Deep Neural Network for Emotion Recognition based on Meta-transfer Learning

In recent years, many EEG-based emotion recognition methods have been proposed, which can achieve good performance on single-subject data. However, when the models are applied to cross-subject scenarios, due to the existence of subject differences, these models are often difficult to accurately iden...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; p. 1
Main Authors Tang, Hengyao, Jiang, Guosong, Wang, Qingdong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, many EEG-based emotion recognition methods have been proposed, which can achieve good performance on single-subject data. However, when the models are applied to cross-subject scenarios, due to the existence of subject differences, these models are often difficult to accurately identify the emotions of new subjects, which is not conducive to the practical application of the models. Many transfer learning methods have been applied to cross-subject EEG emotion recognition tasks to reduce the effect of subject differences. Most of them need to be trained with source data of many subjects and calibrated with more data of target subjects to obtain better classification performance on target subjects. However, this process relies on a large amount of training data to guarantee the final effect. This paper proposed a meta-transfer learning model for emotion recognition. The model can reduce the amount of data required by the meta-learning optimization algorithm. Even if only a small amount of data is used for training, it can achieve good performance, thereby reducing the cost of EEG acquisition and labeling, and it is also conducive to the model for new subjects. Finally, this paper conducts cross-subject emotion recognition experiments based on two public datasets SEED and SEED-IV. The experimental results show that the performance of the proposed meta-transfer learning method is better than the baseline method, and can rapid adaptation to unknown subjects while reducing training data.
AbstractList In recent years, many EEG-based emotion recognition methods have been proposed, which can achieve good performance on single-subject data. However, when the models are applied to cross-subject scenarios, due to the existence of subject differences, these models are often difficult to accurately identify the emotions of new subjects, which is not conducive to the practical application of the models. Many transfer learning methods have been applied to cross-subject EEG emotion recognition tasks to reduce the effect of subject differences. Most of them need to be trained with source data of many subjects and calibrated with more data of target subjects to obtain better classification performance on target subjects. However, this process relies on a large amount of training data to guarantee the final effect. This paper proposed a meta-transfer learning model for emotion recognition. The model can reduce the amount of data required by the meta-learning optimization algorithm. Even if only a small amount of data is used for training, it can achieve good performance, thereby reducing the cost of EEG acquisition and labeling, and it is also conducive to the model for new subjects. Finally, this paper conducts cross-subject emotion recognition experiments based on two public datasets SEED and SEED-IV. The experimental results show that the performance of the proposed meta-transfer learning method is better than the baseline method, and can rapid adaptation to unknown subjects while reducing training data.
Author Jiang, Guosong
Wang, Qingdong
Tang, Hengyao
Author_xml – sequence: 1
  givenname: Hengyao
  surname: Tang
  fullname: Tang, Hengyao
  organization: Computer School of Huanggang Normal University, Hubei
– sequence: 2
  givenname: Guosong
  surname: Jiang
  fullname: Jiang, Guosong
  organization: Computer School of Huanggang Normal University, Hubei
– sequence: 3
  givenname: Qingdong
  surname: Wang
  fullname: Wang, Qingdong
  organization: Computer School of Huanggang Normal University, Hubei
BookMark eNqFUctOwzAQtBBIPL-ASyTOKX4kjn1EpTxEAYnC2drE68qlxMVJhfh7XFIhxAVfdrTamVnvHJLdNrRIyCmjI8aoPr8Yjyez2YhTzkeCaVFJtUMOOJM6F6WQu7_wPjnpugVNT6VWWR2Qu0vEVfaA6wjLVPqPEF8zF2I2eQu9D232hE2Yt_4b19ChzRK4xx7yPkLbOYzZFCG2vp0fkz0Hyw5PtvWIvFxNnsc3-fTx-nZ8Mc0bIVSf15ozrmXJNVNSKSGdcJKWrrYKrYRagSpqqZWjVfpMkTatnXUI0oqqkZUVR-R20LUBFmYV_RvETxPAm-9GiHMDsffNEk2hbW15TTlwWyhJwVbJ0ZYFLwBFKZPW2aC1iuF9jV1vFmEd27S-4VJLroqyqtKUGKaaGLouovtxZdRsQjBDCGYTgtmGkFj6D6vxPWwumU7nl_9wTweuR8QfN61ESo2JL9Y9lW4
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_bspc_2022_104314
crossref_primary_10_1016_j_engappai_2025_110004
crossref_primary_10_1109_ACCESS_2024_3478805
crossref_primary_10_1109_ACCESS_2024_3452781
crossref_primary_10_1016_j_knosys_2025_113238
crossref_primary_10_1109_ACCESS_2024_3384303
crossref_primary_10_1007_s42979_024_03166_9
crossref_primary_10_1109_TAFFC_2023_3336531
crossref_primary_10_1016_j_inffus_2023_102129
crossref_primary_10_1016_j_knosys_2024_112599
crossref_primary_10_1016_j_compbiomed_2023_107450
Cites_doi 10.3390/s21082852
10.1109/TCDS.2020.2999337
10.1016/j.compbiomed.2016.10.019
10.1145/3394171.3413724
10.1109/IJCNN48605.2020.9207420
10.1109/BIBM49941.2020.9313459
10.1007/978-3-642-38803-3_6
10.1109/ICBME.2013.6782224
10.1023/A:1018628609742
10.1080/21680566.2021.2024102
10.1007/978-3-319-70096-0_73
10.1109/TAFFC.2019.2937768
10.7551/mitpress/12832.003.0015
10.1109/TAMD.2015.2431497
10.1145/3343031.3350871
10.1007/s12559-017-9533-x
10.1109/ACCESS.2021.3135658
10.1103/PhysRevE.101.062113
10.1109/ICME.2014.6890166
10.1109/TAFFC.2019.2916015
10.3390/s20102809
10.14569/IJACSA.2017.080955
10.1109/TCDS.2017.2685338
10.1109/TBME.2010.2048568
10.1145/3474085.3475583
10.1109/ICDM50108.2020.00136
10.1109/TCDS.2020.2976112
10.1109/TNSRE.2021.3110665
10.1016/j.bspc.2016.11.013
10.1016/b978-1-4832-1446-7.50035-2
10.3390/s17051014
10.1145/1970392.1970395
10.1109/NER.2013.6695876
10.1007/s11432-021-3380-1
10.1364/JOSA.55.000247
10.1023/A:1010933404324
10.14569/ijacsa.2017.081046
10.3390/s22082988
10.1109/taffc.2020.3025777
10.1109/JSEN.2022.3140383
10.1007/978-3-642-24955-6_87
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3193768
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_49dbd2b02a2d4860ad7883d5424ae356
10_1109_ACCESS_2022_3193768
9839571
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Hubei Province
  grantid: 2019CFC868
  funderid: 10.13039/501100003819
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-b9212965291868836f3f605fbd8ed6ab8a84b698f079374816bfdfea6d37c67d3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:31:51 EDT 2025
Mon Jun 30 06:52:54 EDT 2025
Tue Jul 01 04:21:19 EDT 2025
Thu Apr 24 22:56:47 EDT 2025
Wed Aug 27 02:25:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-b9212965291868836f3f605fbd8ed6ab8a84b698f079374816bfdfea6d37c67d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0178-1171
OpenAccessLink https://doaj.org/article/49dbd2b02a2d4860ad7883d5424ae356
PQID 2696284577
PQPubID 4845423
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_49dbd2b02a2d4860ad7883d5424ae356
crossref_primary_10_1109_ACCESS_2022_3193768
proquest_journals_2696284577
ieee_primary_9839571
crossref_citationtrail_10_1109_ACCESS_2022_3193768
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
Finn (ref37)
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Suykens (ref38) 1999; 9
Breiman (ref39) 2001; 45
ref24
ref23
ref26
ref25
ref20
ref42
Nichol (ref7) 2018
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref5
  doi: 10.3390/s21082852
– ident: ref31
  doi: 10.1109/TCDS.2020.2999337
– ident: ref35
  doi: 10.1016/j.compbiomed.2016.10.019
– ident: ref2
  doi: 10.1145/3394171.3413724
– ident: ref41
  doi: 10.1109/IJCNN48605.2020.9207420
– ident: ref13
  doi: 10.1109/BIBM49941.2020.9313459
– ident: ref20
  doi: 10.1007/978-3-642-38803-3_6
– start-page: 1126
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref37
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
– ident: ref15
  doi: 10.1109/ICBME.2013.6782224
– year: 2018
  ident: ref7
  article-title: On first-order meta-learning algorithms
  publication-title: arXiv:1803.02999
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: ref38
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018628609742
– ident: ref9
  doi: 10.1080/21680566.2021.2024102
– ident: ref26
  doi: 10.1007/978-3-319-70096-0_73
– ident: ref32
  doi: 10.1109/TAFFC.2019.2937768
– ident: ref17
  doi: 10.7551/mitpress/12832.003.0015
– ident: ref22
  doi: 10.1109/TAMD.2015.2431497
– ident: ref28
  doi: 10.1145/3343031.3350871
– ident: ref29
  doi: 10.1007/s12559-017-9533-x
– ident: ref4
  doi: 10.1109/ACCESS.2021.3135658
– ident: ref8
  doi: 10.1103/PhysRevE.101.062113
– ident: ref24
  doi: 10.1109/ICME.2014.6890166
– ident: ref30
  doi: 10.1109/TAFFC.2019.2916015
– ident: ref6
  doi: 10.3390/s20102809
– ident: ref23
  doi: 10.14569/IJACSA.2017.080955
– ident: ref25
  doi: 10.1109/TCDS.2017.2685338
– ident: ref21
  doi: 10.1109/TBME.2010.2048568
– ident: ref1
  doi: 10.1145/3474085.3475583
– ident: ref10
  doi: 10.1109/ICDM50108.2020.00136
– ident: ref42
  doi: 10.1109/TCDS.2020.2976112
– ident: ref12
  doi: 10.1109/TNSRE.2021.3110665
– ident: ref36
  doi: 10.1016/j.bspc.2016.11.013
– ident: ref40
  doi: 10.1016/b978-1-4832-1446-7.50035-2
– ident: ref33
  doi: 10.3390/s17051014
– ident: ref34
  doi: 10.1145/1970392.1970395
– ident: ref18
  doi: 10.1109/NER.2013.6695876
– ident: ref11
  doi: 10.1007/s11432-021-3380-1
– ident: ref19
  doi: 10.1364/JOSA.55.000247
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: ref39
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: ref27
  doi: 10.14569/ijacsa.2017.081046
– ident: ref3
  doi: 10.3390/s22082988
– ident: ref43
  doi: 10.1109/taffc.2020.3025777
– ident: ref14
  doi: 10.1109/JSEN.2022.3140383
– ident: ref16
  doi: 10.1007/978-3-642-24955-6_87
SSID ssj0000816957
Score 2.2992935
Snippet In recent years, many EEG-based emotion recognition methods have been proposed, which can achieve good performance on single-subject data. However, when the...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptation models
Algorithms
Artificial neural networks
Brain modeling
EEG signal
Electroencephalography
Emotion recognition
Emotions
Feature extraction
Machine learning
meta-learning
Optimization
Physiology
Task analysis
Training
transfer learning
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8QgEJ6oJz34Nq6v9ODR7ra0UDjqqjEaPRhN9kaggAfN7mbtXvz1DpRtjBrjjbRAKN_QmYHhG4BTXeZCKMbTKvNXcoxyqahymmpHuWXMVbkJbJ8P7Oa5vB3R0RKcdXdhrLUh-Mz2fTGc5ZtJPfdbZQPB_akS-jrL6Li1d7W6_RSfQAJfRmKhPBOD8-EQvwFdQELQM0U17OlUvyifwNEfk6r8-BMH9XK9AfeLgbVRJa_9eaP79cc3zsb_jnwT1qOdmZy3grEFS3a8DWtf2Ad34O7S2mni2Tmw4kMbDp6gDZtctal9ksdFcBGWvbYzCRbubaPSJpi7dpZEetaXXXi-vnoa3qQxt0Jao1PapFqgzhKMEuH58nnBXOHQs3HacGuY0lzxUjPBXSDQK3FytTPOKmaKqmaVKfZgZTwZ231ITK2ooiU2LxB5U3ObK1plaAhgd9h3D8hi0mUdicd9_os3GRyQTMgWKemRkhGpHpx1jaYt78bf1S88ml1VT5odHiAKMq5BWQqjDdEZUcT43FvKoBgVhpakVLagrAc7HrmukwhaD44WsiHjAn-XhAmGmp1W1cHvrQ5h1Q-w3a05gpVmNrfHaL80-iQI7ifT5usV
  priority: 102
  providerName: IEEE
Title Deep Neural Network for Emotion Recognition based on Meta-transfer Learning
URI https://ieeexplore.ieee.org/document/9839571
https://www.proquest.com/docview/2696284577
https://doaj.org/article/49dbd2b02a2d4860ad7883d5424ae356
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx5EnWJ1jh48Wtamza_jNh1DcQdxsFtImsSLzDHr_-9Lmo2CoBdvoSSvzZfXfHlt8j2EbnVVCKEoz1juj-QY5TLBCpJpR7il1LHCBLXPBZ0vq8cVWXVSffk9Ya08cAvcqBJGG6xzrLDxCZOUgaCtNKTClbIlCWLbwHmdYCrMwbyggrAoM1TkYjSeTqFHEBBiDHEqkLIXV-1QUVDsjylWfszLgWxmJ-g4rhLTcft0p-jArs_QUUc7sI-e7q3dpF5bAyou2s3cKaxA04c2MU_6stsaBOUJcJVJofBsG5UFfnJ2m0Zx1bdztJw9vE7nWcyMkNUQUjaZFsA4ghIsvNo9L6krHcQlThtuDVWaK15pKrgL8ncVgKGdcVZRU7KaMlNeoN76Y20vUWpqRRSpoHkJ42ZqbgtFWA40DubAdoLwDiRZR9lwn73iXYbwIReyRVZ6ZGVENkF3-0abVjXj9-oTj_6-qpe8DhfAEWR0BPmXIySo78dub0Rw_wuySNBgN5Yyvp6fElNBgZcJY1f_cetrdOi7036ZGaBes_2yN7BWafQwuOUwHCv8BtJl4eU
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOFAOhUJRF7Y0hx7Jkjjx6whbVstj94BA4mbZsd1DqwXR7IVfz9jxRqhUFTfLsS3bn52ZscffAHw3dSmlZiLnRXiSY7XPJS9pbjwVjjHPSxvZPudseldf3tP7NTju38I456LzmRuFZLzLtw_NMhyVnUgRbpXQ1tlAuU_L7rVWf6ISQkjg50QtVBby5HQ8xlGgEUgI2qYoiAOh6ivxE1n6U1iVN__iKGAm2zBbda3zK_k1WrZm1Dz_xdr43r7vwMekaWan3dL4BGtusQtbr_gH9-Dqh3OPWeDnwILzziE8Qy02O--C-2Q3K_ciTAd5ZzNMzFyr8zYqvO4pSwStPz_D3eT8djzNU3SFvEGztM2NRKklGSUyMOaLivnKo23jjRXOMm2EFrVhUvhIoVfj5BpvvdPMVrxh3Fb7sL54WLgvkNlGU01rrF4h9rYRrtSUF6gKYHPY9gDIatJVk6jHQwSM3yqaIIVUHVIqIKUSUgM47is9dswb_y9-FtDsiwba7JiBKKi0C1UtrbHEFEQTG6Jvactx5JbWpNauomwAewG5vpEE2gCGq7Wh0hb_owiTDGU75fzg37W-web0dnatri_mV4fwIXS2O7sZwnr7tHRfUZtpzVFcxC89dO5e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Neural+Network+for+Emotion+Recognition+Based+on+Meta-Transfer+Learning&rft.jtitle=IEEE+access&rft.au=Tang%2C+Hengyao&rft.au=Jiang%2C+Guosong&rft.au=Wang%2C+Qingdong&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=78114&rft.epage=78122&rft_id=info:doi/10.1109%2FACCESS.2022.3193768&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3193768
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon