Mechanistic insights into allosteric regulation of the reductase component of p -hydroxyphenylacetate 3-hydroxylase by p -hydroxyphenylacetate: a model for effector-controlled activity of redox enzymes
Understanding how an enzyme regulates its function through substrate or allosteric regulation is crucial for controlling metabolic pathways. Some flavin-dependent monooxygenases (FDMOs) have evolved an allosteric mechanism to produce reduced flavin while minimizing the use of NADH and the production...
Saved in:
Published in | RSC chemical biology Vol. 6; no. 1; pp. 81 - 93 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
RSC
02.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding how an enzyme regulates its function through substrate or allosteric regulation is crucial for controlling metabolic pathways. Some flavin-dependent monooxygenases (FDMOs) have evolved an allosteric mechanism to produce reduced flavin while minimizing the use of NADH and the production of harmful hydrogen peroxide (H
2
O
2
). In this work, we investigated in-depth mechanisms of how the reductase component (C1) of
p
-hydroxyphenylacetate (HPA) 3-hydroxylase (HPAH) from
Acinetobacter baumanii
is allosterically controlled by the binding of HPA, which is a substrate of its monooxygenase counterpart (C2). The C1 structure can be divided into three regions: the N-terminal domain (flavin reductase); a flexible loop; and the C-terminal domain, which is homologous to NadR, a repressor protein having HPA as an effector. The binding of HPA to NadR induces a conformational change in the recognition helix, causing it to disengage from the NadA gene. The HPA binding site of C1 is located at the C-terminal domain, which can be divided into five helices. Molecular dynamics simulations performed on HPA-docked C1 elucidated the allosteric mechanism. The carboxylate group of HPA maintains the salt bridge between helix 2 and the flexible loop. This maintenance shortens the loop between helices 2 and 3, causing helix 3 to disengage from the N-terminal domain. The aromatic ring of HPA induces a conformational change in helices 1 and 5, pulling helix 4, analogous to the recognition helix in NadR, away from the N-terminal domain. A Y189A mutation, obtained from site-saturation mutagenesis, confirms that HPA with an unsuitable conformation cannot induce the conformational change of C1. Additionally, an HPA-independent effect is observed, in which Arg20, an NADH binding residue on the N-terminal domain, occasionally disengages from helix 4. This model provides valuable insights into the allosteric regulation of two-component FDMOs and aromatic effector systems. |
---|---|
AbstractList | Understanding how an enzyme regulates its function through substrate or allosteric regulation is crucial for controlling metabolic pathways. Some flavin-dependent monooxygenases (FDMOs) have evolved an allosteric mechanism to produce reduced flavin while minimizing the use of NADH and the production of harmful hydrogen peroxide (H
O
). In this work, we investigated in-depth mechanisms of how the reductase component (C1) of
-hydroxyphenylacetate (HPA) 3-hydroxylase (HPAH) from
is allosterically controlled by the binding of HPA, which is a substrate of its monooxygenase counterpart (C2). The C1 structure can be divided into three regions: the N-terminal domain (flavin reductase); a flexible loop; and the C-terminal domain, which is homologous to NadR, a repressor protein having HPA as an effector. The binding of HPA to NadR induces a conformational change in the recognition helix, causing it to disengage from the NadA gene. The HPA binding site of C1 is located at the C-terminal domain, which can be divided into five helices. Molecular dynamics simulations performed on HPA-docked C1 elucidated the allosteric mechanism. The carboxylate group of HPA maintains the salt bridge between helix 2 and the flexible loop. This maintenance shortens the loop between helices 2 and 3, causing helix 3 to disengage from the N-terminal domain. The aromatic ring of HPA induces a conformational change in helices 1 and 5, pulling helix 4, analogous to the recognition helix in NadR, away from the N-terminal domain. A Y189A mutation, obtained from site-saturation mutagenesis, confirms that HPA with an unsuitable conformation cannot induce the conformational change of C1. Additionally, an HPA-independent effect is observed, in which Arg20, an NADH binding residue on the N-terminal domain, occasionally disengages from helix 4. This model provides valuable insights into the allosteric regulation of two-component FDMOs and aromatic effector systems. Understanding how an enzyme regulates its function through substrate or allosteric regulation is crucial for controlling metabolic pathways. Some flavin-dependent monooxygenases (FDMOs) have evolved an allosteric mechanism to produce reduced flavin while minimizing the use of NADH and the production of harmful hydrogen peroxide (H2O2). In this work, we investigated in-depth mechanisms of how the reductase component (C1) of p-hydroxyphenylacetate (HPA) 3-hydroxylase (HPAH) from Acinetobacter baumanii is allosterically controlled by the binding of HPA, which is a substrate of its monooxygenase counterpart (C2). The C1 structure can be divided into three regions: the N-terminal domain (flavin reductase); a flexible loop; and the C-terminal domain, which is homologous to NadR, a repressor protein having HPA as an effector. The binding of HPA to NadR induces a conformational change in the recognition helix, causing it to disengage from the NadA gene. The HPA binding site of C1 is located at the C-terminal domain, which can be divided into five helices. Molecular dynamics simulations performed on HPA-docked C1 elucidated the allosteric mechanism. The carboxylate group of HPA maintains the salt bridge between helix 2 and the flexible loop. This maintenance shortens the loop between helices 2 and 3, causing helix 3 to disengage from the N-terminal domain. The aromatic ring of HPA induces a conformational change in helices 1 and 5, pulling helix 4, analogous to the recognition helix in NadR, away from the N-terminal domain. A Y189A mutation, obtained from site-saturation mutagenesis, confirms that HPA with an unsuitable conformation cannot induce the conformational change of C1. Additionally, an HPA-independent effect is observed, in which Arg20, an NADH binding residue on the N-terminal domain, occasionally disengages from helix 4. This model provides valuable insights into the allosteric regulation of two-component FDMOs and aromatic effector systems.Understanding how an enzyme regulates its function through substrate or allosteric regulation is crucial for controlling metabolic pathways. Some flavin-dependent monooxygenases (FDMOs) have evolved an allosteric mechanism to produce reduced flavin while minimizing the use of NADH and the production of harmful hydrogen peroxide (H2O2). In this work, we investigated in-depth mechanisms of how the reductase component (C1) of p-hydroxyphenylacetate (HPA) 3-hydroxylase (HPAH) from Acinetobacter baumanii is allosterically controlled by the binding of HPA, which is a substrate of its monooxygenase counterpart (C2). The C1 structure can be divided into three regions: the N-terminal domain (flavin reductase); a flexible loop; and the C-terminal domain, which is homologous to NadR, a repressor protein having HPA as an effector. The binding of HPA to NadR induces a conformational change in the recognition helix, causing it to disengage from the NadA gene. The HPA binding site of C1 is located at the C-terminal domain, which can be divided into five helices. Molecular dynamics simulations performed on HPA-docked C1 elucidated the allosteric mechanism. The carboxylate group of HPA maintains the salt bridge between helix 2 and the flexible loop. This maintenance shortens the loop between helices 2 and 3, causing helix 3 to disengage from the N-terminal domain. The aromatic ring of HPA induces a conformational change in helices 1 and 5, pulling helix 4, analogous to the recognition helix in NadR, away from the N-terminal domain. A Y189A mutation, obtained from site-saturation mutagenesis, confirms that HPA with an unsuitable conformation cannot induce the conformational change of C1. Additionally, an HPA-independent effect is observed, in which Arg20, an NADH binding residue on the N-terminal domain, occasionally disengages from helix 4. This model provides valuable insights into the allosteric regulation of two-component FDMOs and aromatic effector systems. Understanding how an enzyme regulates its function through substrate or allosteric regulation is crucial for controlling metabolic pathways. Some flavin-dependent monooxygenases (FDMOs) have evolved an allosteric mechanism to produce reduced flavin while minimizing the use of NADH and the production of harmful hydrogen peroxide (H 2 O 2 ). In this work, we investigated in-depth mechanisms of how the reductase component (C1) of p -hydroxyphenylacetate (HPA) 3-hydroxylase (HPAH) from Acinetobacter baumanii is allosterically controlled by the binding of HPA, which is a substrate of its monooxygenase counterpart (C2). The C1 structure can be divided into three regions: the N-terminal domain (flavin reductase); a flexible loop; and the C-terminal domain, which is homologous to NadR, a repressor protein having HPA as an effector. The binding of HPA to NadR induces a conformational change in the recognition helix, causing it to disengage from the NadA gene. The HPA binding site of C1 is located at the C-terminal domain, which can be divided into five helices. Molecular dynamics simulations performed on HPA-docked C1 elucidated the allosteric mechanism. The carboxylate group of HPA maintains the salt bridge between helix 2 and the flexible loop. This maintenance shortens the loop between helices 2 and 3, causing helix 3 to disengage from the N-terminal domain. The aromatic ring of HPA induces a conformational change in helices 1 and 5, pulling helix 4, analogous to the recognition helix in NadR, away from the N-terminal domain. A Y189A mutation, obtained from site-saturation mutagenesis, confirms that HPA with an unsuitable conformation cannot induce the conformational change of C1. Additionally, an HPA-independent effect is observed, in which Arg20, an NADH binding residue on the N-terminal domain, occasionally disengages from helix 4. This model provides valuable insights into the allosteric regulation of two-component FDMOs and aromatic effector systems. Understanding how an enzyme regulates its function through substrate or allosteric regulation is crucial for controlling metabolic pathways. Some flavin-dependent monooxygenases (FDMOs) have evolved an allosteric mechanism to produce reduced flavin while minimizing the use of NADH and the production of harmful hydrogen peroxide (H 2 O 2 ). In this work, we investigated in-depth mechanisms of how the reductase component (C1) of p -hydroxyphenylacetate (HPA) 3-hydroxylase (HPAH) from Acinetobacter baumanii is allosterically controlled by the binding of HPA, which is a substrate of its monooxygenase counterpart (C2). The C1 structure can be divided into three regions: the N-terminal domain (flavin reductase); a flexible loop; and the C-terminal domain, which is homologous to NadR, a repressor protein having HPA as an effector. The binding of HPA to NadR induces a conformational change in the recognition helix, causing it to disengage from the NadA gene. The HPA binding site of C1 is located at the C-terminal domain, which can be divided into five helices. Molecular dynamics simulations performed on HPA-docked C1 elucidated the allosteric mechanism. The carboxylate group of HPA maintains the salt bridge between helix 2 and the flexible loop. This maintenance shortens the loop between helices 2 and 3, causing helix 3 to disengage from the N-terminal domain. The aromatic ring of HPA induces a conformational change in helices 1 and 5, pulling helix 4, analogous to the recognition helix in NadR, away from the N-terminal domain. A Y189A mutation, obtained from site-saturation mutagenesis, confirms that HPA with an unsuitable conformation cannot induce the conformational change of C1. Additionally, an HPA-independent effect is observed, in which Arg20, an NADH binding residue on the N-terminal domain, occasionally disengages from helix 4. This model provides valuable insights into the allosteric regulation of two-component FDMOs and aromatic effector systems. This study uncovers allosteric regulation in the reductase component (C1) of HPA 3-hydroxylase from Acinetobacter baumannii , where HPA binding enhances flavin production while reducing NADH consumption and H₂O₂ formation. |
Author | Visitsatthawong, Surawit Anuwan, Piyanuch Lawan, Narin Chaiyen, Pimchai Wongnate, Thanyaporn |
Author_xml | – sequence: 1 givenname: Surawit surname: Visitsatthawong fullname: Visitsatthawong, Surawit organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand – sequence: 2 givenname: Piyanuch surname: Anuwan fullname: Anuwan, Piyanuch organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand – sequence: 3 givenname: Narin orcidid: 0000-0003-0940-9278 surname: Lawan fullname: Lawan, Narin organization: Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand – sequence: 4 givenname: Pimchai orcidid: 0000-0002-8533-1604 surname: Chaiyen fullname: Chaiyen, Pimchai organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand – sequence: 5 givenname: Thanyaporn orcidid: 0000-0001-5072-9738 surname: Wongnate fullname: Wongnate, Thanyaporn organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39649338$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk2P1iAQx4lZ467rXvwAhqMxqULpQ4sXo4_vWeNFz4TS4SmGQgW62foN_VbS7IvrwQtMZn78_zNhHqIjHzwg9JiS55Qw8eJts39DSE3Z53vopOaMVYS34uhOfIzOUvpBCrSjVIj2ATpmgjeCse4E_f4CelTepmw1tj7Zw5hTCXLAyrmQMsRSiHBYnMo2eBwMziOUzLDorBJgHaa5tOTzVppxNa5DDJfrPIJfndKQVQbMbtJue9Kv_wNfYoWnMIDDJkQMxoDOIVY6-ByDczBgpbO9sHnd3EoT4RKD_7VOkB6h-0a5BGfX9yn6_v7dt_3H6vzrh0_71-eVLgPnSu84bzkjRqkadFtOIQzrakV60nOhtCGCmZ5QTWrVqmbooREghr7Z8YbXwE7RqyvdeeknGHSZPCon52gnFVcZlJX_Vrwd5SFcSEo57TpOi8LTa4UYfi6Qspxs0uCc8hCWJBlt-K4VHdnQJ3fNbl1uPrAAz64AHUNKEcwtQoncFkT-XRD2B5BltIE |
Cites_doi | 10.1016/S0021-9258(17)33523-8 10.1103/PhysRevB.37.785 10.1016/j.bbrc.2005.09.081 10.1002/prot.21534 10.1016/S0021-9258(18)50419-1 10.1074/jbc.RA119.011884 10.1016/j.abb.2018.06.010 10.1021/bi7006614 10.1074/jbc.M109.056135 10.1111/j.1432-1033.1991.tb16238.x 10.1021/bi9826613 10.1016/j.abb.2009.11.028 10.1074/jbc.274.47.33355 10.1002/0471250953.bi0814s24 10.1016/j.abb.2013.12.005 10.1021/bi971427u 10.1021/bi052313i 10.1021/acs.chemrev.7b00650 10.1016/j.jbc.2023.105413 10.1128/JB.00307-09 10.1016/0022-2836(89)90158-7 10.1074/jbc.M111.284463 10.1107/S1744309112016909 10.1074/jbc.M112.354472 10.1093/nar/gkh381 10.1093/nar/gkad1011 10.1080/10409238.2017.1344612 10.1111/febs.16340 10.1016/j.enzmictec.2013.02.012 10.1063/1.455064 10.1007/978-1-4939-1714-3_25 10.1021/j100096a001 10.1016/j.molcatb.2016.09.003 10.1016/j.abb.2014.05.009 10.1038/s41586-024-07487-w 10.1126/science.7939628 10.1002/cbic.201900413 10.1002/(SICI)1097-0134(199612)26:4<363::AID-PROT1>3.0.CO;2-D 10.1021/bi962325r 10.1021/bi00199a044 10.1016/S0021-9258(19)45081-3 10.1002/pro.5560031210 10.1016/j.abb.2004.09.029 10.1021/bi012073g 10.1016/j.biotechadv.2021.107712 10.1021/bi500480n 10.1074/jbc.M512385200 10.3389/fmicb.2018.03050 10.1021/jacs.5b04328 10.1074/jbc.M313765200 10.1111/j.1432-1033.1993.tb18125.x 10.1063/1.464913 10.1021/jp973084f 10.1128/jb.174.4.1179-1188.1992 10.1021/bi051119t 10.1002/jcc.21334 10.1007/BF00533485 10.1063/1.460447 10.1016/S0021-9258(18)35687-4 10.1016/j.bbaexp.2004.08.003 10.1021/bi035734d 10.1016/j.jbiotec.2006.03.044 10.1046/j.1432-1033.2001.02490.x 10.1021/bi050615e 10.1002/jcc.20289 10.1016/S0021-9258(18)71580-9 10.1021/bi9715122 10.1021/bi00370a012 10.1073/pnas.0608381104 10.1016/j.abb.2010.02.007 10.1016/j.cub.2013.01.013 10.1371/journal.ppat.1005557 10.3390/biology7030042 10.1073/pnas.022640199 10.1074/jbc.M111.241836 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. This journal is © The Royal Society of Chemistry 2025 RSC |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: This journal is © The Royal Society of Chemistry 2025 RSC |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1039/D4CB00213J |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2633-0679 |
EndPage | 93 |
ExternalDocumentID | PMC11618861 39649338 10_1039_D4CB00213J |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: Unassigned |
GroupedDBID | AAFWJ AARTK AAYXX ABIQK AFPKN AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI CITATION EBS GROUPED_DOAJ H13 M~E OK1 PGMZT RPM RSCEA RVUXY NPM 7X8 5PM |
