Integer linear programming formulations for double roman domination problem
For a graph , a double Roman dominating function (DRDF) is a function having the property that if , then vertex v must have at least two neighbours assigned 2 under f or at least one neighbour u with , and if , then vertex v must have at least one neighbour u with . In this paper, we consider the do...
Saved in:
Published in | Optimization methods & software Vol. 37; no. 1; pp. 1 - 22 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
02.01.2022
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For a graph
, a double Roman dominating function (DRDF) is a function
having the property that if
, then vertex v must have at least two neighbours assigned 2 under f or at least one neighbour u with
, and if
, then vertex v must have at least one neighbour u with
. In this paper, we consider the double Roman domination problem, which is an optimization problem of finding the DRDF f such that
is minimum. We propose five integer linear programming (ILP) formulations and one mixed integer linear programming formulation with polynomial number of constraints for this problem. Some additional valid inequalities and bounds are also proposed for some of these formulations. Further, we prove that the first four models indeed solve the double Roman domination problem, and the last two models are equivalent to the others regardless of the variable relaxation or usage of a smaller number of constraints and variables. Additionally, we use one ILP formulation to give an
-approximation algorithm. All proposed formulations and approximation algorithm are evaluated on randomly generated graphs to compare the performance. |
---|---|
AbstractList | For a graph , a double Roman dominating function (DRDF) is a function having the property that if , then vertex v must have at least two neighbours assigned 2 under f or at least one neighbour u with , and if , then vertex v must have at least one neighbour u with . In this paper, we consider the double Roman domination problem, which is an optimization problem of finding the DRDF f such that is minimum. We propose five integer linear programming (ILP) formulations and one mixed integer linear programming formulation with polynomial number of constraints for this problem. Some additional valid inequalities and bounds are also proposed for some of these formulations. Further, we prove that the first four models indeed solve the double Roman domination problem, and the last two models are equivalent to the others regardless of the variable relaxation or usage of a smaller number of constraints and variables. Additionally, we use one ILP formulation to give an -approximation algorithm. All proposed formulations and approximation algorithm are evaluated on randomly generated graphs to compare the performance. For a graph , a double Roman dominating function (DRDF) is a function having the property that if , then vertex v must have at least two neighbours assigned 2 under f or at least one neighbour u with , and if , then vertex v must have at least one neighbour u with . In this paper, we consider the double Roman domination problem, which is an optimization problem of finding the DRDF f such that is minimum. We propose five integer linear programming (ILP) formulations and one mixed integer linear programming formulation with polynomial number of constraints for this problem. Some additional valid inequalities and bounds are also proposed for some of these formulations. Further, we prove that the first four models indeed solve the double Roman domination problem, and the last two models are equivalent to the others regardless of the variable relaxation or usage of a smaller number of constraints and variables. Additionally, we use one ILP formulation to give an -approximation algorithm. All proposed formulations and approximation algorithm are evaluated on randomly generated graphs to compare the performance. |
Author | Yao, Shunyu Fan, Neng Shi, Yongtang Cai, Qingqiong |
Author_xml | – sequence: 1 givenname: Qingqiong orcidid: 0000-0002-3170-7004 surname: Cai fullname: Cai, Qingqiong organization: College of Computer Science, Nankai University – sequence: 2 givenname: Neng orcidid: 0000-0003-4333-3721 surname: Fan fullname: Fan, Neng email: nfan@email.arizona.edu organization: Department of Systems & Industrial Engineering, University of Arizona – sequence: 3 givenname: Yongtang orcidid: 0000-0001-9406-7967 surname: Shi fullname: Shi, Yongtang organization: Center for Combinatorics and LPMC, Nankai University – sequence: 4 givenname: Shunyu surname: Yao fullname: Yao, Shunyu organization: Center for Combinatorics and LPMC, Nankai University |
BookMark | eNp9kEtLAzEUhYNUsK3-BGHA9dQ8JpNkpxQfxYIbXYdMJilTZpKazCD99ya2bl3d1znnwrcAM-edAeAWwRWCHN4jSGnNOF9hiMQK1UygCl-AOYJYlJUgbJZ7SsssugKLGPcQwgpV9Ry8bdxodiYUfeeMCsUh-F1Qw9C5XWF9GKZejZ13MQ9F66emN0Xwg3JpSKLfYzal_XANLq3qo7k51yX4fH76WL-W2_eXzfpxW2pC-Fg2VkNLbE0N4alwpQRnFYGo0YZohnGrGG41pxpyTnnb4IaShtkWmboiApIluDvlpr9fk4mj3PspuPRSYoYYEpzULKnoSaWDjzEYKw-hG1Q4SgRl5ib_uMnMTZ65Jd_Dyde5DEB9-9C3clTH3gcblNNdlOT_iB9-Z3cF |
CitedBy_id | crossref_primary_10_1016_j_amc_2021_126407 crossref_primary_10_1016_j_asoc_2024_111306 crossref_primary_10_1016_j_amc_2019_04_038 crossref_primary_10_1007_s00010_024_01071_3 crossref_primary_10_3390_math11020351 crossref_primary_10_1016_j_amc_2020_125341 crossref_primary_10_1142_S0217595923400158 crossref_primary_10_3390_sym13061028 crossref_primary_10_1051_ro_2023121 crossref_primary_10_1142_S1793830921501251 |
Cites_doi | 10.1080/10556780600881829 10.7151/dmgt.2069 10.1016/j.ic.2008.07.003 10.1137/070699688 10.1007/s40840-017-0582-9 10.1080/00207160.2015.1052804 10.3390/math6100206 10.1080/10556788.2015.1104679 10.1007/978-1-84628-970-5 10.1016/j.dam.2016.03.017 10.1007/978-3-642-13965-9_1 10.1080/10556780801995907 10.1287/moor.7.4.515 10.1016/j.disc.2003.06.004 10.1007/s40840-015-0141-1 10.1016/j.dam.2018.03.026 10.1016/j.disc.2012.11.031 10.2298/PIM1613051I 10.1088/1742-6596/890/1/012123 10.1016/j.cam.2019.03.006 10.1016/j.disc.2007.12.044 10.1016/j.ipl.2018.01.004 10.1109/SURV.2010.020110.00079 10.1038/scientificamerican1299-136 10.1016/j.dam.2017.06.014 10.1007/s10878-018-0286-6 10.1016/j.dam.2015.11.013 10.1080/00029890.2000.12005243 |
ContentType | Journal Article |
Copyright | 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 2019 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1080/10556788.2019.1679142 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1029-4937 |
EndPage | 22 |
ExternalDocumentID | 10_1080_10556788_2019_1679142 1679142 |
Genre | Original Articles |
GroupedDBID | .4S .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABCCY ABDBF ABFIM ABHAV ABJVF ABLIJ ABPEM ABPTK ABQHQ ABTAI ABXUL ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFOLD AFWLO AGDLA AGMYJ AHDLD AIJEM AIRXU AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARCSS AVBZW BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EDO EMK EPL EST ESX E~A E~B F5P FUNRP FVPDL GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQEST PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TEJ TFL TFT TFW TTHFI TUS TWF UT5 UU3 V1K ZGOLN ~S~ AAYXX ABJNI ABPAQ ABXYU AHDZW AWYRJ CITATION TBQAZ TDBHL TUROJ 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c338t-bfc0f3f65e383f68aa9874301bce3c722da72dc85c08858db2b53b7fd1e643903 |
ISSN | 1055-6788 |
IngestDate | Thu Oct 10 18:29:24 EDT 2024 Fri Aug 23 00:34:52 EDT 2024 Tue Jun 13 19:51:40 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-bfc0f3f65e383f68aa9874301bce3c722da72dc85c08858db2b53b7fd1e643903 |
ORCID | 0000-0002-3170-7004 0000-0003-4333-3721 0000-0001-9406-7967 |
PQID | 2717198367 |
PQPubID | 186278 |
PageCount | 22 |
ParticipantIDs | crossref_primary_10_1080_10556788_2019_1679142 proquest_journals_2717198367 informaworld_taylorfrancis_310_1080_10556788_2019_1679142 |
PublicationCentury | 2000 |
PublicationDate | 2022-01-02 |
PublicationDateYYYYMMDD | 2022-01-02 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Optimization methods & software |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0011 CIT0033 Hajibaba M. (CIT0021) 2017; 890 Ahangar H.A. (CIT0004) 2018 CIT0014 Mobaraky B.P. (CIT0029) 2008; 60 CIT0036 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0020 CIT0001 CIT0022 Hedetniemi S. (CIT0023) 2013 Volkmann L. (CIT0034) 2018; 3 Yue J. (CIT0035) 2018; 338 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0026 CIT0007 CIT0006 CIT0028 CIT0009 CIT0008 |
References_xml | – ident: CIT0012 doi: 10.1080/10556780600881829 – ident: CIT0030 doi: 10.7151/dmgt.2069 – ident: CIT0014 doi: 10.1016/j.ic.2008.07.003 – volume: 3 start-page: 71 year: 2018 ident: CIT0034 publication-title: Commun. Comb. Optim. contributor: fullname: Volkmann L. – volume: 338 start-page: 669 year: 2018 ident: CIT0035 publication-title: Appl. Math. Comput. contributor: fullname: Yue J. – ident: CIT0011 doi: 10.1137/070699688 – ident: CIT0022 doi: 10.1007/s40840-017-0582-9 – ident: CIT0001 doi: 10.1080/00207160.2015.1052804 – ident: CIT0026 doi: 10.3390/math6100206 – ident: CIT0033 doi: 10.1080/10556788.2015.1104679 – ident: CIT0008 doi: 10.1007/978-1-84628-970-5 – ident: CIT0007 doi: 10.1016/j.dam.2016.03.017 – volume-title: Fundamentals of Domination in Graphs year: 2013 ident: CIT0023 contributor: fullname: Hedetniemi S. – ident: CIT0010 doi: 10.1007/978-3-642-13965-9_1 – ident: CIT0009 doi: 10.1080/10556780801995907 – volume: 60 start-page: 247 issue: 4 year: 2008 ident: CIT0029 publication-title: Mat. vesnik contributor: fullname: Mobaraky B.P. – ident: CIT0017 doi: 10.1287/moor.7.4.515 – ident: CIT0016 – year: 2018 ident: CIT0004 publication-title: Iran. J. Sci. Technol. Trans. A Sci. contributor: fullname: Ahangar H.A. – ident: CIT0015 doi: 10.1016/j.disc.2003.06.004 – ident: CIT0002 doi: 10.1007/s40840-015-0141-1 – ident: CIT0006 doi: 10.1016/j.dam.2018.03.026 – ident: CIT0018 – ident: CIT0019 doi: 10.1016/j.disc.2012.11.031 – ident: CIT0020 – ident: CIT0025 doi: 10.2298/PIM1613051I – volume: 890 issue: 1 year: 2017 ident: CIT0021 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/890/1/012123 contributor: fullname: Hajibaba M. – ident: CIT0027 doi: 10.1016/j.cam.2019.03.006 – ident: CIT0024 doi: 10.1016/j.disc.2007.12.044 – ident: CIT0036 doi: 10.1016/j.ipl.2018.01.004 – ident: CIT0028 doi: 10.1109/SURV.2010.020110.00079 – ident: CIT0032 doi: 10.1038/scientificamerican1299-136 – ident: CIT0003 doi: 10.1016/j.dam.2017.06.014 – ident: CIT0005 doi: 10.1007/s10878-018-0286-6 – ident: CIT0013 doi: 10.1016/j.dam.2015.11.013 – ident: CIT0031 doi: 10.1080/00029890.2000.12005243 |
SSID | ssj0004146 |
Score | 2.3898711 |
Snippet | For a graph
, a double Roman dominating function (DRDF) is a function
having the property that if
, then vertex v must have at least two neighbours assigned 2... For a graph , a double Roman dominating function (DRDF) is a function having the property that if , then vertex v must have at least two neighbours assigned 2... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Approximation approximation algorithm Double roman domination integer linear programming Integer programming Linear programming Mathematical functions Mixed integer Optimization Polynomials |
Title | Integer linear programming formulations for double roman domination problem |
URI | https://www.tandfonline.com/doi/abs/10.1080/10556788.2019.1679142 https://www.proquest.com/docview/2717198367 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gIPiE8xGCgPvKGU2G4S53EamyoYndBa0fFixY4zXtrCmgiNv54722lcdeLrxW3ctK7ufj2fr3e_I-Q1nDm0SSsa50KxeFTCoGhdxrXmmREFZbml2Pg4ycaz0ft5Oh8MboKspbZRQ_3z1rqS_9EqzIFesUr2HzS7-VCYgOegXxhBwzD-lY4xnIdVu-gqImW1y7Va-OTIRdvluWEqYbVqsUjqeoVB-2qFGTBW9b6jTOiknoMZWfj6TN9iem0hsgab_aPs02WPXS_rT7Dgd7j3agMGF1WdmH7qwjYPfnMJd4E7upm-LG2o9uJru7xpwwgEYzYC0Z9XpzvNQIKMJLSpSYr1Da5739D4OYbN7RzfS2eI_VUIOGdVabA9uyrmHcPvMiVtt09YCVP2iiH-w0Qdd9c20fbkXJ7Ozs7k9GQ-vUP2GdgoMI77R-N3Xz73RbW-NK379l35l0je3rrMlmOzRXu7s81b32X6gNz3h47oyCHoIRmY5SNyL6CifEw-eCxFDktRgKUoxBJeRA5LkcVS1GMp8lh6QmanJ9PjcewbbcSac9HEqtZJzessNVzAgyjLQoBnmVClDdc5Y1WZs0qLVMOelIpKMZVyldcVNejQJvwp2VuuluYZiZJMp1okuijB0CvYHkZ6hEGGAokB80QdkGEnJfnN8alI6mlqO7FKFKv0Yj0gRShL2Vi01Q5okv_hvYed4KX_2a4ly2lOC8Gz_PnvX35B7vZoPyR7zXVrXoIH2qhXHiu_AD2phBw |
link.rule.ids | 315,783,787,27936,27937,60214,61003 |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMDAG1Eo4IE1JXZezogQVaGPqZW6WbZjM0BTlKYLvx5f4ogWhBi6RLIsW_HrfN_57juE7izmUDrKiJcwSb1Q2I8kRnhGBbFmKaFJRbExHMW9SfgyjaYrsTDgVgkY2tREEZWshsMNxujGJe6-SuposRt4ZqUdeEggoRXDOzEQgEEYhz_6jo10EUa2iQdtmiiev7pZu5_W2Et_SevqCuoeItX8fO158tZZlrKjPn_wOm42uiN04DRU_FBvqWO0pfMTtL_CW3iK-mBHfNUFhu5FgZ2T18xWYhiJSwm2gALO5kv5rnExn4ncFsD1BiqxS2Vzhibdp_Fjz3NZGTxl4WzpSaN8E5g40hbcmpgJkTKrhvhEKh2ohNJMJDRTLFJWgEUsk1RGgUxMRjRoP35wjrbzea4vEPZjFSnmq1RYqSCtLAlVCIg0BRa5xJct1GnWgn_U5BucOE7TZpY4zBJ3s9RC6eqK8bKyepg6RQkP_mnbbpaXu3O84NSiXZKyIE4uN-j6Fu32xsMBHzyP-ldoj0IEBVhxaBttl8VSX1u9ppQ31cb9Aovi6hE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQkRAMvBGFAh5YUxw7D2dEQFUoVAxUYrNix2aAplWaLvx6fIkjWhBi6BLJsmwlfpzvc777DqFLizmUDjPfi7mkXpDah_RN6hnFIs0Tn8aVxMbTMOqPgofXsGETzhytEjC0qYUiKlsNm3uamYYRd1XldLTQDYhZSRf-I_iBtcLr1hMgsNQZGX6HRroAI9vEgzZNEM9f3SwdT0vipb-MdXUC9XaQbN69Jp68d-el7KrPH7KOK33cLtp2_im-rhfUHlrT-T7aWlAtPEADuEV80wWG3tMCO4rX2FZi-BCXEGwGBZxN5vJD42IyTnNbAOINVGKXyOYQjXp3Lzd9z-Vk8JQFs6UnjSKGmSjUFtqaiKdpwq0TQnypNFMxpVka00zxUFnzFfJMUhkyGZvM1-D7EHaEWvkk18cIk0iFihOVpNYmSGtJAhUAHk1AQy4mso26zVSIaS29IXynaNqMkoBREm6U2ihZnDBRVncepk5QItg_bTvN7Aq3i2eCWqzrJ5xF8ckKXV-gjefbnni8Hw5O0SaF8Am4wqEd1CqLuT6zTk0pz6tl-wXNvOi- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integer+linear+programming+formulations+for+double+roman+domination+problem&rft.jtitle=Optimization+methods+%26+software&rft.au=Cai%2C+Qingqiong&rft.au=Fan%2C+Neng&rft.au=Shi%2C+Yongtang&rft.au=Yao%2C+Shunyu&rft.date=2022-01-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=37&rft.issue=1&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1080%2F10556788.2019.1679142&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon |