A new family of heavy tailed distributions with an application to the heavy tailed insurance loss data
Heavy tailed distributions play very significant role in the study of actuarial and financial risk management data but the probability distributions proposed to model such data are scanty. Actuaries often search for new and appropriate statistical models to address data related to financial risk pro...
Saved in:
Published in | Communications in statistics. Simulation and computation Vol. 51; no. 8; pp. 4372 - 4395 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
03.08.2022
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heavy tailed distributions play very significant role in the study of actuarial and financial risk management data but the probability distributions proposed to model such data are scanty. Actuaries often search for new and appropriate statistical models to address data related to financial risk problems. In this work, we propose a new family of heavy tailed distributions. Some basic properties of this new family of heavy tailed distributions are obtained. A special sub-model of the proposed family, called a new heavy tailed Weibull model is considered in detail. The maximum likelihood estimators of the model parameters are obtained. A Monte Carlo simulation study is carried out to evaluate the performance of these estimators. Furthermore, some actuarial measures such as value at risk and tail value at risk are calculated. A simulation study based on these actuarial measures is done. Finally, an application of the proposed model to a heavy tailed insurance loss data set is presented. |
---|---|
AbstractList | Heavy tailed distributions play very significant role in the study of actuarial and financial risk management data but the probability distributions proposed to model such data are scanty. Actuaries often search for new and appropriate statistical models to address data related to financial risk problems. In this work, we propose a new family of heavy tailed distributions. Some basic properties of this new family of heavy tailed distributions are obtained. A special sub-model of the proposed family, called a new heavy tailed Weibull model is considered in detail. The maximum likelihood estimators of the model parameters are obtained. A Monte Carlo simulation study is carried out to evaluate the performance of these estimators. Furthermore, some actuarial measures such as value at risk and tail value at risk are calculated. A simulation study based on these actuarial measures is done. Finally, an application of the proposed model to a heavy tailed insurance loss data set is presented. |
Author | Mahmoudi, Eisa Ahmad, Zubair Dey, Sanku |
Author_xml | – sequence: 1 givenname: Zubair orcidid: 0000-0003-3782-4081 surname: Ahmad fullname: Ahmad, Zubair organization: Department of Statistics, Yazd University – sequence: 2 givenname: Eisa orcidid: 0000-0001-6109-7342 surname: Mahmoudi fullname: Mahmoudi, Eisa organization: Department of Statistics, Yazd University – sequence: 3 givenname: Sanku orcidid: 0000-0002-6900-8233 surname: Dey fullname: Dey, Sanku organization: Department of Statistics, St. Anthony's College |
BookMark | eNqFkE1rGzEQhkVwILaTnxAQ9LzuSFqvtOTSEJomEOilPYtZrYQV1pIjyTX-992Nk0NyaE8Dw_vMx7MgsxCDJeSawYqBgq8gGgYtUysOfGzJmjVcnJE5Wwte1axmMzKfMtUUuiCLnJ8BQKhazYm7pcEeqMOtH440Orqx-OdIC_rB9rT3uSTf7YuPIdODLxuKgeJuN3iDU5OWSMvGfqR8yPuEwVg6xJxpjwUvybnDIdurt7okv--__7p7qJ5-_ni8u32qjBCqVJ3ses6s4o2wsnWI3CCY1gkwjYV1i23DjUEJtuulFMw2fd0AkwykU53rxJJ8Oc3dpfiyt7no57hPYVypuYSac6G4GlM3p5RJ44HJOm18ef2npPEFzUBPYvW7WD2J1W9iR3r9id4lv8V0_C_37cT54GLa4iGmodcFj0NMbvLlsxb_HvEX_sGSBw |
CitedBy_id | crossref_primary_10_18038_estubtda_1317322 crossref_primary_10_1016_j_aej_2025_02_050 crossref_primary_10_1016_j_aej_2025_02_071 crossref_primary_10_3390_math8060958 crossref_primary_10_3390_sym16060751 crossref_primary_10_1063_5_0170964 crossref_primary_10_1016_j_aej_2023_09_003 crossref_primary_10_1016_j_aej_2024_12_044 crossref_primary_10_1016_j_jrras_2024_101006 crossref_primary_10_1016_j_aej_2024_08_030 crossref_primary_10_15446_rce_v47n2_111985 crossref_primary_10_32604_cmes_2025_058362 crossref_primary_10_1155_2020_7631495 crossref_primary_10_1016_j_aej_2024_03_080 crossref_primary_10_1016_j_aej_2024_08_077 crossref_primary_10_1051_itmconf_20246701009 crossref_primary_10_3390_math12020335 crossref_primary_10_1016_j_aej_2024_08_059 crossref_primary_10_1155_2024_9552629 crossref_primary_10_1016_j_aej_2025_03_008 crossref_primary_10_1016_j_aej_2024_11_026 crossref_primary_10_1155_2021_3058170 crossref_primary_10_1016_j_aej_2024_07_108 crossref_primary_10_1007_s40863_023_00373_9 crossref_primary_10_1016_j_aej_2024_05_114 crossref_primary_10_1016_j_aej_2024_07_104 crossref_primary_10_1155_2021_6915742 crossref_primary_10_1155_2022_8729529 crossref_primary_10_1016_j_aej_2024_08_106 crossref_primary_10_1007_s10479_024_06063_9 crossref_primary_10_3390_math11030673 |
Cites_doi | 10.2139/ssrn.918880 10.3934/jimo.2018053 10.1016/j.insmatheco.2012.04.001 10.1080/1351847X.2012.720269 10.1007/s10463-008-0176-2 10.1016/j.insmatheco.2005.11.001 10.1239/jap/1354716649 10.1080/03461230510009763 10.2307/2348376 10.1007/s40300-013-0007-y 10.1080/10920277.1999.10595795 10.11113/matematika.v31.n1.742 10.1016/j.insmatheco.2017.10.007 10.1007/BF01016429 10.18187/pjsor.v15i1.2803 10.2143/AST.27.1.563211 |
ContentType | Journal Article |
Copyright | 2020 Taylor & Francis Group, LLC 2020 2020 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2020 Taylor & Francis Group, LLC 2020 – notice: 2020 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/03610918.2020.1741623 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1532-4141 |
EndPage | 4395 |
ExternalDocumentID | 10_1080_03610918_2020_1741623 1741623 |
Genre | Research Article |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM LJTGL M4Z NA5 NY~ O9- P2P QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c338t-b7bd21e8263e79faa2ca0c9f30c6e059a962cca70ebd7731e6d46017107f8bfb3 |
ISSN | 0361-0918 |
IngestDate | Wed Aug 13 10:08:37 EDT 2025 Tue Jul 01 03:10:01 EDT 2025 Thu Apr 24 22:56:53 EDT 2025 Wed Dec 25 09:05:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-b7bd21e8263e79faa2ca0c9f30c6e059a962cca70ebd7731e6d46017107f8bfb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3782-4081 0000-0002-6900-8233 0000-0001-6109-7342 |
PQID | 2704223828 |
PQPubID | 186203 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2704223828 crossref_citationtrail_10_1080_03610918_2020_1741623 informaworld_taylorfrancis_310_1080_03610918_2020_1741623 crossref_primary_10_1080_03610918_2020_1741623 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-03 |
PublicationDateYYYYMMDD | 2022-08-03 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in statistics. Simulation and computation |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Klugman S. A. (CIT0011) 2012; 715 CIT0001 David H. A. (CIT0004) 1981 CIT0012 Kazemi R. (CIT0010) 2015; 31 Rényi A. (CIT0015) 1961 CIT0102 CIT0003 CIT0014 CIT0002 Havrda J. (CIT0008) 1967; 3 Hogg R. V. (CIT0009) 2009 CIT0013 CIT0005 CIT0016 CIT0103 CIT0202 CIT0007 CIT0018 CIT0006 CIT0017 CIT0019 |
References_xml | – ident: CIT0005 doi: 10.2139/ssrn.918880 – ident: CIT0019 doi: 10.3934/jimo.2018053 – volume: 715 volume-title: Loss models: From data to decisions year: 2012 ident: CIT0011 – volume: 3 start-page: 30 issue: 1 year: 1967 ident: CIT0008 publication-title: Kybernetika – ident: CIT0006 doi: 10.1016/j.insmatheco.2012.04.001 – ident: CIT0001 doi: 10.1080/1351847X.2012.720269 – ident: CIT0014 doi: 10.1007/s10463-008-0176-2 – volume-title: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics year: 1961 ident: CIT0015 – ident: CIT0018 doi: 10.1016/j.insmatheco.2005.11.001 – ident: CIT0007 doi: 10.1239/jap/1354716649 – ident: CIT0003 doi: 10.1080/03461230510009763 – volume-title: Order statistics year: 1981 ident: CIT0004 – volume-title: Vol. 249 of Wiley series in probability and statistics year: 2009 ident: CIT0009 – ident: CIT0012 doi: 10.2307/2348376 – ident: CIT0103 doi: 10.1007/s40300-013-0007-y – ident: CIT0002 doi: 10.1080/10920277.1999.10595795 – volume: 31 start-page: 15 year: 2015 ident: CIT0010 publication-title: Matematika doi: 10.11113/matematika.v31.n1.742 – ident: CIT0013 doi: 10.1016/j.insmatheco.2017.10.007 – ident: CIT0017 doi: 10.1007/BF01016429 – ident: CIT0102 doi: 10.18187/pjsor.v15i1.2803 – ident: CIT0016 doi: 10.2143/AST.27.1.563211 – ident: CIT0202 |
SSID | ssj0003848 |
Score | 2.4495292 |
Snippet | Heavy tailed distributions play very significant role in the study of actuarial and financial risk management data but the probability distributions proposed... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4372 |
SubjectTerms | Actuarial measures Estimation Heavy tailed distributions Insurance Insurance losses Maximum likelihood estimators Monte Carlo simulation Risk management Statistical analysis Statistical models Weibull distribution |
Title | A new family of heavy tailed distributions with an application to the heavy tailed insurance loss data |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610918.2020.1741623 https://www.proquest.com/docview/2704223828 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcikHHgHUQkF74BY5sr3Orn2MoKhCSi9tpYqLtWvvqhFNUjU2B34Qv5MZ76M2RJRysSJLM3I8n2dmd2e-IeSDEYWK01pGSQZLlEzNRFRwLaNYIh8ghDzTsesvTvnJRfblcnY5Gv3sVS21jZpWP3b2lfyPVeEe2BW7ZB9g2aAUbsBvsC9cwcJw_Scbz3EguN-jsFnfd8gmJXzpNR69hGlWoYdt0juw9mnnQApr02-7NoJrCJ8T17p2R2bQ7yfpSmmxI8mSPU8nZ8uVmwbm2-Vu2uFR__xqZTH1tVVyGQqDF_JqtWnrrrLgeLkNoeKTK0WT629tf38ClrZYT8F6bozxJIKsxHpZ7d1sGmWJpbzyftgRz1q85T2nikeLvQANKdRsp_N31ZIMGeQTLNtLY6zXSrjtaB6Sbf8WBENpYuI5U52aEtWUTs0j8jiF5QhOymDxaYj4LO-mtIV_6jvFkMN919MMcqABQ-4fGUGX5pw_J0_d-oTOLdhekJFej8kzP_uDulAwJk8Wge93Oyb7ZwEFL4mZU4AltbCkG0M7gFELMDqAJUVYUrmmPVjSZkNB9VAqwJIiLCnC8hW5-Hx8_vEkcuM8ooqxvImUUHWaaFjPMi0KI2VaybgqDIsrriHLlwVPwZ-IWKtaCJZoXmcc6ZxiYXJlFHtN9tabtT4gVNZcsayueGWyTM50YXIcIlUVzEgBag9J5l9wWTmuexy5cl3-1byHZBrEbizZy30CRd96ZdPtshk7Eqdk98geeVOXzqdsy1QgJx_L0_zNQ5_lLdm_-_yOyF5z2-p3kDA36n2H1l8hLrkP |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTwIxEJ0oHtSDKGpEUXvwuri7XVp6JEaCCpw04da03faiASOLif56O_tBQGM8-ANmsjvbzkf39T2AK8eFDuNUBVHiR5REd3ggmFVBqJAP0Jc8l7Prj8Zs8JTcTzqTlbswCKvEGdoVRBF5rsbNjYfRFSTu2mdd5LNEZFYcIiQn8kV8E7Y6gnFUMaDheJmNaTdX0EKTAG2qWzy_uVmrT2vspT-ydV6C-nUw1cMXyJPn9iLTbfP5jdfxf2-3D3tlh0p6xZI6gA07bUC9Un8gZTJowO5oyfg6b8AOdq0F6fMhuB7x3TopDk_IzBGf8d8_CIJVbUpS5OotZbbmBA-CiZqSlT_pJJsR73rdCkHzKAJiyYuPG0Fk6xE89W8fbwZBKegQGD8JZ4HmOo0j6ycaarlwSsVGhUY4GhpmfZ-nBIv9iuKh1SnnNLIsTRgS-oTcdbXT9Bhq09nUngBRKdM0SQ0zLklUxwrXRRkhI6hT3LttQlJ9RmlKtnMU3XiRUUWKWoZZYphlGeYmtJdmrwXdx18GYnWNyCw_Z3GFKIqkf9i2qgUly8wxlzFHVjbqB-HTf7i-hO3B42goh3fjhzPYifHOBuJcaAtq2dvCnvtOKtMX-Vb5AtqMDzA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgOLAXEjg9cU5I4tZsjAqqytOIAEjfL64WqrWiKBF-PJ3EqCkIc-IAZJRN7Fuf5PYAzx3MVp0ZGSeZHlEy1eJQzK6NYIh-gL3muZNfv9Vn3Kbt9btVowkmAVeIM7SqiiDJX4-YeG1cj4s590kU6SwRmpTEichJfwxdhmSF5ON7iiPuzZEzbpYAWmkRoU1_i-c3NXHmaIy_9kazLCtTZAFU_ewU8eWlOC9XUH99oHf_1cpuwHvpTclEtqC1YsMMGbNTaDySkggas9WZ8r5MGrGLPWlE-b4O7IL5XJ9XRCRk54vP92ztBqKo1xCBTbxDZmhA8BiZySL78RyfFiHjX81YImUcJEEsGPmwEca078NS5frzsRkHOIdJ-Di4ixZVJE-vnGWp57qRMtYx17mismfVdnsxZ6tcTj60ynNPEMpMxpPOJuWsrp-guLA1HQ7sHRBqmaGY00y7LZMvmro0iQjqnTnLvdh-y-isKHbjOUXJjIJKaEjWEWWCYRQjzPjRnZuOK7OMvg_zrEhFFecriKkkUQf-wParXkwh5YyJSjpxs1I_BB_9wfQorD1cdcX_TvzuE1RQvbCDIhR7BUvE6tce-jSrUSblRPgFtCA3U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+family+of+heavy+tailed+distributions+with+an+application+to+the+heavy+tailed+insurance+loss+data&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Ahmad%2C+Zubair&rft.au=Mahmoudi%2C+Eisa&rft.au=Dey%2C+Sanku&rft.date=2022-08-03&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=51&rft.issue=8&rft.spage=4372&rft.epage=4395&rft_id=info:doi/10.1080%2F03610918.2020.1741623&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03610918_2020_1741623 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon |