Multivariate measurement error models based on Student-t distribution under censored responses
Measurement error models constitute a wide class of models that include linear and nonlinear regression models. They are very useful to model many real-life phenomena, particularly in the medical and biological areas. The great advantage of these models is that, in some sense, they can be represente...
Saved in:
Published in | Statistics (Berlin, DDR) Vol. 52; no. 6; pp. 1395 - 1416 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
02.11.2018
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Measurement error models constitute a wide class of models that include linear and nonlinear regression models. They are very useful to model many real-life phenomena, particularly in the medical and biological areas. The great advantage of these models is that, in some sense, they can be represented as mixed effects models, allowing us to implement well-known techniques, like the EM-algorithm for the parameter estimation. In this paper, we consider a class of multivariate measurement error models where the observed response and/or covariate are not fully observed, i.e., the observations are subject to certain threshold values below or above which the measurements are not quantifiable. Consequently, these observations are considered censored. We assume a Student-t distribution for the unobserved true values of the mismeasured covariate and the error term of the model, providing a robust alternative for parameter estimation. Our approach relies on a likelihood-based inference using an EM-type algorithm. The proposed method is illustrated through some simulation studies and the analysis of an AIDS clinical trial dataset. |
---|---|
AbstractList | Measurement error models constitute a wide class of models that include linear and nonlinear regression models. They are very useful to model many real-life phenomena, particularly in the medical and biological areas. The great advantage of these models is that, in some sense, they can be represented as mixed effects models, allowing us to implement well-known techniques, like the EM-algorithm for the parameter estimation. In this paper, we consider a class of multivariate measurement error models where the observed response and/or covariate are not fully observed, i.e., the observations are subject to certain threshold values below or above which the measurements are not quantifiable. Consequently, these observations are considered censored. We assume a Student-t distribution for the unobserved true values of the mismeasured covariate and the error term of the model, providing a robust alternative for parameter estimation. Our approach relies on a likelihood-based inference using an EM-type algorithm. The proposed method is illustrated through some simulation studies and the analysis of an AIDS clinical trial dataset. |
Author | Castro, Luis M. Lachos, Víctor H. Cabral, Celso R. B. Matos, Larissa A. |
Author_xml | – sequence: 1 givenname: Larissa A. surname: Matos fullname: Matos, Larissa A. email: larissa.amatos@gmail.com organization: Department of Statistics, IMECC, Campinas State University – sequence: 2 givenname: Luis M. surname: Castro fullname: Castro, Luis M. organization: Department of Statistics, Pontificia Universidad Católica de Chile – sequence: 3 givenname: Celso R. B. surname: Cabral fullname: Cabral, Celso R. B. organization: Department of Statistics, Universidade Federal do Amazonas – sequence: 4 givenname: Víctor H. surname: Lachos fullname: Lachos, Víctor H. organization: Department of Statistics, University of Connecticut |
BookMark | eNqFkEtL5UAQhZvBgbk6_oSBgOtc-5GbdJiNIr5AcTG6tal0V6Al6b5WdxT__SRc3bjQVUHVd05xzj7bCzEgY38EXwuu-TGXSgmt9VpyoddiIxtdiR9sJbhsy6oVfI-tFqZcoF9sP6UnznmtVLNij7fTkP0LkIeMxYiQJsIRQy6QKFIxRodDKjpI6IoYin95cvO1zIXzKZPvpuzn9RQcUmExpEgzSJi2MSRMv9nPHoaEh-_zgD1cnN-fXZU3d5fXZ6c3pVVK57Kz0DqouWpsjV1rUXDRO9u4OQKilZUDdGDregO6qnoJnW6bTndOWGURlTpgRzvfLcXnCVM2T3GiML80UshKy6Zp6pn6u6MsxZQIe2N9hiVAJvCDEdwshZqPQs1SqHkvdFZvPqm35Eegt291JzudD32kEV4jDc5keBsi9QTB-mTU1xb_AR8kkfs |
CitedBy_id | crossref_primary_10_1016_j_spl_2020_108729 crossref_primary_10_1016_j_jmva_2024_105357 crossref_primary_10_1002_sta4_503 crossref_primary_10_1007_s13571_023_00316_6 crossref_primary_10_1080_00949655_2021_1969397 |
Cites_doi | 10.1002/sim.2384 10.1007/s11222-009-9128-9 10.1002/bimj.201200001 10.1214/12-BA706 10.1002/sim.5799 10.1201/9781420010138 10.1093/biostatistics/4.2.297 10.1080/03610929708831974 10.1111/j.2517-6161.1982.tb01203.x 10.1016/j.jkss.2012.03.001 10.1016/j.jspi.2011.06.006 10.1080/01621459.1989.10478852 10.1017/CBO9780511550683 10.1111/1467-9868.00194 10.1093/infdis/175.2.247 10.1080/02331880903236926 10.1198/10618600152628059 10.1201/9781420066586 10.1111/j.2517-6161.1977.tb01600.x 10.1007/s13253-014-0195-9 10.1007/s12561-012-9074-5 10.1002/9780470316665 10.1111/j.2517-6161.1989.tb01754.x 10.1016/j.jmva.2013.10.017 10.1111/j.1541-0420.2011.01719.x 10.1016/j.jspi.2004.06.023 10.1214/10-AOAS446 10.2307/2528684 10.1007/s11222-014-9502-0 10.1002/bimj.200310138 10.1214/09-EJS503 10.1093/biomet/80.2.267 10.1515/1557-4679.1426 |
ContentType | Journal Article |
Copyright | 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 2018 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION |
DOI | 10.1080/02331888.2018.1527841 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1029-4910 |
EndPage | 1416 |
ExternalDocumentID | 10_1080_02331888_2018_1527841 1527841 |
Genre | Article |
GrantInformation_xml | – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 305054/2011-2 funderid: 10.13039/501100003593 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) grantid: 2011/22063-9, 2015/05385-3, 2018/05013-7, 2015/20922-5 funderid: 10.13039/501100001807 – fundername: Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) grantid: 1170258 funderid: 10.13039/501100002850 – fundername: CNPq grantid: 447964/2014-3 |
GroupedDBID | .7F .QJ 0BK 0R~ 123 29Q 30N 4.4 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EJD EMK EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~9 H~P IPNFZ J.P KYCEM M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION TASJS |
ID | FETCH-LOGICAL-c338t-bca9da6037c6eb9ce101fdc7d102eec24daedac665a844f2ab897b8bd1c3cee33 |
ISSN | 0233-1888 |
IngestDate | Wed Aug 13 09:09:00 EDT 2025 Tue Jul 01 04:13:43 EDT 2025 Thu Apr 24 22:56:14 EDT 2025 Wed Dec 25 09:09:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-bca9da6037c6eb9ce101fdc7d102eec24daedac665a844f2ab897b8bd1c3cee33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2124827776 |
PQPubID | 216163 |
PageCount | 22 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_02331888_2018_1527841 crossref_primary_10_1080_02331888_2018_1527841 proquest_journals_2124827776 crossref_citationtrail_10_1080_02331888_2018_1527841 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-02 |
PublicationDateYYYYMMDD | 2018-11-02 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Statistics (Berlin, DDR) |
PublicationYear | 2018 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0010 CIT0032 Matos LA (CIT0019) 2013; 23 CIT0031 CIT0012 Cheng CL (CIT0015) 1999 CIT0011 CIT0033 Ash RB. (CIT0030) 2000 Wu L. (CIT0001) 2010 CIT0014 CIT0036 CIT0013 CIT0016 CIT0038 CIT0037 CIT0018 CIT0017 CIT0039 Louis TA. (CIT0035) 1982; 44 CIT0040 CIT0021 CIT0020 CIT0022 Vidal I (CIT0023) 2010; 1 Dempster A (CIT0027) 1977; 39 Meilijson I. (CIT0034) 1989; 51 CIT0003 Buonaccorsi J (CIT0009) 2000; 10 CIT0025 CIT0002 CIT0024 CIT0005 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 |
References_xml | – ident: CIT0031 doi: 10.1002/sim.2384 – ident: CIT0033 doi: 10.1007/s11222-009-9128-9 – ident: CIT0036 doi: 10.1002/bimj.201200001 – ident: CIT0005 doi: 10.1214/12-BA706 – volume-title: Mixed effects models for complex data year: 2010 ident: CIT0001 – ident: CIT0007 doi: 10.1002/sim.5799 – ident: CIT0016 doi: 10.1201/9781420010138 – ident: CIT0003 doi: 10.1093/biostatistics/4.2.297 – ident: CIT0029 doi: 10.1080/03610929708831974 – volume: 44 start-page: 226 year: 1982 ident: CIT0035 publication-title: J Roy Statist Soc Ser B doi: 10.1111/j.2517-6161.1982.tb01203.x – ident: CIT0038 doi: 10.1016/j.jkss.2012.03.001 – ident: CIT0020 doi: 10.1016/j.jspi.2011.06.006 – ident: CIT0028 doi: 10.1080/01621459.1989.10478852 – ident: CIT0018 doi: 10.1017/CBO9780511550683 – ident: CIT0025 doi: 10.1111/1467-9868.00194 – ident: CIT0037 doi: 10.1093/infdis/175.2.247 – ident: CIT0040 doi: 10.1080/02331880903236926 – ident: CIT0024 doi: 10.1198/10618600152628059 – volume-title: Statistical regression with measurement error year: 1999 ident: CIT0015 – ident: CIT0017 doi: 10.1201/9781420066586 – volume: 39 start-page: 1 year: 1977 ident: CIT0027 publication-title: J Roy Statist Soc Ser B doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: CIT0002 doi: 10.1007/s13253-014-0195-9 – ident: CIT0012 doi: 10.1007/s12561-012-9074-5 – ident: CIT0014 doi: 10.1002/9780470316665 – volume: 51 start-page: 127 year: 1989 ident: CIT0034 publication-title: J Roy Stat Soc Ser B doi: 10.1111/j.2517-6161.1989.tb01754.x – volume: 1 start-page: 17 issue: 2 year: 2010 ident: CIT0023 publication-title: Chil J Stat – ident: CIT0013 doi: 10.1016/j.jmva.2013.10.017 – ident: CIT0004 doi: 10.1111/j.1541-0420.2011.01719.x – ident: CIT0039 doi: 10.1016/j.jspi.2004.06.023 – ident: CIT0011 doi: 10.1214/10-AOAS446 – volume: 10 start-page: 885 year: 2000 ident: CIT0009 publication-title: Stat Sin – ident: CIT0021 doi: 10.2307/2528684 – volume-title: Probability and measure theory year: 2000 ident: CIT0030 – ident: CIT0032 doi: 10.1007/s11222-014-9502-0 – ident: CIT0022 doi: 10.1002/bimj.200310138 – volume: 23 start-page: 1323 year: 2013 ident: CIT0019 publication-title: Stat Sin – ident: CIT0010 doi: 10.1214/09-EJS503 – ident: CIT0026 doi: 10.1093/biomet/80.2.267 – ident: CIT0006 doi: 10.1515/1557-4679.1426 |
SSID | ssj0006337 |
Score | 2.1419992 |
Snippet | Measurement error models constitute a wide class of models that include linear and nonlinear regression models. They are very useful to model many real-life... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1395 |
SubjectTerms | Algorithms Censored responses Computer simulation Economic models EM algorithm Error analysis measurement error models Medical phenomena Parameter estimation Parameter robustness Regression analysis Regression models Student-t distribution |
Title | Multivariate measurement error models based on Student-t distribution under censored responses |
URI | https://www.tandfonline.com/doi/abs/10.1080/02331888.2018.1527841 https://www.proquest.com/docview/2124827776 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKdhkHBAPEYCAfuEWpmjjNx3FqN1WoHdJIRcWByLEdCQlalKQc-Dv4g3nPdhJPqxhwiapEjiO_X59_z--LkLdhkk0qEcY-VoH0I54EPui8iS9jxYE_T8Egw3zn1XW8WEfvNtPNaPTLiVrat-VY_DyYV_I_UoV7IFfMkv0HyfYvhRvwG-QLV5AwXP9Kxjp79gdYu0AYvW_DaZ-n6npXmy43jYcblUSnwAdTx9Jv0S3Td7rSnXBrT4A9u8Ng9NpEzdrYQstbkZPaks5ASU2NLK2u5jfOWcIKLPjGZFuD7mj4cFA64zChPpVd7r80nuP6AGtdn0LP4FN33o3TBRr7uJhe7dqbP0f3gs2lsMcUQarz9QajNr_TMcQJW0JlFzLmB6lp8TdWRhljaE6U2bBXq62noYNKV_UClZ0e3BNsECVMgO_HaL4Uuz6hw3XYBDvH__X74mq9XBb55SZ_QI5DMD5Aex5fLOafPvY7fMxMLdbum7vMMKzZfmiaW5znVkXcOwxA05r8MXlk7RF6YcD1hIzU9pQ8XPXFfJtTcjII_yn57GKOOpijGnPUYI5qzNHdlvaYoy7mqMYc7TBHe8w9I-ury3y28G2PDl8wlrZ-KXgmeTxhiYhVmQkFKr6SIpEgPKVEGEmuJBdxPOVpFFUhL9MsKdNSBoIBP2PsOTna7rbqBaEJS9OSVaXKUhkpKTmoCuzUqSo-4UnEz0jUrWIhbAF77KPytQi6Ord28Qtc_MIu_hkZ98O-mwou9w3IXBEVrYZuZVBbsHvGnnfyLKyiaApgh1hsN0nil39-_IqcDH-dc3LU1nv1GjhvW76xEPwNGFKoaw |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB619AAcoIVW5dk99LrB8Tq79hEhUIAkl4LEqat9-QJNKsdw6K_vjNcOAYQ4cLZnZa_n8c165huAn6kqktKlkhMLJM-M6nP0eQn3MhjEzwNMyKjfeTyRw-vs4mZws9QLQ2WVlEOXkSii8dVk3HQY3ZXEHWGcQVXMm8qsnCb40M-zj_BpUEhFui6SycIbSxF5M1GEk0zXxfPaMk_i0xP20hfeuglBZ5vguoePlSe3vfva9ty_Z7yO73u7z7DRIlR2HFXqC3wI0y1YHy_oXedbsEYQNTI8b8Pvpof3AXNuhK3sz-OZIwtVNatYM2tnzihcejabsl-RTZPXzBNpbztvi1EzW8UcZtWzCm-sYu1umH-F67PTq5Mhb6c2cIfpbs2tM4U3MhHKyWALF9DoS--URygTgkszb4I3TsqBybOsTI3NC2Vz6_tOYMQW4husTGfT8B2YEnluRWlDkfsseG9QeWh2YyhNYlRmdiDrvpV2LaU5Tda40_2O-bTdS017qdu93IHeQuxv5PR4S6BYVgRdN4cpZZx8osUbsvud1ujWPcw14gWiX1VK7r5j6R-wOrwaj_TofHK5B2t0qemSTPdhpa7uwwHCpdoeNvbwH3-VCBU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BkapwaCGlojTAHrhu6tjOrn2sSqPySIREK_XU1b58gcaR7fbQX8-M1w4UhHLI2Z6VvZ7ner5vAD7EMo8KGwtOLJA81XLC0edF3AmvMX-eYkFGeOf5QlxcpZ-vp303Yd21VVINXQSiiNZXk3GvXNF3xJ1gmEFNzNrGrIwG-NC_s6fwTBDQklAc0WLtjEUSaDNRhJNMD-L53zKPwtMj8tJ_nHUbgWb7YPpnD40nP8Z3jRnbh79oHbd6uRew1-Wn7DQo1Et44pdDeD5fk7vWQxhQghr4nQ_gpkXw3mPFjUkru_194sh8VZUVayft1IyCpWPlkn0PXJq8YY4oe7tpW4ygbBWzWFOXFd5Yhc5dX7-Cq9n55dkF72Y2cIvFbsON1bnTIkqkFd7k1qPJF85Kh4mM9zZOnfZOWyGmOkvTItYmy6XJjJvYBON1khzCzrJc-tfAZJJlJimMzzOXeuc0qg5NbvSFjrRM9RGk_adStiM0p7kaP9Wk5z3t9lLRXqpuL49gvBZbBUaPTQL5n3qgmvYopQhzT1SyQXbUK43qnEOtMFsg8lUpxZstln4Pu98-ztTXT4svxzCgKy1EMh7BTlPd-beYKzXmXWsNvwA1iAa5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+measurement+error+models+based+on+Student-t+distribution+under+censored+responses&rft.jtitle=Statistics+%28Berlin%2C+DDR%29&rft.au=Matos%2C+Larissa+A&rft.au=Castro%2C+Luis+M&rft.au=Cabral%2C+Celso+R+B&rft.au=Lachos%2C+V%C3%ADctor+H&rft.date=2018-11-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0233-1888&rft.eissn=1029-4910&rft.volume=52&rft.issue=6&rft.spage=1395&rft_id=info:doi/10.1080%2F02331888.2018.1527841&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1888&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1888&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1888&client=summon |