ID | FETCH-LOGICAL-c338t-c5667630faa2ec7aa299f382a0b0b69acf093fb01c02a7a4dbe49e9db456462e3 |
ISSN | 2633-0679 |
IngestDate | Thu Aug 21 18:35:03 EDT 2025 Fri Jul 11 06:31:15 EDT 2025 Thu Apr 03 07:02:36 EDT 2025 Tue Jul 01 04:10:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This journal is © The Royal Society of Chemistry. This article is licensed under a Creative Commons Attribution-Non Commercial 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-c5667630faa2ec7aa299f382a0b0b69acf093fb01c02a7a4dbe49e9db456462e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8533-1604 0000-0001-5072-9738 0000-0003-0940-9278 |
OpenAccessLink | http://dx.doi.org/10.1039/d4cb00213j |
PMID | 39649338 |
PQID | 3146579801 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11618861 proquest_miscellaneous_3146579801 pubmed_primary_39649338 crossref_primary_10_1039_D4CB00213J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-02 |
PublicationDateYYYYMMDD | 2025-01-02 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | RSC chemical biology |
PublicationTitleAlternate | RSC Chem Biol |
PublicationYear | 2025 |
Publisher | RSC |
Publisher_xml | – name: RSC |
References | Kim (D4CB00213J/cit47/1) 2008; 70 Trott (D4CB00213J/cit61/1) 2010; 31 Sucharitakul (D4CB00213J/cit39/1) 2014; 555–556 Petersson (D4CB00213J/cit55/1) 1988; 89 Frederick (D4CB00213J/cit17/1) 2005; 44 Liguori (D4CB00213J/cit45/1) 2016; 12 Palfey (D4CB00213J/cit16/1) 1999; 38 Palfey (D4CB00213J/cit18/1) 2002; 41 Heine (D4CB00213J/cit36/1) 2018; 7 Lee (D4CB00213J/cit51/1) 1988; 37 Tongsook (D4CB00213J/cit70/1) 2011; 286 Hariharan (D4CB00213J/cit53/1) 1973; 28 Morris (D4CB00213J/cit57/1) 2008; 24 Pongpamorn (D4CB00213J/cit64/1) 2019; 20 van Berkel (D4CB00213J/cit23/1) 1994; 3 van Berkel (D4CB00213J/cit3/1) 2006; 124 Schreuder (D4CB00213J/cit20/1) 1989; 208 Eschrich (D4CB00213J/cit75/1) 1993; 216 Wang (D4CB00213J/cit77/1) 2002; 99 Thotsaporn (D4CB00213J/cit37/1) 2016; 134 Sanner (D4CB00213J/cit58/1) 1999; 17 Chenprakhon (D4CB00213J/cit73/1) 2014; 53 Grove (D4CB00213J/cit43/1) 2013; 23 Entsch (D4CB00213J/cit25/1) 1976; 251 Arunachalam (D4CB00213J/cit29/1) 1992; 267 Becke (D4CB00213J/cit50/1) 1993; 98 Chaiyen (D4CB00213J/cit67/1) 2001; 268 Phongsak (D4CB00213J/cit42/1) 2012; 287 Abramson (D4CB00213J/cit78/1) 2024; 630 Powlowski (D4CB00213J/cit8/1) 1989; 264 Suske (D4CB00213J/cit12/1) 1999; 274 Phintha (D4CB00213J/cit2/1) 2023; 299 Thotsaporn (D4CB00213J/cit31/1) 2004; 1680 Romero (D4CB00213J/cit1/1) 2018; 118 Chaiyen (D4CB00213J/cit9/1) 1997; 36 Visitsatthawong (D4CB00213J/cit40/1) 2015; 137 Gatti (D4CB00213J/cit21/1) 1994; 266 Manstein (D4CB00213J/cit76/1) 1986; 25 Husain (D4CB00213J/cit26/1) 1979; 254 Palfey (D4CB00213J/cit6/1) 2010; 493 Huijbers (D4CB00213J/cit4/1) 2014; 544 Thotsaporn (D4CB00213J/cit74/1) 2011; 286 Varadi (D4CB00213J/cit34/1) 2023; 52 Paul (D4CB00213J/cit5/1) 2021; 51 Sucharitakul (D4CB00213J/cit38/1) 2007; 46 Uetz (D4CB00213J/cit28/1) 1992; 174 Yuenyao (D4CB00213J/cit33/1) 2018; 653 van den Heuvel (D4CB00213J/cit48/1) 2004; 279 Hooft (D4CB00213J/cit60/1) 1996; 26 Vervoort (D4CB00213J/cit24/1) 1991; 200 Ellis (D4CB00213J/cit35/1) 2010; 497 Pitsawong (D4CB00213J/cit69/1) 2020; 295 Dolinsky (D4CB00213J/cit59/1) 2004; 32 Permsirivisarn (D4CB00213J/cit79/1) 2022; 289 Webb (D4CB00213J/cit49/1) 2010; 285 Deochand (D4CB00213J/cit44/1) 2017; 52 Sullivan (D4CB00213J/cit66/1) 2013; 53 MacKerell (D4CB00213J/cit62/1) 1998; 102 Stephens (D4CB00213J/cit52/1) 1994; 98 Chaiyen (D4CB00213J/cit11/1) 2004; 43 Petersson (D4CB00213J/cit54/1) 1991; 94 Alfieri (D4CB00213J/cit72/1) 2007; 104 Sucharitakul (D4CB00213J/cit71/1) 2006; 281 Chaiyen (D4CB00213J/cit30/1) 2001; 268 Oonanant (D4CB00213J/cit32/1) 2012; 68 Sucharitakul (D4CB00213J/cit41/1) 2005; 44 Howell (D4CB00213J/cit13/1) 1972; 247 Okai (D4CB00213J/cit46/1) 2006; 45 Schreuder (D4CB00213J/cit22/1) 1994; 33 Ballou (D4CB00213J/cit7/1) 2005; 338 Ballou (D4CB00213J/cit19/1) 1997; 36 Tischler (D4CB00213J/cit27/1) 2009; 191 Dutta (D4CB00213J/cit68/1) 2015; 1229 Chaiyen (D4CB00213J/cit10/1) 1997; 36 Thotsaporn (D4CB00213J/cit65/1) 2004; 1680 Entsch (D4CB00213J/cit15/1) 2005; 433 Frisch (D4CB00213J/cit56/1) 2016 Westphal (D4CB00213J/cit14/1) 2018; 9 Phillips (D4CB00213J/cit63/1) 2005; 26 |
References_xml | – volume: 251 start-page: 2550 year: 1976 ident: D4CB00213J/cit25/1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)33523-8 – volume: 37 start-page: 785 year: 1988 ident: D4CB00213J/cit51/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.37.785 – volume: 338 start-page: 590 year: 2005 ident: D4CB00213J/cit7/1 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2005.09.081 – volume: 70 start-page: 718 year: 2008 ident: D4CB00213J/cit47/1 publication-title: Proteins doi: 10.1002/prot.21534 – volume: 254 start-page: 6657 year: 1979 ident: D4CB00213J/cit26/1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)50419-1 – volume: 295 start-page: 3965 year: 2020 ident: D4CB00213J/cit69/1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.011884 – volume: 653 start-page: 24 year: 2018 ident: D4CB00213J/cit33/1 publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2018.06.010 – volume: 46 start-page: 8611 year: 2007 ident: D4CB00213J/cit38/1 publication-title: Biochemistry doi: 10.1021/bi7006614 – volume: 285 start-page: 2014 year: 2010 ident: D4CB00213J/cit49/1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.056135 – volume-title: Gaussian 16 Rev. C.01 year: 2016 ident: D4CB00213J/cit56/1 – volume: 200 start-page: 731 year: 1991 ident: D4CB00213J/cit24/1 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1991.tb16238.x – volume: 38 start-page: 1153 year: 1999 ident: D4CB00213J/cit16/1 publication-title: Biochemistry doi: 10.1021/bi9826613 – volume: 493 start-page: 26 year: 2010 ident: D4CB00213J/cit6/1 publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2009.11.028 – volume: 274 start-page: 33355 year: 1999 ident: D4CB00213J/cit12/1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.47.33355 – volume: 24 start-page: 8.14.11 year: 2008 ident: D4CB00213J/cit57/1 publication-title: Curr. Protoc. Bioinf. doi: 10.1002/0471250953.bi0814s24 – volume: 544 start-page: 2 year: 2014 ident: D4CB00213J/cit4/1 publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2013.12.005 – volume: 36 start-page: 15713 year: 1997 ident: D4CB00213J/cit19/1 publication-title: Biochemistry doi: 10.1021/bi971427u – volume: 45 start-page: 5103 year: 2006 ident: D4CB00213J/cit46/1 publication-title: Biochemistry doi: 10.1021/bi052313i – volume: 118 start-page: 1742 year: 2018 ident: D4CB00213J/cit1/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00650 – volume: 299 start-page: 105413 year: 2023 ident: D4CB00213J/cit2/1 publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2023.105413 – volume: 191 start-page: 4996 year: 2009 ident: D4CB00213J/cit27/1 publication-title: J. Bacteriol. doi: 10.1128/JB.00307-09 – volume: 208 start-page: 679 year: 1989 ident: D4CB00213J/cit20/1 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(89)90158-7 – volume: 286 start-page: 44491 year: 2011 ident: D4CB00213J/cit70/1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.284463 – volume: 68 start-page: 720 year: 2012 ident: D4CB00213J/cit32/1 publication-title: Acta Crystallogr., Sect. F:Struct. Biol. Cryst. Commun. doi: 10.1107/S1744309112016909 – volume: 287 start-page: 26213 year: 2012 ident: D4CB00213J/cit42/1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.354472 – volume: 32 start-page: W665 year: 2004 ident: D4CB00213J/cit59/1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh381 – volume: 52 start-page: D368 year: 2023 ident: D4CB00213J/cit34/1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkad1011 – volume: 52 start-page: 595 year: 2017 ident: D4CB00213J/cit44/1 publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.1080/10409238.2017.1344612 – volume: 289 start-page: 3217 year: 2022 ident: D4CB00213J/cit79/1 publication-title: FEBS J. doi: 10.1111/febs.16340 – volume: 53 start-page: 70 year: 2013 ident: D4CB00213J/cit66/1 publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2013.02.012 – volume: 89 start-page: 2193 year: 1988 ident: D4CB00213J/cit55/1 publication-title: J. Chem. Phys. doi: 10.1063/1.455064 – volume: 1229 start-page: 315 year: 2015 ident: D4CB00213J/cit68/1 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-1714-3_25 – volume: 98 start-page: 11623 year: 1994 ident: D4CB00213J/cit52/1 publication-title: J. Phys. Chem. doi: 10.1021/j100096a001 – volume: 134 start-page: 353 year: 2016 ident: D4CB00213J/cit37/1 publication-title: J. Mol. Catal. B: Enzym. doi: 10.1016/j.molcatb.2016.09.003 – volume: 555–556 start-page: 33 year: 2014 ident: D4CB00213J/cit39/1 publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2014.05.009 – volume: 630 start-page: 493 year: 2024 ident: D4CB00213J/cit78/1 publication-title: Nature doi: 10.1038/s41586-024-07487-w – volume: 266 start-page: 110 year: 1994 ident: D4CB00213J/cit21/1 publication-title: Science doi: 10.1126/science.7939628 – volume: 20 start-page: 3020 year: 2019 ident: D4CB00213J/cit64/1 publication-title: ChemBioChem doi: 10.1002/cbic.201900413 – volume: 26 start-page: 363 year: 1996 ident: D4CB00213J/cit60/1 publication-title: Proteins doi: 10.1002/(SICI)1097-0134(199612)26:4<363::AID-PROT1>3.0.CO;2-D – volume: 36 start-page: 2612 year: 1997 ident: D4CB00213J/cit9/1 publication-title: Biochemistry doi: 10.1021/bi962325r – volume: 33 start-page: 10161 year: 1994 ident: D4CB00213J/cit22/1 publication-title: Biochemistry doi: 10.1021/bi00199a044 – volume: 247 start-page: 4340 year: 1972 ident: D4CB00213J/cit13/1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)45081-3 – volume: 3 start-page: 2245 year: 1994 ident: D4CB00213J/cit23/1 publication-title: Protein Sci. doi: 10.1002/pro.5560031210 – volume: 433 start-page: 297 year: 2005 ident: D4CB00213J/cit15/1 publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2004.09.029 – volume: 17 start-page: 57 year: 1999 ident: D4CB00213J/cit58/1 publication-title: J. Mol. Graphics Modell. – volume: 41 start-page: 8438 year: 2002 ident: D4CB00213J/cit18/1 publication-title: Biochemistry doi: 10.1021/bi012073g – volume: 51 start-page: 107712 year: 2021 ident: D4CB00213J/cit5/1 publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2021.107712 – volume: 53 start-page: 4084 year: 2014 ident: D4CB00213J/cit73/1 publication-title: Biochemistry doi: 10.1021/bi500480n – volume: 281 start-page: 17044 year: 2006 ident: D4CB00213J/cit71/1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M512385200 – volume: 9 start-page: 3050 year: 2018 ident: D4CB00213J/cit14/1 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.03050 – volume: 137 start-page: 9363 year: 2015 ident: D4CB00213J/cit40/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04328 – volume: 279 start-page: 12860 year: 2004 ident: D4CB00213J/cit48/1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M313765200 – volume: 216 start-page: 137 year: 1993 ident: D4CB00213J/cit75/1 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1993.tb18125.x – volume: 98 start-page: 5648 year: 1993 ident: D4CB00213J/cit50/1 publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 102 start-page: 3586 year: 1998 ident: D4CB00213J/cit62/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp973084f – volume: 174 start-page: 1179 year: 1992 ident: D4CB00213J/cit28/1 publication-title: J. Bacteriol. doi: 10.1128/jb.174.4.1179-1188.1992 – volume: 44 start-page: 13304 year: 2005 ident: D4CB00213J/cit17/1 publication-title: Biochemistry doi: 10.1021/bi051119t – volume: 31 start-page: 455 year: 2010 ident: D4CB00213J/cit61/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21334 – volume: 28 start-page: 213 year: 1973 ident: D4CB00213J/cit53/1 publication-title: Theor. Chim. Acta doi: 10.1007/BF00533485 – volume: 94 start-page: 6081 year: 1991 ident: D4CB00213J/cit54/1 publication-title: J. Chem. Phys. doi: 10.1063/1.460447 – volume: 267 start-page: 25848 year: 1992 ident: D4CB00213J/cit29/1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)35687-4 – volume: 1680 start-page: 60 year: 2004 ident: D4CB00213J/cit31/1 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbaexp.2004.08.003 – volume: 43 start-page: 3933 year: 2004 ident: D4CB00213J/cit11/1 publication-title: Biochemistry doi: 10.1021/bi035734d – volume: 124 start-page: 670 year: 2006 ident: D4CB00213J/cit3/1 publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2006.03.044 – volume: 268 start-page: 5550 year: 2001 ident: D4CB00213J/cit30/1 publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1033.2001.02490.x – volume: 44 start-page: 10434 year: 2005 ident: D4CB00213J/cit41/1 publication-title: Biochemistry doi: 10.1021/bi050615e – volume: 26 start-page: 1781 year: 2005 ident: D4CB00213J/cit63/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20289 – volume: 264 start-page: 16008 year: 1989 ident: D4CB00213J/cit8/1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)71580-9 – volume: 36 start-page: 13856 year: 1997 ident: D4CB00213J/cit10/1 publication-title: Biochemistry doi: 10.1021/bi9715122 – volume: 25 start-page: 6807 year: 1986 ident: D4CB00213J/cit76/1 publication-title: Biochemistry doi: 10.1021/bi00370a012 – volume: 104 start-page: 1177 year: 2007 ident: D4CB00213J/cit72/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0608381104 – volume: 497 start-page: 1 year: 2010 ident: D4CB00213J/cit35/1 publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2010.02.007 – volume: 23 start-page: R142 year: 2013 ident: D4CB00213J/cit43/1 publication-title: Curr. Biol. doi: 10.1016/j.cub.2013.01.013 – volume: 1680 start-page: 60 year: 2004 ident: D4CB00213J/cit65/1 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbaexp.2004.08.003 – volume: 12 start-page: e1005557 year: 2016 ident: D4CB00213J/cit45/1 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1005557 – volume: 7 start-page: 42 year: 2018 ident: D4CB00213J/cit36/1 publication-title: Biology doi: 10.3390/biology7030042 – volume: 268 start-page: 5550 year: 2001 ident: D4CB00213J/cit67/1 publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1033.2001.02490.x – volume: 99 start-page: 608 year: 2002 ident: D4CB00213J/cit77/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.022640199 – volume: 286 start-page: 28170 year: 2011 ident: D4CB00213J/cit74/1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.241836 |
SSID | ssj0002511997 |
Score | 2.2791448 |
Snippet | Understanding how an enzyme regulates its function through substrate or allosteric regulation is crucial for controlling metabolic pathways. Some... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 81 |
SubjectTerms | Chemistry |
Title | Mechanistic insights into allosteric regulation of the reductase component of p -hydroxyphenylacetate 3-hydroxylase by p -hydroxyphenylacetate: a model for effector-controlled activity of redox enzymes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39649338 https://www.proquest.com/docview/3146579801 https://pubmed.ncbi.nlm.nih.gov/PMC11618861 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCQLzCo1oEt8jF8fq13EpoVVVpQGqCcrN2_SBGrRMlNsH9g_CzmFl7HYcEqXCxovX6lfnWOzP-9htC3sLY60dOKI1-YtkQoAhuSFs6RiSRgeHChKaE5y9G7tnEPp86007nV4u1VOTyKLzZu67kf6wKbWBXXCX7D5ZtTgoN8BvsC1uwMGxvZeOLGNftKqllJJVjnI30KnAn8XM6SiAogeavdYkuzQdYolxrLhRR_Xoxz2o6wMKYlRGyWpD2VWJ6HR3RHtPNV3gEeKv7-1WrplVhnUpGXBFF5kujJsNfgWeLiyi-1xwQFCr90Yuzm1KvQdEy4ZeDXqhlDGqNKA2LL-kqzVdYolysay7xZbEU67Qh7xxnxbrK6X5OS5EVYZPuHop6x0gs02ZIDGYiLeP6gGv4O9N2HsRyVB6klRq1XIZ1KqrSNEfxnrb6fe_uwLp6d1elY3amFJOhImtkh8ofYt82E6cmC4w-BaeT4TAYn0zHd8hdCwIWq5U3Qp8AAzmuKv00t6S1chl_tzn5tne0E_L8ydxtuULjB-R-HcPQ4wqQD0knzh6Rny0wUg1GimCkGzDSDRjpPKEARtqAkTZgxF37QUa3wEhl-Zd-76mgCooUoEj3QJFqKOK1FBRpDcXHZHJ6Mh6cGXWVECNkzM-N0EGaNjMTIaw49GDLecJ8S5jSlC4XYWJylkizH5qW8IQdydjmMY8kCim5VsyekIMMnu4ZoUIy4XmOjGzTt1li-xAcRCHjGGXHXt_ukjfaOsGiEoMJFImD8eCjPfigbHjeJa-14QJ4V-MHOJHF82IVMHBLHI-DU9glTytDNudh3LU5PFCX-FsmbjqgDvz2niydKT34Pha98N3-81tc-AW5txk8L8lBviziV-BW5_JQpaMOFW5_A54I4kE |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanistic+insights+into+allosteric+regulation+of+the+reductase+component+of+p-hydroxyphenylacetate+3-hydroxylase+by+p-hydroxyphenylacetate%3A+a+model+for+effector-controlled+activity+of+redox+enzymes&rft.jtitle=RSC+chemical+biology&rft.au=Visitsatthawong%2C+Surawit&rft.au=Anuwan%2C+Piyanuch&rft.au=Lawan%2C+Narin&rft.au=Chaiyen%2C+Pimchai&rft.date=2025-01-02&rft.issn=2633-0679&rft.eissn=2633-0679&rft.volume=6&rft.issue=1&rft.spage=81&rft_id=info:doi/10.1039%2Fd4cb00213j&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2633-0679&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2633-0679&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2633-0679&client=summon |