Multivariate measurement error models based on Student-t distribution under censored responses

Measurement error models constitute a wide class of models that include linear and nonlinear regression models. They are very useful to model many real-life phenomena, particularly in the medical and biological areas. The great advantage of these models is that, in some sense, they can be represente...

Full description

Saved in:
Bibliographic Details
Published inStatistics (Berlin, DDR) Vol. 52; no. 6; pp. 1395 - 1416
Main Authors Matos, Larissa A., Castro, Luis M., Cabral, Celso R. B., Lachos, Víctor H.
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 02.11.2018
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Measurement error models constitute a wide class of models that include linear and nonlinear regression models. They are very useful to model many real-life phenomena, particularly in the medical and biological areas. The great advantage of these models is that, in some sense, they can be represented as mixed effects models, allowing us to implement well-known techniques, like the EM-algorithm for the parameter estimation. In this paper, we consider a class of multivariate measurement error models where the observed response and/or covariate are not fully observed, i.e., the observations are subject to certain threshold values below or above which the measurements are not quantifiable. Consequently, these observations are considered censored. We assume a Student-t distribution for the unobserved true values of the mismeasured covariate and the error term of the model, providing a robust alternative for parameter estimation. Our approach relies on a likelihood-based inference using an EM-type algorithm. The proposed method is illustrated through some simulation studies and the analysis of an AIDS clinical trial dataset.
AbstractList Measurement error models constitute a wide class of models that include linear and nonlinear regression models. They are very useful to model many real-life phenomena, particularly in the medical and biological areas. The great advantage of these models is that, in some sense, they can be represented as mixed effects models, allowing us to implement well-known techniques, like the EM-algorithm for the parameter estimation. In this paper, we consider a class of multivariate measurement error models where the observed response and/or covariate are not fully observed, i.e., the observations are subject to certain threshold values below or above which the measurements are not quantifiable. Consequently, these observations are considered censored. We assume a Student-t distribution for the unobserved true values of the mismeasured covariate and the error term of the model, providing a robust alternative for parameter estimation. Our approach relies on a likelihood-based inference using an EM-type algorithm. The proposed method is illustrated through some simulation studies and the analysis of an AIDS clinical trial dataset.
Author Castro, Luis M.
Lachos, Víctor H.
Cabral, Celso R. B.
Matos, Larissa A.
Author_xml – sequence: 1
  givenname: Larissa A.
  surname: Matos
  fullname: Matos, Larissa A.
  email: larissa.amatos@gmail.com
  organization: Department of Statistics, IMECC, Campinas State University
– sequence: 2
  givenname: Luis M.
  surname: Castro
  fullname: Castro, Luis M.
  organization: Department of Statistics, Pontificia Universidad Católica de Chile
– sequence: 3
  givenname: Celso R. B.
  surname: Cabral
  fullname: Cabral, Celso R. B.
  organization: Department of Statistics, Universidade Federal do Amazonas
– sequence: 4
  givenname: Víctor H.
  surname: Lachos
  fullname: Lachos, Víctor H.
  organization: Department of Statistics, University of Connecticut
BookMark eNqFkEtL5UAQhZvBgbk6_oSBgOtc-5GbdJiNIr5AcTG6tal0V6Al6b5WdxT__SRc3bjQVUHVd05xzj7bCzEgY38EXwuu-TGXSgmt9VpyoddiIxtdiR9sJbhsy6oVfI-tFqZcoF9sP6UnznmtVLNij7fTkP0LkIeMxYiQJsIRQy6QKFIxRodDKjpI6IoYin95cvO1zIXzKZPvpuzn9RQcUmExpEgzSJi2MSRMv9nPHoaEh-_zgD1cnN-fXZU3d5fXZ6c3pVVK57Kz0DqouWpsjV1rUXDRO9u4OQKilZUDdGDregO6qnoJnW6bTndOWGURlTpgRzvfLcXnCVM2T3GiML80UshKy6Zp6pn6u6MsxZQIe2N9hiVAJvCDEdwshZqPQs1SqHkvdFZvPqm35Eegt291JzudD32kEV4jDc5keBsi9QTB-mTU1xb_AR8kkfs
CitedBy_id crossref_primary_10_1016_j_spl_2020_108729
crossref_primary_10_1016_j_jmva_2024_105357
crossref_primary_10_1002_sta4_503
crossref_primary_10_1007_s13571_023_00316_6
crossref_primary_10_1080_00949655_2021_1969397
Cites_doi 10.1002/sim.2384
10.1007/s11222-009-9128-9
10.1002/bimj.201200001
10.1214/12-BA706
10.1002/sim.5799
10.1201/9781420010138
10.1093/biostatistics/4.2.297
10.1080/03610929708831974
10.1111/j.2517-6161.1982.tb01203.x
10.1016/j.jkss.2012.03.001
10.1016/j.jspi.2011.06.006
10.1080/01621459.1989.10478852
10.1017/CBO9780511550683
10.1111/1467-9868.00194
10.1093/infdis/175.2.247
10.1080/02331880903236926
10.1198/10618600152628059
10.1201/9781420066586
10.1111/j.2517-6161.1977.tb01600.x
10.1007/s13253-014-0195-9
10.1007/s12561-012-9074-5
10.1002/9780470316665
10.1111/j.2517-6161.1989.tb01754.x
10.1016/j.jmva.2013.10.017
10.1111/j.1541-0420.2011.01719.x
10.1016/j.jspi.2004.06.023
10.1214/10-AOAS446
10.2307/2528684
10.1007/s11222-014-9502-0
10.1002/bimj.200310138
10.1214/09-EJS503
10.1093/biomet/80.2.267
10.1515/1557-4679.1426
ContentType Journal Article
Copyright 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
2018 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
– notice: 2018 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
DOI 10.1080/02331888.2018.1527841
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1029-4910
EndPage 1416
ExternalDocumentID 10_1080_02331888_2018_1527841
1527841
Genre Article
GrantInformation_xml – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 305054/2011-2
  funderid: 10.13039/501100003593
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  grantid: 2011/22063-9, 2015/05385-3, 2018/05013-7, 2015/20922-5
  funderid: 10.13039/501100001807
– fundername: Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT)
  grantid: 1170258
  funderid: 10.13039/501100002850
– fundername: CNPq
  grantid: 447964/2014-3
GroupedDBID .7F
.QJ
0BK
0R~
123
29Q
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EJD
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~9
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
TASJS
ID FETCH-LOGICAL-c338t-bca9da6037c6eb9ce101fdc7d102eec24daedac665a844f2ab897b8bd1c3cee33
ISSN 0233-1888
IngestDate Wed Aug 13 09:09:00 EDT 2025
Tue Jul 01 04:13:43 EDT 2025
Thu Apr 24 22:56:14 EDT 2025
Wed Dec 25 09:09:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-bca9da6037c6eb9ce101fdc7d102eec24daedac665a844f2ab897b8bd1c3cee33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2124827776
PQPubID 216163
PageCount 22
ParticipantIDs informaworld_taylorfrancis_310_1080_02331888_2018_1527841
crossref_primary_10_1080_02331888_2018_1527841
proquest_journals_2124827776
crossref_citationtrail_10_1080_02331888_2018_1527841
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-02
PublicationDateYYYYMMDD 2018-11-02
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-02
  day: 02
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Statistics (Berlin, DDR)
PublicationYear 2018
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0032
Matos LA (CIT0019) 2013; 23
CIT0031
CIT0012
Cheng CL (CIT0015) 1999
CIT0011
CIT0033
Ash RB. (CIT0030) 2000
Wu L. (CIT0001) 2010
CIT0014
CIT0036
CIT0013
CIT0016
CIT0038
CIT0037
CIT0018
CIT0017
CIT0039
Louis TA. (CIT0035) 1982; 44
CIT0040
CIT0021
CIT0020
CIT0022
Vidal I (CIT0023) 2010; 1
Dempster A (CIT0027) 1977; 39
Meilijson I. (CIT0034) 1989; 51
CIT0003
Buonaccorsi J (CIT0009) 2000; 10
CIT0025
CIT0002
CIT0024
CIT0005
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
References_xml – ident: CIT0031
  doi: 10.1002/sim.2384
– ident: CIT0033
  doi: 10.1007/s11222-009-9128-9
– ident: CIT0036
  doi: 10.1002/bimj.201200001
– ident: CIT0005
  doi: 10.1214/12-BA706
– volume-title: Mixed effects models for complex data
  year: 2010
  ident: CIT0001
– ident: CIT0007
  doi: 10.1002/sim.5799
– ident: CIT0016
  doi: 10.1201/9781420010138
– ident: CIT0003
  doi: 10.1093/biostatistics/4.2.297
– ident: CIT0029
  doi: 10.1080/03610929708831974
– volume: 44
  start-page: 226
  year: 1982
  ident: CIT0035
  publication-title: J Roy Statist Soc Ser B
  doi: 10.1111/j.2517-6161.1982.tb01203.x
– ident: CIT0038
  doi: 10.1016/j.jkss.2012.03.001
– ident: CIT0020
  doi: 10.1016/j.jspi.2011.06.006
– ident: CIT0028
  doi: 10.1080/01621459.1989.10478852
– ident: CIT0018
  doi: 10.1017/CBO9780511550683
– ident: CIT0025
  doi: 10.1111/1467-9868.00194
– ident: CIT0037
  doi: 10.1093/infdis/175.2.247
– ident: CIT0040
  doi: 10.1080/02331880903236926
– ident: CIT0024
  doi: 10.1198/10618600152628059
– volume-title: Statistical regression with measurement error
  year: 1999
  ident: CIT0015
– ident: CIT0017
  doi: 10.1201/9781420066586
– volume: 39
  start-page: 1
  year: 1977
  ident: CIT0027
  publication-title: J Roy Statist Soc Ser B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: CIT0002
  doi: 10.1007/s13253-014-0195-9
– ident: CIT0012
  doi: 10.1007/s12561-012-9074-5
– ident: CIT0014
  doi: 10.1002/9780470316665
– volume: 51
  start-page: 127
  year: 1989
  ident: CIT0034
  publication-title: J Roy Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1989.tb01754.x
– volume: 1
  start-page: 17
  issue: 2
  year: 2010
  ident: CIT0023
  publication-title: Chil J Stat
– ident: CIT0013
  doi: 10.1016/j.jmva.2013.10.017
– ident: CIT0004
  doi: 10.1111/j.1541-0420.2011.01719.x
– ident: CIT0039
  doi: 10.1016/j.jspi.2004.06.023
– ident: CIT0011
  doi: 10.1214/10-AOAS446
– volume: 10
  start-page: 885
  year: 2000
  ident: CIT0009
  publication-title: Stat Sin
– ident: CIT0021
  doi: 10.2307/2528684
– volume-title: Probability and measure theory
  year: 2000
  ident: CIT0030
– ident: CIT0032
  doi: 10.1007/s11222-014-9502-0
– ident: CIT0022
  doi: 10.1002/bimj.200310138
– volume: 23
  start-page: 1323
  year: 2013
  ident: CIT0019
  publication-title: Stat Sin
– ident: CIT0010
  doi: 10.1214/09-EJS503
– ident: CIT0026
  doi: 10.1093/biomet/80.2.267
– ident: CIT0006
  doi: 10.1515/1557-4679.1426
SSID ssj0006337
Score 2.1419992
Snippet Measurement error models constitute a wide class of models that include linear and nonlinear regression models. They are very useful to model many real-life...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1395
SubjectTerms Algorithms
Censored responses
Computer simulation
Economic models
EM algorithm
Error analysis
measurement error models
Medical phenomena
Parameter estimation
Parameter robustness
Regression analysis
Regression models
Student-t distribution
Title Multivariate measurement error models based on Student-t distribution under censored responses
URI https://www.tandfonline.com/doi/abs/10.1080/02331888.2018.1527841
https://www.proquest.com/docview/2124827776
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKdhkHBAPEYCAfuEWpmjjNx3FqN1WoHdJIRcWByLEdCQlalKQc-Dv4g3nPdhJPqxhwiapEjiO_X59_z--LkLdhkk0qEcY-VoH0I54EPui8iS9jxYE_T8Egw3zn1XW8WEfvNtPNaPTLiVrat-VY_DyYV_I_UoV7IFfMkv0HyfYvhRvwG-QLV5AwXP9Kxjp79gdYu0AYvW_DaZ-n6npXmy43jYcblUSnwAdTx9Jv0S3Td7rSnXBrT4A9u8Ng9NpEzdrYQstbkZPaks5ASU2NLK2u5jfOWcIKLPjGZFuD7mj4cFA64zChPpVd7r80nuP6AGtdn0LP4FN33o3TBRr7uJhe7dqbP0f3gs2lsMcUQarz9QajNr_TMcQJW0JlFzLmB6lp8TdWRhljaE6U2bBXq62noYNKV_UClZ0e3BNsECVMgO_HaL4Uuz6hw3XYBDvH__X74mq9XBb55SZ_QI5DMD5Aex5fLOafPvY7fMxMLdbum7vMMKzZfmiaW5znVkXcOwxA05r8MXlk7RF6YcD1hIzU9pQ8XPXFfJtTcjII_yn57GKOOpijGnPUYI5qzNHdlvaYoy7mqMYc7TBHe8w9I-ury3y28G2PDl8wlrZ-KXgmeTxhiYhVmQkFKr6SIpEgPKVEGEmuJBdxPOVpFFUhL9MsKdNSBoIBP2PsOTna7rbqBaEJS9OSVaXKUhkpKTmoCuzUqSo-4UnEz0jUrWIhbAF77KPytQi6Ord28Qtc_MIu_hkZ98O-mwou9w3IXBEVrYZuZVBbsHvGnnfyLKyiaApgh1hsN0nil39-_IqcDH-dc3LU1nv1GjhvW76xEPwNGFKoaw
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB619AAcoIVW5dk99LrB8Tq79hEhUIAkl4LEqat9-QJNKsdw6K_vjNcOAYQ4cLZnZa_n8c165huAn6kqktKlkhMLJM-M6nP0eQn3MhjEzwNMyKjfeTyRw-vs4mZws9QLQ2WVlEOXkSii8dVk3HQY3ZXEHWGcQVXMm8qsnCb40M-zj_BpUEhFui6SycIbSxF5M1GEk0zXxfPaMk_i0xP20hfeuglBZ5vguoePlSe3vfva9ty_Z7yO73u7z7DRIlR2HFXqC3wI0y1YHy_oXedbsEYQNTI8b8Pvpof3AXNuhK3sz-OZIwtVNatYM2tnzihcejabsl-RTZPXzBNpbztvi1EzW8UcZtWzCm-sYu1umH-F67PTq5Mhb6c2cIfpbs2tM4U3MhHKyWALF9DoS--URygTgkszb4I3TsqBybOsTI3NC2Vz6_tOYMQW4husTGfT8B2YEnluRWlDkfsseG9QeWh2YyhNYlRmdiDrvpV2LaU5Tda40_2O-bTdS017qdu93IHeQuxv5PR4S6BYVgRdN4cpZZx8osUbsvud1ujWPcw14gWiX1VK7r5j6R-wOrwaj_TofHK5B2t0qemSTPdhpa7uwwHCpdoeNvbwH3-VCBU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BkapwaCGlojTAHrhu6tjOrn2sSqPySIREK_XU1b58gcaR7fbQX8-M1w4UhHLI2Z6VvZ7ner5vAD7EMo8KGwtOLJA81XLC0edF3AmvMX-eYkFGeOf5QlxcpZ-vp303Yd21VVINXQSiiNZXk3GvXNF3xJ1gmEFNzNrGrIwG-NC_s6fwTBDQklAc0WLtjEUSaDNRhJNMD-L53zKPwtMj8tJ_nHUbgWb7YPpnD40nP8Z3jRnbh79oHbd6uRew1-Wn7DQo1Et44pdDeD5fk7vWQxhQghr4nQ_gpkXw3mPFjUkru_194sh8VZUVayft1IyCpWPlkn0PXJq8YY4oe7tpW4ygbBWzWFOXFd5Yhc5dX7-Cq9n55dkF72Y2cIvFbsON1bnTIkqkFd7k1qPJF85Kh4mM9zZOnfZOWyGmOkvTItYmy6XJjJvYBON1khzCzrJc-tfAZJJlJimMzzOXeuc0qg5NbvSFjrRM9RGk_adStiM0p7kaP9Wk5z3t9lLRXqpuL49gvBZbBUaPTQL5n3qgmvYopQhzT1SyQXbUK43qnEOtMFsg8lUpxZstln4Pu98-ztTXT4svxzCgKy1EMh7BTlPd-beYKzXmXWsNvwA1iAa5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+measurement+error+models+based+on+Student-t+distribution+under+censored+responses&rft.jtitle=Statistics+%28Berlin%2C+DDR%29&rft.au=Matos%2C+Larissa+A&rft.au=Castro%2C+Luis+M&rft.au=Cabral%2C+Celso+R+B&rft.au=Lachos%2C+V%C3%ADctor+H&rft.date=2018-11-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0233-1888&rft.eissn=1029-4910&rft.volume=52&rft.issue=6&rft.spage=1395&rft_id=info:doi/10.1080%2F02331888.2018.1527841&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1888&client=summon