Integer linear programming formulations for double roman domination problem

For a graph , a double Roman dominating function (DRDF) is a function having the property that if , then vertex v must have at least two neighbours assigned 2 under f or at least one neighbour u with , and if , then vertex v must have at least one neighbour u with . In this paper, we consider the do...

Full description

Saved in:
Bibliographic Details
Published inOptimization methods & software Vol. 37; no. 1; pp. 1 - 22
Main Authors Cai, Qingqiong, Fan, Neng, Shi, Yongtang, Yao, Shunyu
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 02.01.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For a graph , a double Roman dominating function (DRDF) is a function having the property that if , then vertex v must have at least two neighbours assigned 2 under f or at least one neighbour u with , and if , then vertex v must have at least one neighbour u with . In this paper, we consider the double Roman domination problem, which is an optimization problem of finding the DRDF f such that is minimum. We propose five integer linear programming (ILP) formulations and one mixed integer linear programming formulation with polynomial number of constraints for this problem. Some additional valid inequalities and bounds are also proposed for some of these formulations. Further, we prove that the first four models indeed solve the double Roman domination problem, and the last two models are equivalent to the others regardless of the variable relaxation or usage of a smaller number of constraints and variables. Additionally, we use one ILP formulation to give an -approximation algorithm. All proposed formulations and approximation algorithm are evaluated on randomly generated graphs to compare the performance.
AbstractList For a graph , a double Roman dominating function (DRDF) is a function having the property that if , then vertex v must have at least two neighbours assigned 2 under f or at least one neighbour u with , and if , then vertex v must have at least one neighbour u with . In this paper, we consider the double Roman domination problem, which is an optimization problem of finding the DRDF f such that is minimum. We propose five integer linear programming (ILP) formulations and one mixed integer linear programming formulation with polynomial number of constraints for this problem. Some additional valid inequalities and bounds are also proposed for some of these formulations. Further, we prove that the first four models indeed solve the double Roman domination problem, and the last two models are equivalent to the others regardless of the variable relaxation or usage of a smaller number of constraints and variables. Additionally, we use one ILP formulation to give an -approximation algorithm. All proposed formulations and approximation algorithm are evaluated on randomly generated graphs to compare the performance.
For a graph , a double Roman dominating function (DRDF) is a function having the property that if , then vertex v must have at least two neighbours assigned 2 under f or at least one neighbour u with , and if , then vertex v must have at least one neighbour u with . In this paper, we consider the double Roman domination problem, which is an optimization problem of finding the DRDF f such that is minimum. We propose five integer linear programming (ILP) formulations and one mixed integer linear programming formulation with polynomial number of constraints for this problem. Some additional valid inequalities and bounds are also proposed for some of these formulations. Further, we prove that the first four models indeed solve the double Roman domination problem, and the last two models are equivalent to the others regardless of the variable relaxation or usage of a smaller number of constraints and variables. Additionally, we use one ILP formulation to give an -approximation algorithm. All proposed formulations and approximation algorithm are evaluated on randomly generated graphs to compare the performance.
Author Yao, Shunyu
Fan, Neng
Shi, Yongtang
Cai, Qingqiong
Author_xml – sequence: 1
  givenname: Qingqiong
  orcidid: 0000-0002-3170-7004
  surname: Cai
  fullname: Cai, Qingqiong
  organization: College of Computer Science, Nankai University
– sequence: 2
  givenname: Neng
  orcidid: 0000-0003-4333-3721
  surname: Fan
  fullname: Fan, Neng
  email: nfan@email.arizona.edu
  organization: Department of Systems & Industrial Engineering, University of Arizona
– sequence: 3
  givenname: Yongtang
  orcidid: 0000-0001-9406-7967
  surname: Shi
  fullname: Shi, Yongtang
  organization: Center for Combinatorics and LPMC, Nankai University
– sequence: 4
  givenname: Shunyu
  surname: Yao
  fullname: Yao, Shunyu
  organization: Center for Combinatorics and LPMC, Nankai University
BookMark eNp9kEtLAzEUhYNUsK3-BGHA9dQ8JpNkpxQfxYIbXYdMJilTZpKazCD99ya2bl3d1znnwrcAM-edAeAWwRWCHN4jSGnNOF9hiMQK1UygCl-AOYJYlJUgbJZ7SsssugKLGPcQwgpV9Ry8bdxodiYUfeeMCsUh-F1Qw9C5XWF9GKZejZ13MQ9F66emN0Xwg3JpSKLfYzal_XANLq3qo7k51yX4fH76WL-W2_eXzfpxW2pC-Fg2VkNLbE0N4alwpQRnFYGo0YZohnGrGG41pxpyTnnb4IaShtkWmboiApIluDvlpr9fk4mj3PspuPRSYoYYEpzULKnoSaWDjzEYKw-hG1Q4SgRl5ib_uMnMTZ65Jd_Dyde5DEB9-9C3clTH3gcblNNdlOT_iB9-Z3cF
CitedBy_id crossref_primary_10_1016_j_amc_2021_126407
crossref_primary_10_1016_j_asoc_2024_111306
crossref_primary_10_1016_j_amc_2019_04_038
crossref_primary_10_1007_s00010_024_01071_3
crossref_primary_10_3390_math11020351
crossref_primary_10_1016_j_amc_2020_125341
crossref_primary_10_1142_S0217595923400158
crossref_primary_10_3390_sym13061028
crossref_primary_10_1051_ro_2023121
crossref_primary_10_1142_S1793830921501251
Cites_doi 10.1080/10556780600881829
10.7151/dmgt.2069
10.1016/j.ic.2008.07.003
10.1137/070699688
10.1007/s40840-017-0582-9
10.1080/00207160.2015.1052804
10.3390/math6100206
10.1080/10556788.2015.1104679
10.1007/978-1-84628-970-5
10.1016/j.dam.2016.03.017
10.1007/978-3-642-13965-9_1
10.1080/10556780801995907
10.1287/moor.7.4.515
10.1016/j.disc.2003.06.004
10.1007/s40840-015-0141-1
10.1016/j.dam.2018.03.026
10.1016/j.disc.2012.11.031
10.2298/PIM1613051I
10.1088/1742-6596/890/1/012123
10.1016/j.cam.2019.03.006
10.1016/j.disc.2007.12.044
10.1016/j.ipl.2018.01.004
10.1109/SURV.2010.020110.00079
10.1038/scientificamerican1299-136
10.1016/j.dam.2017.06.014
10.1007/s10878-018-0286-6
10.1016/j.dam.2015.11.013
10.1080/00029890.2000.12005243
ContentType Journal Article
Copyright 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
2019 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
– notice: 2019 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/10556788.2019.1679142
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4937
EndPage 22
ExternalDocumentID 10_1080_10556788_2019_1679142
1679142
Genre Original Articles
GroupedDBID .4S
.7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABDBF
ABFIM
ABHAV
ABJVF
ABLIJ
ABPEM
ABPTK
ABQHQ
ABTAI
ABXUL
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARCSS
AVBZW
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EMK
EPL
EST
ESX
E~A
E~B
F5P
FUNRP
FVPDL
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQEST
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEJ
TFL
TFT
TFW
TTHFI
TUS
TWF
UT5
UU3
V1K
ZGOLN
~S~
AAYXX
ABJNI
ABPAQ
ABXYU
AHDZW
AWYRJ
CITATION
TBQAZ
TDBHL
TUROJ
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-bfc0f3f65e383f68aa9874301bce3c722da72dc85c08858db2b53b7fd1e643903
ISSN 1055-6788
IngestDate Thu Oct 10 18:29:24 EDT 2024
Fri Aug 23 00:34:52 EDT 2024
Tue Jun 13 19:51:40 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-bfc0f3f65e383f68aa9874301bce3c722da72dc85c08858db2b53b7fd1e643903
ORCID 0000-0002-3170-7004
0000-0003-4333-3721
0000-0001-9406-7967
PQID 2717198367
PQPubID 186278
PageCount 22
ParticipantIDs crossref_primary_10_1080_10556788_2019_1679142
proquest_journals_2717198367
informaworld_taylorfrancis_310_1080_10556788_2019_1679142
PublicationCentury 2000
PublicationDate 2022-01-02
PublicationDateYYYYMMDD 2022-01-02
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-02
  day: 02
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Optimization methods & software
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0011
CIT0033
Hajibaba M. (CIT0021) 2017; 890
Ahangar H.A. (CIT0004) 2018
CIT0014
Mobaraky B.P. (CIT0029) 2008; 60
CIT0036
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0020
CIT0001
CIT0022
Hedetniemi S. (CIT0023) 2013
Volkmann L. (CIT0034) 2018; 3
Yue J. (CIT0035) 2018; 338
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0026
CIT0007
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0012
  doi: 10.1080/10556780600881829
– ident: CIT0030
  doi: 10.7151/dmgt.2069
– ident: CIT0014
  doi: 10.1016/j.ic.2008.07.003
– volume: 3
  start-page: 71
  year: 2018
  ident: CIT0034
  publication-title: Commun. Comb. Optim.
  contributor:
    fullname: Volkmann L.
– volume: 338
  start-page: 669
  year: 2018
  ident: CIT0035
  publication-title: Appl. Math. Comput.
  contributor:
    fullname: Yue J.
– ident: CIT0011
  doi: 10.1137/070699688
– ident: CIT0022
  doi: 10.1007/s40840-017-0582-9
– ident: CIT0001
  doi: 10.1080/00207160.2015.1052804
– ident: CIT0026
  doi: 10.3390/math6100206
– ident: CIT0033
  doi: 10.1080/10556788.2015.1104679
– ident: CIT0008
  doi: 10.1007/978-1-84628-970-5
– ident: CIT0007
  doi: 10.1016/j.dam.2016.03.017
– volume-title: Fundamentals of Domination in Graphs
  year: 2013
  ident: CIT0023
  contributor:
    fullname: Hedetniemi S.
– ident: CIT0010
  doi: 10.1007/978-3-642-13965-9_1
– ident: CIT0009
  doi: 10.1080/10556780801995907
– volume: 60
  start-page: 247
  issue: 4
  year: 2008
  ident: CIT0029
  publication-title: Mat. vesnik
  contributor:
    fullname: Mobaraky B.P.
– ident: CIT0017
  doi: 10.1287/moor.7.4.515
– ident: CIT0016
– year: 2018
  ident: CIT0004
  publication-title: Iran. J. Sci. Technol. Trans. A Sci.
  contributor:
    fullname: Ahangar H.A.
– ident: CIT0015
  doi: 10.1016/j.disc.2003.06.004
– ident: CIT0002
  doi: 10.1007/s40840-015-0141-1
– ident: CIT0006
  doi: 10.1016/j.dam.2018.03.026
– ident: CIT0018
– ident: CIT0019
  doi: 10.1016/j.disc.2012.11.031
– ident: CIT0020
– ident: CIT0025
  doi: 10.2298/PIM1613051I
– volume: 890
  issue: 1
  year: 2017
  ident: CIT0021
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/890/1/012123
  contributor:
    fullname: Hajibaba M.
– ident: CIT0027
  doi: 10.1016/j.cam.2019.03.006
– ident: CIT0024
  doi: 10.1016/j.disc.2007.12.044
– ident: CIT0036
  doi: 10.1016/j.ipl.2018.01.004
– ident: CIT0028
  doi: 10.1109/SURV.2010.020110.00079
– ident: CIT0032
  doi: 10.1038/scientificamerican1299-136
– ident: CIT0003
  doi: 10.1016/j.dam.2017.06.014
– ident: CIT0005
  doi: 10.1007/s10878-018-0286-6
– ident: CIT0013
  doi: 10.1016/j.dam.2015.11.013
– ident: CIT0031
  doi: 10.1080/00029890.2000.12005243
SSID ssj0004146
Score 2.3898711
Snippet For a graph , a double Roman dominating function (DRDF) is a function having the property that if , then vertex v must have at least two neighbours assigned 2...
For a graph , a double Roman dominating function (DRDF) is a function having the property that if , then vertex v must have at least two neighbours assigned 2...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Algorithms
Approximation
approximation algorithm
Double roman domination
integer linear programming
Integer programming
Linear programming
Mathematical functions
Mixed integer
Optimization
Polynomials
Title Integer linear programming formulations for double roman domination problem
URI https://www.tandfonline.com/doi/abs/10.1080/10556788.2019.1679142
https://www.proquest.com/docview/2717198367
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gIPiE8xGCgPvKGU2G4S53EamyoYndBa0fFixY4zXtrCmgiNv54722lcdeLrxW3ctK7ufj2fr3e_I-Q1nDm0SSsa50KxeFTCoGhdxrXmmREFZbml2Pg4ycaz0ft5Oh8MboKspbZRQ_3z1rqS_9EqzIFesUr2HzS7-VCYgOegXxhBwzD-lY4xnIdVu-gqImW1y7Va-OTIRdvluWEqYbVqsUjqeoVB-2qFGTBW9b6jTOiknoMZWfj6TN9iem0hsgab_aPs02WPXS_rT7Dgd7j3agMGF1WdmH7qwjYPfnMJd4E7upm-LG2o9uJru7xpwwgEYzYC0Z9XpzvNQIKMJLSpSYr1Da5739D4OYbN7RzfS2eI_VUIOGdVabA9uyrmHcPvMiVtt09YCVP2iiH-w0Qdd9c20fbkXJ7Ozs7k9GQ-vUP2GdgoMI77R-N3Xz73RbW-NK379l35l0je3rrMlmOzRXu7s81b32X6gNz3h47oyCHoIRmY5SNyL6CifEw-eCxFDktRgKUoxBJeRA5LkcVS1GMp8lh6QmanJ9PjcewbbcSac9HEqtZJzessNVzAgyjLQoBnmVClDdc5Y1WZs0qLVMOelIpKMZVyldcVNejQJvwp2VuuluYZiZJMp1okuijB0CvYHkZ6hEGGAokB80QdkGEnJfnN8alI6mlqO7FKFKv0Yj0gRShL2Vi01Q5okv_hvYed4KX_2a4ly2lOC8Gz_PnvX35B7vZoPyR7zXVrXoIH2qhXHiu_AD2phBw
link.rule.ids 315,783,787,27936,27937,60214,61003
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMDAG1Eo4IE1JXZezogQVaGPqZW6WbZjM0BTlKYLvx5f4ogWhBi6RLIsW_HrfN_57juE7izmUDrKiJcwSb1Q2I8kRnhGBbFmKaFJRbExHMW9SfgyjaYrsTDgVgkY2tREEZWshsMNxujGJe6-SuposRt4ZqUdeEggoRXDOzEQgEEYhz_6jo10EUa2iQdtmiiev7pZu5_W2Et_SevqCuoeItX8fO158tZZlrKjPn_wOm42uiN04DRU_FBvqWO0pfMTtL_CW3iK-mBHfNUFhu5FgZ2T18xWYhiJSwm2gALO5kv5rnExn4ncFsD1BiqxS2Vzhibdp_Fjz3NZGTxl4WzpSaN8E5g40hbcmpgJkTKrhvhEKh2ohNJMJDRTLFJWgEUsk1RGgUxMRjRoP35wjrbzea4vEPZjFSnmq1RYqSCtLAlVCIg0BRa5xJct1GnWgn_U5BucOE7TZpY4zBJ3s9RC6eqK8bKyepg6RQkP_mnbbpaXu3O84NSiXZKyIE4uN-j6Fu32xsMBHzyP-ldoj0IEBVhxaBttl8VSX1u9ppQ31cb9Aovi6hE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQkRAMvBGFAh5YUxw7D2dEQFUoVAxUYrNix2aAplWaLvx6fIkjWhBi6BLJsmwlfpzvc777DqFLizmUDjPfi7mkXpDah_RN6hnFIs0Tn8aVxMbTMOqPgofXsGETzhytEjC0qYUiKlsNm3uamYYRd1XldLTQDYhZSRf-I_iBtcLr1hMgsNQZGX6HRroAI9vEgzZNEM9f3SwdT0vipb-MdXUC9XaQbN69Jp68d-el7KrPH7KOK33cLtp2_im-rhfUHlrT-T7aWlAtPEADuEV80wWG3tMCO4rX2FZi-BCXEGwGBZxN5vJD42IyTnNbAOINVGKXyOYQjXp3Lzd9z-Vk8JQFs6UnjSKGmSjUFtqaiKdpwq0TQnypNFMxpVka00zxUFnzFfJMUhkyGZvM1-D7EHaEWvkk18cIk0iFihOVpNYmSGtJAhUAHk1AQy4mso26zVSIaS29IXynaNqMkoBREm6U2ihZnDBRVncepk5QItg_bTvN7Aq3i2eCWqzrJ5xF8ckKXV-gjefbnni8Hw5O0SaF8Am4wqEd1CqLuT6zTk0pz6tl-wXNvOi-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integer+linear+programming+formulations+for+double+roman+domination+problem&rft.jtitle=Optimization+methods+%26+software&rft.au=Cai%2C+Qingqiong&rft.au=Fan%2C+Neng&rft.au=Shi%2C+Yongtang&rft.au=Yao%2C+Shunyu&rft.date=2022-01-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=37&rft.issue=1&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1080%2F10556788.2019.1679142&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon