6klRq1XIZ1KqrSNEfxnrb6fe_uwLp6d1elY3amFJOhImtkh8ofYt82E6cmC4w-BaeT4TAYn0zHd8hdCwIWq5U3Qp8AAzmuKv00t6S1chl_tzn5tne0E_L8ydxtuULjB-R-HcPQ4wqQD0knzh6Rny0wUg1GimCkGzDSDRjpPKEARtqAkTZgxF37QUa3wEhl-Zd-76mgCooUoEj3QJFqKOK1FBRpDcXHZHJ6Mh6cGXWVECNkzM-N0EGaNjMTIaw49GDLecJ8S5jSlC4XYWJylkizH5qW8IQdydjmMY8kCim5VsyekIMMnu4ZoUIy4XmOjGzTt1li-xAcRCHjGGXHXt_ukjfaOsGiEoMJFImD8eCjPfigbHjeJa-14QJ4V-MHOJHF82IVMHBLHI-DU9glTytDNudh3LU5PFCX-FsmbjqgDvz2niydKT34Pha98N3-81tc-AW5txk8L8lBviziV-BW5_JQpaMOFW5_A54I4kE
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanistic+insights+into+allosteric+regulation+of+the+reductase+component+of+p-hydroxyphenylacetate+3-hydroxylase+by+p-hydroxyphenylacetate%3A+a+model+for+effector-controlled+activity+of+redox+enzymes&rft.jtitle=RSC+chemical+biology&rft.au=Visitsatthawong%2C+Surawit&rft.au=Anuwan%2C+Piyanuch&rft.au=Lawan%2C+Narin&rft.au=Chaiyen%2C+Pimchai&rft.date=2025-01-02&rft.issn=2633-0679&rft.eissn=2633-0679&rft.volume=6&rft.issue=1&rft.spage=81&rft_id=info:doi/10.1039%2Fd4cb00213j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2633-0679&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2633-0679&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2633-0679&client=summon