Temporal effects on spectroscopic line shapes, resolution, and sensitivity of the broad-band sum frequency generation
Sum frequency generation (SFG) is a surface-selective spectroscopy that provides a wealth of molecular-level information on the structure and dynamics at surfaces and interfaces. This paper addresses the general issue of spectral resolution and sensitivity of the broad-band (BB) SFG that involves a...
Saved in:
Published in | The Journal of chemical physics Vol. 132; no. 23; pp. 234503 - 234503-9 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
21.06.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9606 1089-7690 1089-7690 |
DOI | 10.1063/1.3432776 |
Cover
Abstract | Sum frequency generation (SFG) is a surface-selective spectroscopy that provides a wealth of molecular-level information on the structure and dynamics at surfaces and interfaces. This paper addresses the general issue of spectral resolution and sensitivity of the broad-band (BB) SFG that involves a spectrally narrow nonresonant (usually visible) and a BB resonant (usually infrared) laser pulses. We examine how the spectral width and temporal shape of the two pulses, and the time delay between them, relate to the spectroscopic line shape and signal level in the BB-SFG measurement. By combining experimental and model calculations, we show that the best spectral resolution and highest signal level are simultaneously achieved when the nonresonant narrow-band upconversion pulse arrives with a nonzero time delay
after
the resonant BB pulse. The nonzero time delay partially avoids the linear trade-off of improving spectral resolution at the expense of decreasing signal intensity, which is common in BB-SFG schemes utilizing spectral filtering to produce narrow-band visible pulses. |
---|---|
AbstractList | Sum frequency generation (SFG) is a surface-selective spectroscopy that provides a wealth of molecular-level information on the structure and dynamics at surfaces and interfaces. This paper addresses the general issue of spectral resolution and sensitivity of the broad-band (BB) SFG that involves a spectrally narrow nonresonant (usually visible) and a BB resonant (usually infrared) laser pulses. We examine how the spectral width and temporal shape of the two pulses, and the time delay between them, relate to the spectroscopic line shape and signal level in the BB-SFG measurement. By combining experimental and model calculations, we show that the best spectral resolution and highest signal level are simultaneously achieved when the nonresonant narrow-band upconversion pulse arrives with a nonzero time delay after the resonant BB pulse. The nonzero time delay partially avoids the linear trade-off of improving spectral resolution at the expense of decreasing signal intensity, which is common in BB-SFG schemes utilizing spectral filtering to produce narrow-band visible pulses. Sum frequency generation (SFG) is a surface-selective spectroscopy that provides a wealth of molecular-level information on the structure and dynamics at surfaces and interfaces. This paper addresses the general issue of spectral resolution and sensitivity of the broad-band (BB) SFG that involves a spectrally narrow nonresonant (usually visible) and a BB resonant (usually infrared) laser pulses. We examine how the spectral width and temporal shape of the two pulses, and the time delay between them, relate to the spectroscopic line shape and signal level in the BB-SFG measurement. By combining experimental and model calculations, we show that the best spectral resolution and highest signal level are simultaneously achieved when the nonresonant narrow-band upconversion pulse arrives with a nonzero time delay after the resonant BB pulse. The nonzero time delay partially avoids the linear trade-off of improving spectral resolution at the expense of decreasing signal intensity, which is common in BB-SFG schemes utilizing spectral filtering to produce narrow-band visible pulses.Sum frequency generation (SFG) is a surface-selective spectroscopy that provides a wealth of molecular-level information on the structure and dynamics at surfaces and interfaces. This paper addresses the general issue of spectral resolution and sensitivity of the broad-band (BB) SFG that involves a spectrally narrow nonresonant (usually visible) and a BB resonant (usually infrared) laser pulses. We examine how the spectral width and temporal shape of the two pulses, and the time delay between them, relate to the spectroscopic line shape and signal level in the BB-SFG measurement. By combining experimental and model calculations, we show that the best spectral resolution and highest signal level are simultaneously achieved when the nonresonant narrow-band upconversion pulse arrives with a nonzero time delay after the resonant BB pulse. The nonzero time delay partially avoids the linear trade-off of improving spectral resolution at the expense of decreasing signal intensity, which is common in BB-SFG schemes utilizing spectral filtering to produce narrow-band visible pulses. Sum frequency generation (SFG) is a surface-selective spectroscopy that provides a wealth of molecular-level information on the structure and dynamics at surfaces and interfaces. This paper addresses the general issue of spectral resolution and sensitivity of the broad-band (BB) SFG that involves a spectrally narrow nonresonant (usually visible) and a BB resonant (usually infrared) laser pulses. We examine how the spectral width and temporal shape of the two pulses, and the time delay between them, relate to the spectroscopic line shape and signal level in the BB-SFG measurement. By combining experimental and model calculations, we show that the best spectral resolution and highest signal level are simultaneously achieved when the nonresonant narrow-band upconversion pulse arrives with a nonzero time delay after the resonant BB pulse. The nonzero time delay partially avoids the linear trade-off of improving spectral resolution at the expense of decreasing signal intensity, which is common in BB-SFG schemes utilizing spectral filtering to produce narrow-band visible pulses. |
Author | Weeraman, Champika Jayathilake, Himali D. Benderskii, Alexander V. Stiopkin, Igor V. |
Author_xml | – sequence: 1 givenname: Igor surname: Stiopkin middlename: V. fullname: Stiopkin, Igor V. organization: Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA – sequence: 2 givenname: Himali surname: Jayathilake middlename: D. fullname: Jayathilake, Himali D. organization: Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA – sequence: 3 givenname: Champika surname: Weeraman fullname: Weeraman, Champika organization: Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA – sequence: 4 givenname: Alexander surname: Benderskii middlename: V. fullname: Benderskii, Alexander V. email: alex.benderskii@usc.edu. Present address: Department of Chemistry, University of Southern California, Los Angeles, CA 90089. organization: Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20572717$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1LxDAQhoMoun4c_AOSmwhWk6bbNAcPIn6B4EXPIUknGmmTmqTC_nuru-tB9DQD87zDzPvuok0fPCB0SMkZJTU7p2esYiXn9QaaUdKIgteCbKIZISUtRE3qHbSb0hshhPKy2kY7JZnzklM-Q-MT9EOIqsNgLZiccPA4DVMXQzJhcAZ3zgNOr2qAdIojpNCN2QV_ipVvcQKfXHYfLi9wsDi_AtYxqLbQ39OxxzbC-wjeLPALeIjqS7uPtqzqEhys6h56vrl-urorHh5v768uHwrDWJMLbRstqrqyRBsr5o2qjCrbxsB0qy0t562dg9WUEgZCl6yiRijNNYi6ZWLesj10vNw7xDAdkbLsXTLQdcpDGJPkjLHJCtpM5NGKHHUPrRyi61VcyLVTE3CyBMxkTIpgfxBK5FcKkspVChN7_os1Ln8_nqNy3Z-Ki6Uircn_168Tk6vEZPDsE5B6oJM |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_6b01146 crossref_primary_10_1016_j_chemphys_2018_05_006 crossref_primary_10_1021_jz100883z crossref_primary_10_1146_annurev_physchem_040214_121322 crossref_primary_10_1021_acs_jpca_9b10809 crossref_primary_10_1002_cphc_201402161 crossref_primary_10_1038_s41586_021_03504_4 crossref_primary_10_1039_c3cp52577e crossref_primary_10_1063_5_0088506 crossref_primary_10_1364_JOSAB_37_000117 crossref_primary_10_1039_C8CP02519C crossref_primary_10_1021_accountsmr_1c00217 crossref_primary_10_1021_acs_jpclett_1c02731 crossref_primary_10_1063_1_5016629 crossref_primary_10_1021_jp210138s crossref_primary_10_1021_acs_jpclett_3c00391 crossref_primary_10_1103_PhysRevLett_125_047401 crossref_primary_10_1002_ange_201612183 crossref_primary_10_1116_6_0001401 crossref_primary_10_1021_jp406577v crossref_primary_10_1364_OL_43_002038 crossref_primary_10_1063_1_5066580 crossref_primary_10_1080_0144235X_2011_641263 crossref_primary_10_1364_OL_41_002394 crossref_primary_10_1021_jp408877a crossref_primary_10_1063_5_0179871 crossref_primary_10_1364_OL_40_004879 crossref_primary_10_1021_jz3014437 crossref_primary_10_1021_jp200757x crossref_primary_10_1039_C7CP03115G crossref_primary_10_1021_acs_jpcc_3c07096 crossref_primary_10_1021_jp404846r crossref_primary_10_1063_1_3675629 crossref_primary_10_1016_j_susc_2014_03_017 crossref_primary_10_1063_5_0221401 crossref_primary_10_1063_1_4818996 crossref_primary_10_1364_OL_43_004747 crossref_primary_10_1021_acs_analchem_4c02397 crossref_primary_10_1021_acs_chemrev_6b00437 crossref_primary_10_1021_jp200915z crossref_primary_10_1063_5_0056050 crossref_primary_10_1021_acs_jpcc_7b05256 crossref_primary_10_1021_jp404547g crossref_primary_10_1021_acs_jpcc_7b09776 crossref_primary_10_1177_00037028221141729 crossref_primary_10_1364_OE_27_028564 crossref_primary_10_1063_1_5061817 crossref_primary_10_1021_jp408048a crossref_primary_10_1063_1_5084971 crossref_primary_10_1364_OE_481760 crossref_primary_10_1364_OL_403339 crossref_primary_10_1021_jp311986m crossref_primary_10_1364_OL_41_000874 crossref_primary_10_1021_jp3067298 crossref_primary_10_1063_5_0229332 crossref_primary_10_1021_jp2069368 crossref_primary_10_1021_jz3014776 crossref_primary_10_1063_1674_0068_29_cjcp1601001 crossref_primary_10_1021_la5036932 crossref_primary_10_1038_nature10173 crossref_primary_10_1021_la301332e crossref_primary_10_1364_OE_21_021685 crossref_primary_10_1021_acs_jpclett_9b01487 crossref_primary_10_1021_la402144g crossref_primary_10_1002_anie_201612183 |
Cites_doi | 10.1021/cr040377d 10.1021/jp046564x 10.1021/la803113h 10.1063/1.2841023 10.1021/la800138x 10.1021/jp051632g 10.1021/ja8011676 10.1063/1.459868 10.1016/S0926-860X(02)00023-6 10.1021/jp069062n 10.1364/OL.21.001448 10.1021/cr0006876 10.1016/j.jsb.2009.03.006 10.1021/ar9000197 10.1063/1.1873652 10.1002/pi.2201 10.1126/science.1131536 10.1063/1.479251 10.1016/S0009-2614(01)00990-3 10.1103/PhysRevLett.66.1489 10.1103/PhysRevLett.88.145501 10.1021/cr9502211 10.1146/annurev.physchem.53.091801.115126 10.1016/S0009-2614(03)00085-X 10.1021/ja076708w 10.1063/1.2375093 10.1021/la900168p 10.1103/PhysRevB.59.12632 10.1103/PhysRevLett.98.098302 10.1063/1.463884 10.1021/jp075391j 10.1063/1.1473653 10.1021/jp066896x 10.1021/jp0690547 10.1021/jp062595b 10.1364/OL.23.001594 10.1063/1.2238865 10.1021/la061476k 10.2116/analsci.17.1325 10.1111/j.1751-1097.2006.tb09807.x |
ContentType | Journal Article |
Copyright | 2010 American Institute of Physics |
Copyright_xml | – notice: 2010 American Institute of Physics |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1063/1.3432776 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
EndPage | 234503-9 |
ExternalDocumentID | 20572717 10_1063_1_3432776 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: NSF grantid: CHE-0449720 |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 6TJ 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 MVM N9A NPSNA O-B P0- P2P RIP RNS ROL RQS TN5 TWZ UPT UQL WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS ADXHL BDMKI CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c338t-bf8b9464f0bcf958a4ca2d8ceefff2f77df5efb1103e9b2341c9ab7be96d395d3 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Fri Jul 11 12:12:09 EDT 2025 Mon Jul 21 05:55:53 EDT 2025 Tue Jul 01 00:44:06 EDT 2025 Thu Apr 24 23:10:36 EDT 2025 Fri Jun 21 00:17:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-bf8b9464f0bcf958a4ca2d8ceefff2f77df5efb1103e9b2341c9ab7be96d395d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20572717 |
PQID | 733305718 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_733305718 pubmed_primary_20572717 crossref_primary_10_1063_1_3432776 crossref_citationtrail_10_1063_1_3432776 scitation_primary_10_1063_1_3432776Temporal_effects_on |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-06-21 |
PublicationDateYYYYMMDD | 2010-06-21 |
PublicationDate_xml | – month: 06 year: 2010 text: 2010-06-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2010 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Ma, G.; Allen, H. 2006; 22 Cimatu, K.; Baldelli, S. 2008; 130 Hommel, E.; Ma, G.; Allen, H. 2001; 17 Even, M.; Wang, J.; Chen, Z. 2008; 24 Ishibashi, T.; Onishi, H. 2001; 346 Guyot-Sionnest, P. 1991; 66 Roke, S.; Kleyn, A.; Bonn, M. 2003; 370 Zhuang, X.; Miranda, P.; Kim, D.; Shen, Y. 1999; 59 Richmond, G. 2002; 102 Shen, Y.; Ostroverkhov, V. 2006; 106 Yatawara, A.; Tiruchinapally, G.; Bordenyuk, A.; Andreana, P.; Benderskii, A. 2009; 25 Ma, G.; Allen, H. 2006; 82 Gautam, K.; Dhinojwala, A. 2002; 88 Yamaguchi, S.; Tahara, T. 2006; 125 Jayathilake, H.; Zhu, M.; Rosenblatt, C.; Bordenyuk, A.; Weeraman, C.; Benderskii, A. 2006; 125 Eisenthal, K. 1996; 96 Ye, S.; Nguyen, K.; Clair, S.; Chen, Z. 2009; 168 Sekiguchi, K.; Yamaguchi, S.; Tahara, T. 2008; 128 Bordenyuk, A.; Benderskii, A. 2005; 122 Chen, P.; Westerberg, S.; Kung, K.; Zhu, J.; Grunes, J.; Somorjai, G. 2002; 229 Richter, L.; Petralli-Mallow, T.; Stephenson, J. 1998; 23 Liu, J.; Conboy, J. 2007; 111 Smits, M.; Ghosh, A.; Sterrer, M.; Muller, M.; Bonn, M. 2007; 98 Voges, A.; Al-Abadleh, H.; Musorrariti, M.; Bertin, P.; Nguyen, S.; Geiger, F. 2004; 108 Voss, L.; Hadad, C.; Allen, H. 2006; 110 van der Ham, E.; Vrehen, Q.; Eliel, E. 1996; 21 Bordenyuk, A.; Jayathilake, H.; Benderskii, A. 2005; 109 Carter, J.; Wang, Z.; Dlott, D. 2009; 42 Lagutchev, A.; Hambir, S.; Dlott, D. 2007; 111 Stiopkin, I.; Jayathilake, H.; Bordenyuk, A.; Benderskii, A. 2008; 130 McGuire, J.; Shen, Y. 2006; 313 Chen, Z.; Shen, Y.; Somorjai, G. 2002; 53 Xu, Q.; Ma, Y.; Stiopkin, I.; Fleming, G. 2002; 116 Chen, Z. 2007; 56 Harris, A.; Rothberg, L. 1991; 94 Bordenyuk, A.; Weeraman, C.; Yatawara, A.; Jayathilake, H.; Stiopkin, I.; Liu, Y.; Benderskii, A. 2007; 111 Owrutsky, J.; Culver, J.; Li, M.; Kim, Y.; Sarisky, M.; Yeganeh, M.; Yodh, A.; Hochstrasser, R. 1992; 97 Jayathilake, H.; Driscoll, J.; Bordenyuk, A.; Wu, L.; da Rocha, S.; Verani, C.; Benderskii, A. 2009; 25 Can, S.; Mago, D.; Esenturk, O.; Walker, R. 2007; 111 Star, D.; Kikteva, T.; Leach, G. 1999; 111 (2023061914102016600_c31) 2007; 111 (2023061914102016600_c20) 2004; 108 (2023061914102016600_c10) 2006; 82 (2023061914102016600_c35) 1995 (2023061914102016600_c18) 2009; 25 (2023061914102016600_c3) 2006; 106 (2023061914102016600_c29) 2009; 42 (2023061914102016600_c34) 2007; 111 (2023061914102016600_c6) 2007; 111 (2023061914102016600_c19) 2006; 110 (2023061914102016600_c26) 2008; 128 (2023061914102016600_c28) 2001; 17 (2023061914102016600_c33) 1996 (2023061914102016600_c43) 1999 (2023061914102016600_c5) 2006; 313 (2023061914102016600_c9) 2006; 22 (2023061914102016600_c38) 1991; 66 (2023061914102016600_c12) 2002; 53 (2023061914102016600_c8) 2008; 24 (2023061914102016600_c13) 2002; 88 (2023061914102016600_c42) 1991; 94 (2023061914102016600_c11) 2002; 229 (2023061914102016600_c15) 2007; 56 (2023061914102016600_c30) 2006; 125 (2023061914102016600_c14) 2006; 125 (2023061914102016600_c40) 1992; 97 (2023061914102016600_c39) 1999; 111 (2023061914102016600_c2) 2002; 102 (2023061914102016600_c41) 2001; 346 (2023061914102016600_c22) 1996; 21 (2023061914102016600_c7) 2009; 168 (2023061914102016600_c17) 2009; 25 (2023061914102016600_c21) 2008; 130 (2023061914102016600_c1) 1996; 96 (2023061914102016600_c23) 1998; 23 (2023061914102016600_c16) 2007; 111 (2023061914102016600_c25) 2007; 98 (2023061914102016600_c32) 2008; 130 (2023061914102016600_c37) 1999; 59 (2023061914102016600_c4) 2005; 122 (2023061914102016600_c44) 2002; 116 (2023061914102016600_c27) 2005; 109 (2023061914102016600_c36) 1984 (2023061914102016600_c24) 2003; 370 |
References_xml | – volume: 106 start-page: 1140 year: 2006 publication-title: Chem. Rev. (Washington, D.C.) doi: 10.1021/cr040377d – volume: 108 start-page: 18675 year: 2004 publication-title: J. Phys. Chem. B doi: 10.1021/jp046564x – volume: 25 start-page: 1901 year: 2009 publication-title: Langmuir doi: 10.1021/la803113h – volume: 128 start-page: 114715 year: 2008 publication-title: J. Chem. Phys. doi: 10.1063/1.2841023 – volume: 24 start-page: 5795 year: 2008 publication-title: Langmuir doi: 10.1021/la800138x – volume: 109 start-page: 15941 year: 2005 publication-title: J. Phys. Chem. B doi: 10.1021/jp051632g – volume: 130 start-page: 8030 year: 2008 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8011676 – volume: 94 start-page: 2449 year: 1991 publication-title: J. Chem. Phys. doi: 10.1063/1.459868 – volume: 229 start-page: 147 year: 2002 publication-title: Appl. Catal., A doi: 10.1016/S0926-860X(02)00023-6 – volume: 111 start-page: 8925 year: 2007 publication-title: J. Phys. Chem. C doi: 10.1021/jp069062n – volume: 21 start-page: 1448 year: 1996 publication-title: Opt. Lett. doi: 10.1364/OL.21.001448 – volume: 102 start-page: 2693 year: 2002 publication-title: Chem. Rev. (Washington, D.C.) doi: 10.1021/cr0006876 – volume: 168 start-page: 61 year: 2009 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2009.03.006 – volume: 42 start-page: 1343 year: 2009 publication-title: Acc. Chem. Res. doi: 10.1021/ar9000197 – volume: 122 start-page: 134713 year: 2005 publication-title: J. Chem. Phys. doi: 10.1063/1.1873652 – volume: 56 start-page: 577 year: 2007 publication-title: Polym. Int. doi: 10.1002/pi.2201 – volume: 313 start-page: 1945 year: 2006 publication-title: Science doi: 10.1126/science.1131536 – volume: 111 start-page: 14 year: 1999 publication-title: J. Chem. Phys. doi: 10.1063/1.479251 – volume: 346 start-page: 413 year: 2001 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(01)00990-3 – volume: 66 start-page: 1489 year: 1991 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.66.1489 – volume: 88 start-page: 145501 year: 2002 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.145501 – volume: 96 start-page: 1343 year: 1996 publication-title: Chem. Rev. (Washington, D.C.) doi: 10.1021/cr9502211 – volume: 53 start-page: 437 year: 2002 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.53.091801.115126 – volume: 370 start-page: 227 year: 2003 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(03)00085-X – volume: 130 start-page: 2271 year: 2008 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja076708w – volume: 125 start-page: 194711 year: 2006 publication-title: J. Chem. Phys. doi: 10.1063/1.2375093 – volume: 82 start-page: 1517 year: 2006 publication-title: Photochem. Photobiol. – volume: 25 start-page: 6880 year: 2009 publication-title: Langmuir doi: 10.1021/la900168p – volume: 59 start-page: 12632 year: 1999 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.12632 – volume: 98 year: 2007 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.098302 – volume: 97 start-page: 4421 year: 1992 publication-title: J. Chem. Phys. doi: 10.1063/1.463884 – volume: 111 start-page: 13645 year: 2007 publication-title: J. Phys. Chem. C doi: 10.1021/jp075391j – volume: 116 start-page: 9333 year: 2002 publication-title: J. Chem. Phys. doi: 10.1063/1.1473653 – volume: 111 start-page: 8739 year: 2007 publication-title: J. Phys. Chem. C doi: 10.1021/jp066896x – volume: 111 start-page: 8988 year: 2007 publication-title: J. Phys. Chem. C doi: 10.1021/jp0690547 – volume: 110 start-page: 19487 year: 2006 publication-title: J. Phys. Chem. B doi: 10.1021/jp062595b – volume: 23 start-page: 1594 year: 1998 publication-title: Opt. Lett. doi: 10.1364/OL.23.001594 – volume: 125 start-page: 064706 year: 2006 publication-title: J. Chem. Phys. doi: 10.1063/1.2238865 – volume: 22 start-page: 11267 year: 2006 publication-title: Langmuir doi: 10.1021/la061476k – volume: 17 start-page: 1325 year: 2001 publication-title: Anal. Sci. doi: 10.2116/analsci.17.1325 – year: 1984 ident: 2023061914102016600_c36 – volume: 94 start-page: 2449 year: 1991 ident: 2023061914102016600_c42 publication-title: J. Chem. Phys. doi: 10.1063/1.459868 – volume: 102 start-page: 2693 year: 2002 ident: 2023061914102016600_c2 publication-title: Chem. Rev. (Washington, D.C.) doi: 10.1021/cr0006876 – volume: 23 start-page: 1594 year: 1998 ident: 2023061914102016600_c23 publication-title: Opt. Lett. doi: 10.1364/OL.23.001594 – volume: 97 start-page: 4421 year: 1992 ident: 2023061914102016600_c40 publication-title: J. Chem. Phys. doi: 10.1063/1.463884 – volume: 346 start-page: 413 year: 2001 ident: 2023061914102016600_c41 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(01)00990-3 – volume: 24 start-page: 5795 year: 2008 ident: 2023061914102016600_c8 publication-title: Langmuir doi: 10.1021/la800138x – volume: 59 start-page: 12632 year: 1999 ident: 2023061914102016600_c37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.12632 – volume: 42 start-page: 1343 year: 2009 ident: 2023061914102016600_c29 publication-title: Acc. Chem. Res. doi: 10.1021/ar9000197 – volume: 111 start-page: 8925 year: 2007 ident: 2023061914102016600_c31 publication-title: J. Phys. Chem. C doi: 10.1021/jp069062n – volume: 98 year: 2007 ident: 2023061914102016600_c25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.098302 – volume: 125 start-page: 194711 year: 2006 ident: 2023061914102016600_c30 publication-title: J. Chem. Phys. doi: 10.1063/1.2375093 – volume: 106 start-page: 1140 year: 2006 ident: 2023061914102016600_c3 publication-title: Chem. Rev. (Washington, D.C.) doi: 10.1021/cr040377d – volume: 130 start-page: 8030 year: 2008 ident: 2023061914102016600_c21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8011676 – volume: 130 start-page: 2271 year: 2008 ident: 2023061914102016600_c32 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja076708w – volume: 53 start-page: 437 year: 2002 ident: 2023061914102016600_c12 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.53.091801.115126 – volume: 17 start-page: 1325 year: 2001 ident: 2023061914102016600_c28 publication-title: Anal. Sci. doi: 10.2116/analsci.17.1325 – volume: 125 start-page: 064706 year: 2006 ident: 2023061914102016600_c14 publication-title: J. Chem. Phys. doi: 10.1063/1.2238865 – volume: 370 start-page: 227 year: 2003 ident: 2023061914102016600_c24 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(03)00085-X – volume: 109 start-page: 15941 year: 2005 ident: 2023061914102016600_c27 publication-title: J. Phys. Chem. B doi: 10.1021/jp051632g – volume-title: Principles of Nonlinear Optical Spectroscopy year: 1995 ident: 2023061914102016600_c35 – volume: 116 start-page: 9333 year: 2002 ident: 2023061914102016600_c44 publication-title: J. Chem. Phys. doi: 10.1063/1.1473653 – volume: 111 start-page: 8988 year: 2007 ident: 2023061914102016600_c6 publication-title: J. Phys. Chem. C doi: 10.1021/jp0690547 – volume: 128 start-page: 114715 year: 2008 ident: 2023061914102016600_c26 publication-title: J. Chem. Phys. doi: 10.1063/1.2841023 – volume: 168 start-page: 61 year: 2009 ident: 2023061914102016600_c7 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2009.03.006 – volume: 21 start-page: 1448 year: 1996 ident: 2023061914102016600_c22 publication-title: Opt. Lett. doi: 10.1364/OL.21.001448 – volume: 111 start-page: 13645 year: 2007 ident: 2023061914102016600_c34 publication-title: J. Phys. Chem. C doi: 10.1021/jp075391j – volume: 66 start-page: 1489 year: 1991 ident: 2023061914102016600_c38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.66.1489 – volume: 96 start-page: 1343 year: 1996 ident: 2023061914102016600_c1 publication-title: Chem. Rev. (Washington, D.C.) doi: 10.1021/cr9502211 – volume-title: Principles of Optics year: 1999 ident: 2023061914102016600_c43 – volume: 111 start-page: 14 year: 1999 ident: 2023061914102016600_c39 publication-title: J. Chem. Phys. doi: 10.1063/1.479251 – volume: 25 start-page: 6880 year: 2009 ident: 2023061914102016600_c18 publication-title: Langmuir doi: 10.1021/la900168p – volume: 111 start-page: 8739 year: 2007 ident: 2023061914102016600_c16 publication-title: J. Phys. Chem. C doi: 10.1021/jp066896x – volume: 22 start-page: 11267 year: 2006 ident: 2023061914102016600_c9 publication-title: Langmuir doi: 10.1021/la061476k – volume: 229 start-page: 147 year: 2002 ident: 2023061914102016600_c11 publication-title: Appl. Catal., A doi: 10.1016/S0926-860X(02)00023-6 – volume: 122 start-page: 134713 year: 2005 ident: 2023061914102016600_c4 publication-title: J. Chem. Phys. doi: 10.1063/1.1873652 – volume: 108 start-page: 18675 year: 2004 ident: 2023061914102016600_c20 publication-title: J. Phys. Chem. B doi: 10.1021/jp046564x – volume: 313 start-page: 1945 year: 2006 ident: 2023061914102016600_c5 publication-title: Science doi: 10.1126/science.1131536 – volume: 88 start-page: 145501 year: 2002 ident: 2023061914102016600_c13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.145501 – volume: 56 start-page: 577 year: 2007 ident: 2023061914102016600_c15 publication-title: Polym. Int. doi: 10.1002/pi.2201 – volume-title: Ultrashort Laser Pulse Phenomena year: 1996 ident: 2023061914102016600_c33 – volume: 110 start-page: 19487 year: 2006 ident: 2023061914102016600_c19 publication-title: J. Phys. Chem. B doi: 10.1021/jp062595b – volume: 82 start-page: 1517 year: 2006 ident: 2023061914102016600_c10 publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.2006.tb09807.x – volume: 25 start-page: 1901 year: 2009 ident: 2023061914102016600_c17 publication-title: Langmuir doi: 10.1021/la803113h |
SSID | ssj0001724 |
Score | 2.260534 |
Snippet | Sum frequency generation (SFG) is a surface-selective spectroscopy that provides a wealth of molecular-level information on the structure and dynamics at... |
SourceID | proquest pubmed crossref scitation |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 234503 |
SubjectTerms | Air Alkynes - chemistry Models, Theoretical Propionates - chemistry Spectrum Analysis - methods Spectrum Analysis - statistics & numerical data Time Factors Water - chemistry |
Title | Temporal effects on spectroscopic line shapes, resolution, and sensitivity of the broad-band sum frequency generation |
URI | http://dx.doi.org/10.1063/1.3432776 https://www.ncbi.nlm.nih.gov/pubmed/20572717 https://www.proquest.com/docview/733305718 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9owGLVYq6nbw7R1N3aTNe1hEg2DOLGTx4q1YhXtJhU03iI7tldWSBCQh-5v7A_vM3YSUJl2eYmQMXbkc7CP7e-C0LuUd7hUMfO4FtwLUiq9KCDSS0NKJDfemMx4I59f0P4oOBuH40bj54bVUrES7fTHTr-S_0EVygBX4yX7D8hWjUIBfAZ84QkIw_PvMLZxpaa1VUbWWrtOmhCV-XySttYicnnF53Y2gL21e6HSanNpDNhdBglnLiAWOZeeWH9bzFp6Ya2tb0y2ZbWokfxeE21D1qZlBAJ7ZlJJ9kv43dzl_vr0LV_U1rVn_MaYQE65tRPqT2awN6gtkb8q6NSd0_au-Gw-ua4PEdaJ8JbXk8mWs45r2x1mmHt46lkPaTf_dqLYY9RmEG2rHWXlpF2fihaly3I5B5MgXMdNuL08gB4zJxVt403L2I4Q3Befk9PRYJAMT8bDO2gfKpm7__3jj-eDy2qBB80XWL8N-15lwCpKPlRNb8ucW3uX--gAFI41ttjQM8OH6IFDDB9bVj1CDZUdooNemf_vEN39YgF8jIqSZ9jxDOcZ3uIZNjzDlmdHuGbZEQY88AbHcK4xcAzXHMPAMVxxDNcce4JGpyfDXt9z6Tq8lJBo5QkdiTigge6IVMdhxIOU-zICFaa19jVjUodKC9CbRMUCUOqmMRdMqJhKEoeSPEV7WZ6p5wgTX3LJojQKqQ44aOgu7yif6lAGWnakaKL35egm5TCalCrTZG1TQUnSTRwQTfS2qjq3AVx2VcIlRAmMsrkz45nKi2XCCIEVEQRcEz2z0FWt-FDusy5rIlph-fsuSqQSh1SSZy_-3OtLdK_-m7xCe6tFoV6DCl6JN46VvwASgbsL |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+effects+on+spectroscopic+line+shapes%2C+resolution%2C+and+sensitivity+of+the+broad-band+sum+frequency+generation&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Stiopkin%2C+Igor+V&rft.au=Jayathilake%2C+Himali+D&rft.au=Weeraman%2C+Champika&rft.au=Benderskii%2C+Alexander+V&rft.date=2010-06-21&rft.issn=1089-7690&rft.eissn=1089-7690&rft.volume=132&rft.issue=23&rft.spage=234503&rft_id=info:doi/10.1063%2F1.3432776&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |