Deep Neural Network for Emotion Recognition based on Meta-transfer Learning
In recent years, many EEG-based emotion recognition methods have been proposed, which can achieve good performance on single-subject data. However, when the models are applied to cross-subject scenarios, due to the existence of subject differences, these models are often difficult to accurately iden...
Saved in:
Published in | IEEE access Vol. 10; p. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, many EEG-based emotion recognition methods have been proposed, which can achieve good performance on single-subject data. However, when the models are applied to cross-subject scenarios, due to the existence of subject differences, these models are often difficult to accurately identify the emotions of new subjects, which is not conducive to the practical application of the models. Many transfer learning methods have been applied to cross-subject EEG emotion recognition tasks to reduce the effect of subject differences. Most of them need to be trained with source data of many subjects and calibrated with more data of target subjects to obtain better classification performance on target subjects. However, this process relies on a large amount of training data to guarantee the final effect. This paper proposed a meta-transfer learning model for emotion recognition. The model can reduce the amount of data required by the meta-learning optimization algorithm. Even if only a small amount of data is used for training, it can achieve good performance, thereby reducing the cost of EEG acquisition and labeling, and it is also conducive to the model for new subjects. Finally, this paper conducts cross-subject emotion recognition experiments based on two public datasets SEED and SEED-IV. The experimental results show that the performance of the proposed meta-transfer learning method is better than the baseline method, and can rapid adaptation to unknown subjects while reducing training data. |
---|---|
AbstractList | In recent years, many EEG-based emotion recognition methods have been proposed, which can achieve good performance on single-subject data. However, when the models are applied to cross-subject scenarios, due to the existence of subject differences, these models are often difficult to accurately identify the emotions of new subjects, which is not conducive to the practical application of the models. Many transfer learning methods have been applied to cross-subject EEG emotion recognition tasks to reduce the effect of subject differences. Most of them need to be trained with source data of many subjects and calibrated with more data of target subjects to obtain better classification performance on target subjects. However, this process relies on a large amount of training data to guarantee the final effect. This paper proposed a meta-transfer learning model for emotion recognition. The model can reduce the amount of data required by the meta-learning optimization algorithm. Even if only a small amount of data is used for training, it can achieve good performance, thereby reducing the cost of EEG acquisition and labeling, and it is also conducive to the model for new subjects. Finally, this paper conducts cross-subject emotion recognition experiments based on two public datasets SEED and SEED-IV. The experimental results show that the performance of the proposed meta-transfer learning method is better than the baseline method, and can rapid adaptation to unknown subjects while reducing training data. |
Author | Jiang, Guosong Wang, Qingdong Tang, Hengyao |
Author_xml | – sequence: 1 givenname: Hengyao surname: Tang fullname: Tang, Hengyao organization: Computer School of Huanggang Normal University, Hubei – sequence: 2 givenname: Guosong surname: Jiang fullname: Jiang, Guosong organization: Computer School of Huanggang Normal University, Hubei – sequence: 3 givenname: Qingdong surname: Wang fullname: Wang, Qingdong organization: Computer School of Huanggang Normal University, Hubei |
BookMark | eNqFUctOwzAQtBBIPL-ASyTOKX4kjn1EpTxEAYnC2drE68qlxMVJhfh7XFIhxAVfdrTamVnvHJLdNrRIyCmjI8aoPr8Yjyez2YhTzkeCaVFJtUMOOJM6F6WQu7_wPjnpugVNT6VWWR2Qu0vEVfaA6wjLVPqPEF8zF2I2eQu9D232hE2Yt_4b19ChzRK4xx7yPkLbOYzZFCG2vp0fkz0Hyw5PtvWIvFxNnsc3-fTx-nZ8Mc0bIVSf15ozrmXJNVNSKSGdcJKWrrYKrYRagSpqqZWjVfpMkTatnXUI0oqqkZUVR-R20LUBFmYV_RvETxPAm-9GiHMDsffNEk2hbW15TTlwWyhJwVbJ0ZYFLwBFKZPW2aC1iuF9jV1vFmEd27S-4VJLroqyqtKUGKaaGLouovtxZdRsQjBDCGYTgtmGkFj6D6vxPWwumU7nl_9wTweuR8QfN61ESo2JL9Y9lW4 |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_bspc_2022_104314 crossref_primary_10_1016_j_engappai_2025_110004 crossref_primary_10_1109_ACCESS_2024_3478805 crossref_primary_10_1109_ACCESS_2024_3452781 crossref_primary_10_1016_j_knosys_2025_113238 crossref_primary_10_1109_ACCESS_2024_3384303 crossref_primary_10_1007_s42979_024_03166_9 crossref_primary_10_1109_TAFFC_2023_3336531 crossref_primary_10_1016_j_inffus_2023_102129 crossref_primary_10_1016_j_knosys_2024_112599 crossref_primary_10_1016_j_compbiomed_2023_107450 |
Cites_doi | 10.3390/s21082852 10.1109/TCDS.2020.2999337 10.1016/j.compbiomed.2016.10.019 10.1145/3394171.3413724 10.1109/IJCNN48605.2020.9207420 10.1109/BIBM49941.2020.9313459 10.1007/978-3-642-38803-3_6 10.1109/ICBME.2013.6782224 10.1023/A:1018628609742 10.1080/21680566.2021.2024102 10.1007/978-3-319-70096-0_73 10.1109/TAFFC.2019.2937768 10.7551/mitpress/12832.003.0015 10.1109/TAMD.2015.2431497 10.1145/3343031.3350871 10.1007/s12559-017-9533-x 10.1109/ACCESS.2021.3135658 10.1103/PhysRevE.101.062113 10.1109/ICME.2014.6890166 10.1109/TAFFC.2019.2916015 10.3390/s20102809 10.14569/IJACSA.2017.080955 10.1109/TCDS.2017.2685338 10.1109/TBME.2010.2048568 10.1145/3474085.3475583 10.1109/ICDM50108.2020.00136 10.1109/TCDS.2020.2976112 10.1109/TNSRE.2021.3110665 10.1016/j.bspc.2016.11.013 10.1016/b978-1-4832-1446-7.50035-2 10.3390/s17051014 10.1145/1970392.1970395 10.1109/NER.2013.6695876 10.1007/s11432-021-3380-1 10.1364/JOSA.55.000247 10.1023/A:1010933404324 10.14569/ijacsa.2017.081046 10.3390/s22082988 10.1109/taffc.2020.3025777 10.1109/JSEN.2022.3140383 10.1007/978-3-642-24955-6_87 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2022.3193768 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_49dbd2b02a2d4860ad7883d5424ae356 10_1109_ACCESS_2022_3193768 9839571 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Hubei Province grantid: 2019CFC868 funderid: 10.13039/501100003819 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c338t-b9212965291868836f3f605fbd8ed6ab8a84b698f079374816bfdfea6d37c67d3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:31:51 EDT 2025 Mon Jun 30 06:52:54 EDT 2025 Tue Jul 01 04:21:19 EDT 2025 Thu Apr 24 22:56:47 EDT 2025 Wed Aug 27 02:25:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c338t-b9212965291868836f3f605fbd8ed6ab8a84b698f079374816bfdfea6d37c67d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0178-1171 |
OpenAccessLink | https://doaj.org/article/49dbd2b02a2d4860ad7883d5424ae356 |
PQID | 2696284577 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_49dbd2b02a2d4860ad7883d5424ae356 crossref_primary_10_1109_ACCESS_2022_3193768 proquest_journals_2696284577 ieee_primary_9839571 crossref_citationtrail_10_1109_ACCESS_2022_3193768 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 Finn (ref37) ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 Suykens (ref38) 1999; 9 Breiman (ref39) 2001; 45 ref24 ref23 ref26 ref25 ref20 ref42 Nichol (ref7) 2018 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref5 doi: 10.3390/s21082852 – ident: ref31 doi: 10.1109/TCDS.2020.2999337 – ident: ref35 doi: 10.1016/j.compbiomed.2016.10.019 – ident: ref2 doi: 10.1145/3394171.3413724 – ident: ref41 doi: 10.1109/IJCNN48605.2020.9207420 – ident: ref13 doi: 10.1109/BIBM49941.2020.9313459 – ident: ref20 doi: 10.1007/978-3-642-38803-3_6 – start-page: 1126 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref37 article-title: Model-agnostic meta-learning for fast adaptation of deep networks – ident: ref15 doi: 10.1109/ICBME.2013.6782224 – year: 2018 ident: ref7 article-title: On first-order meta-learning algorithms publication-title: arXiv:1803.02999 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: ref38 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. doi: 10.1023/A:1018628609742 – ident: ref9 doi: 10.1080/21680566.2021.2024102 – ident: ref26 doi: 10.1007/978-3-319-70096-0_73 – ident: ref32 doi: 10.1109/TAFFC.2019.2937768 – ident: ref17 doi: 10.7551/mitpress/12832.003.0015 – ident: ref22 doi: 10.1109/TAMD.2015.2431497 – ident: ref28 doi: 10.1145/3343031.3350871 – ident: ref29 doi: 10.1007/s12559-017-9533-x – ident: ref4 doi: 10.1109/ACCESS.2021.3135658 – ident: ref8 doi: 10.1103/PhysRevE.101.062113 – ident: ref24 doi: 10.1109/ICME.2014.6890166 – ident: ref30 doi: 10.1109/TAFFC.2019.2916015 – ident: ref6 doi: 10.3390/s20102809 – ident: ref23 doi: 10.14569/IJACSA.2017.080955 – ident: ref25 doi: 10.1109/TCDS.2017.2685338 – ident: ref21 doi: 10.1109/TBME.2010.2048568 – ident: ref1 doi: 10.1145/3474085.3475583 – ident: ref10 doi: 10.1109/ICDM50108.2020.00136 – ident: ref42 doi: 10.1109/TCDS.2020.2976112 – ident: ref12 doi: 10.1109/TNSRE.2021.3110665 – ident: ref36 doi: 10.1016/j.bspc.2016.11.013 – ident: ref40 doi: 10.1016/b978-1-4832-1446-7.50035-2 – ident: ref33 doi: 10.3390/s17051014 – ident: ref34 doi: 10.1145/1970392.1970395 – ident: ref18 doi: 10.1109/NER.2013.6695876 – ident: ref11 doi: 10.1007/s11432-021-3380-1 – ident: ref19 doi: 10.1364/JOSA.55.000247 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: ref39 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: ref27 doi: 10.14569/ijacsa.2017.081046 – ident: ref3 doi: 10.3390/s22082988 – ident: ref43 doi: 10.1109/taffc.2020.3025777 – ident: ref14 doi: 10.1109/JSEN.2022.3140383 – ident: ref16 doi: 10.1007/978-3-642-24955-6_87 |
SSID | ssj0000816957 |
Score | 2.2992935 |
Snippet | In recent years, many EEG-based emotion recognition methods have been proposed, which can achieve good performance on single-subject data. However, when the... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Adaptation models Algorithms Artificial neural networks Brain modeling EEG signal Electroencephalography Emotion recognition Emotions Feature extraction Machine learning meta-learning Optimization Physiology Task analysis Training transfer learning |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8QgEJ6oJz34Nq6v9ODR7ra0UDjqqjEaPRhN9kaggAfN7mbtXvz1DpRtjBrjjbRAKN_QmYHhG4BTXeZCKMbTKvNXcoxyqahymmpHuWXMVbkJbJ8P7Oa5vB3R0RKcdXdhrLUh-Mz2fTGc5ZtJPfdbZQPB_akS-jrL6Li1d7W6_RSfQAJfRmKhPBOD8-EQvwFdQELQM0U17OlUvyifwNEfk6r8-BMH9XK9AfeLgbVRJa_9eaP79cc3zsb_jnwT1qOdmZy3grEFS3a8DWtf2Ad34O7S2mni2Tmw4kMbDp6gDZtctal9ksdFcBGWvbYzCRbubaPSJpi7dpZEetaXXXi-vnoa3qQxt0Jao1PapFqgzhKMEuH58nnBXOHQs3HacGuY0lzxUjPBXSDQK3FytTPOKmaKqmaVKfZgZTwZ231ITK2ooiU2LxB5U3ObK1plaAhgd9h3D8hi0mUdicd9_os3GRyQTMgWKemRkhGpHpx1jaYt78bf1S88ml1VT5odHiAKMq5BWQqjDdEZUcT43FvKoBgVhpakVLagrAc7HrmukwhaD44WsiHjAn-XhAmGmp1W1cHvrQ5h1Q-w3a05gpVmNrfHaL80-iQI7ifT5usV priority: 102 providerName: IEEE |
Title | Deep Neural Network for Emotion Recognition based on Meta-transfer Learning |
URI | https://ieeexplore.ieee.org/document/9839571 https://www.proquest.com/docview/2696284577 https://doaj.org/article/49dbd2b02a2d4860ad7883d5424ae356 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx5EnWJ1jh48Wtamza_jNh1DcQdxsFtImsSLzDHr_-9Lmo2CoBdvoSSvzZfXfHlt8j2EbnVVCKEoz1juj-QY5TLBCpJpR7il1LHCBLXPBZ0vq8cVWXVSffk9Ya08cAvcqBJGG6xzrLDxCZOUgaCtNKTClbIlCWLbwHmdYCrMwbyggrAoM1TkYjSeTqFHEBBiDHEqkLIXV-1QUVDsjylWfszLgWxmJ-g4rhLTcft0p-jArs_QUUc7sI-e7q3dpF5bAyou2s3cKaxA04c2MU_6stsaBOUJcJVJofBsG5UFfnJ2m0Zx1bdztJw9vE7nWcyMkNUQUjaZFsA4ghIsvNo9L6krHcQlThtuDVWaK15pKrgL8ncVgKGdcVZRU7KaMlNeoN76Y20vUWpqRRSpoHkJ42ZqbgtFWA40DubAdoLwDiRZR9lwn73iXYbwIReyRVZ6ZGVENkF3-0abVjXj9-oTj_6-qpe8DhfAEWR0BPmXIySo78dub0Rw_wuySNBgN5Yyvp6fElNBgZcJY1f_cetrdOi7036ZGaBes_2yN7BWafQwuOUwHCv8BtJl4eU |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOFAOhUJRF7Y0hx7Jkjjx6whbVstj94BA4mbZsd1DqwXR7IVfz9jxRqhUFTfLsS3bn52ZscffAHw3dSmlZiLnRXiSY7XPJS9pbjwVjjHPSxvZPudseldf3tP7NTju38I456LzmRuFZLzLtw_NMhyVnUgRbpXQ1tlAuU_L7rVWf6ISQkjg50QtVBby5HQ8xlGgEUgI2qYoiAOh6ivxE1n6U1iVN__iKGAm2zBbda3zK_k1WrZm1Dz_xdr43r7vwMekaWan3dL4BGtusQtbr_gH9-Dqh3OPWeDnwILzziE8Qy02O--C-2Q3K_ciTAd5ZzNMzFyr8zYqvO4pSwStPz_D3eT8djzNU3SFvEGztM2NRKklGSUyMOaLivnKo23jjRXOMm2EFrVhUvhIoVfj5BpvvdPMVrxh3Fb7sL54WLgvkNlGU01rrF4h9rYRrtSUF6gKYHPY9gDIatJVk6jHQwSM3yqaIIVUHVIqIKUSUgM47is9dswb_y9-FtDsiwba7JiBKKi0C1UtrbHEFEQTG6Jvactx5JbWpNauomwAewG5vpEE2gCGq7Wh0hb_owiTDGU75fzg37W-web0dnatri_mV4fwIXS2O7sZwnr7tHRfUZtpzVFcxC89dO5e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Neural+Network+for+Emotion+Recognition+Based+on+Meta-Transfer+Learning&rft.jtitle=IEEE+access&rft.au=Tang%2C+Hengyao&rft.au=Jiang%2C+Guosong&rft.au=Wang%2C+Qingdong&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=78114&rft.epage=78122&rft_id=info:doi/10.1109%2FACCESS.2022.3193768&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3193768 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |