A new family of heavy tailed distributions with an application to the heavy tailed insurance loss data

Heavy tailed distributions play very significant role in the study of actuarial and financial risk management data but the probability distributions proposed to model such data are scanty. Actuaries often search for new and appropriate statistical models to address data related to financial risk pro...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 51; no. 8; pp. 4372 - 4395
Main Authors Ahmad, Zubair, Mahmoudi, Eisa, Dey, Sanku
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 03.08.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heavy tailed distributions play very significant role in the study of actuarial and financial risk management data but the probability distributions proposed to model such data are scanty. Actuaries often search for new and appropriate statistical models to address data related to financial risk problems. In this work, we propose a new family of heavy tailed distributions. Some basic properties of this new family of heavy tailed distributions are obtained. A special sub-model of the proposed family, called a new heavy tailed Weibull model is considered in detail. The maximum likelihood estimators of the model parameters are obtained. A Monte Carlo simulation study is carried out to evaluate the performance of these estimators. Furthermore, some actuarial measures such as value at risk and tail value at risk are calculated. A simulation study based on these actuarial measures is done. Finally, an application of the proposed model to a heavy tailed insurance loss data set is presented.
AbstractList Heavy tailed distributions play very significant role in the study of actuarial and financial risk management data but the probability distributions proposed to model such data are scanty. Actuaries often search for new and appropriate statistical models to address data related to financial risk problems. In this work, we propose a new family of heavy tailed distributions. Some basic properties of this new family of heavy tailed distributions are obtained. A special sub-model of the proposed family, called a new heavy tailed Weibull model is considered in detail. The maximum likelihood estimators of the model parameters are obtained. A Monte Carlo simulation study is carried out to evaluate the performance of these estimators. Furthermore, some actuarial measures such as value at risk and tail value at risk are calculated. A simulation study based on these actuarial measures is done. Finally, an application of the proposed model to a heavy tailed insurance loss data set is presented.
Author Mahmoudi, Eisa
Ahmad, Zubair
Dey, Sanku
Author_xml – sequence: 1
  givenname: Zubair
  orcidid: 0000-0003-3782-4081
  surname: Ahmad
  fullname: Ahmad, Zubair
  organization: Department of Statistics, Yazd University
– sequence: 2
  givenname: Eisa
  orcidid: 0000-0001-6109-7342
  surname: Mahmoudi
  fullname: Mahmoudi, Eisa
  organization: Department of Statistics, Yazd University
– sequence: 3
  givenname: Sanku
  orcidid: 0000-0002-6900-8233
  surname: Dey
  fullname: Dey, Sanku
  organization: Department of Statistics, St. Anthony's College
BookMark eNqFkE1rGzEQhkVwILaTnxAQ9LzuSFqvtOTSEJomEOilPYtZrYQV1pIjyTX-992Nk0NyaE8Dw_vMx7MgsxCDJeSawYqBgq8gGgYtUysOfGzJmjVcnJE5Wwte1axmMzKfMtUUuiCLnJ8BQKhazYm7pcEeqMOtH440Orqx-OdIC_rB9rT3uSTf7YuPIdODLxuKgeJuN3iDU5OWSMvGfqR8yPuEwVg6xJxpjwUvybnDIdurt7okv--__7p7qJ5-_ni8u32qjBCqVJ3ses6s4o2wsnWI3CCY1gkwjYV1i23DjUEJtuulFMw2fd0AkwykU53rxJJ8Oc3dpfiyt7no57hPYVypuYSac6G4GlM3p5RJ44HJOm18ef2npPEFzUBPYvW7WD2J1W9iR3r9id4lv8V0_C_37cT54GLa4iGmodcFj0NMbvLlsxb_HvEX_sGSBw
CitedBy_id crossref_primary_10_18038_estubtda_1317322
crossref_primary_10_1016_j_aej_2025_02_050
crossref_primary_10_1016_j_aej_2025_02_071
crossref_primary_10_3390_math8060958
crossref_primary_10_3390_sym16060751
crossref_primary_10_1063_5_0170964
crossref_primary_10_1016_j_aej_2023_09_003
crossref_primary_10_1016_j_aej_2024_12_044
crossref_primary_10_1016_j_jrras_2024_101006
crossref_primary_10_1016_j_aej_2024_08_030
crossref_primary_10_15446_rce_v47n2_111985
crossref_primary_10_32604_cmes_2025_058362
crossref_primary_10_1155_2020_7631495
crossref_primary_10_1016_j_aej_2024_03_080
crossref_primary_10_1016_j_aej_2024_08_077
crossref_primary_10_1051_itmconf_20246701009
crossref_primary_10_3390_math12020335
crossref_primary_10_1016_j_aej_2024_08_059
crossref_primary_10_1155_2024_9552629
crossref_primary_10_1016_j_aej_2025_03_008
crossref_primary_10_1016_j_aej_2024_11_026
crossref_primary_10_1155_2021_3058170
crossref_primary_10_1016_j_aej_2024_07_108
crossref_primary_10_1007_s40863_023_00373_9
crossref_primary_10_1016_j_aej_2024_05_114
crossref_primary_10_1016_j_aej_2024_07_104
crossref_primary_10_1155_2021_6915742
crossref_primary_10_1155_2022_8729529
crossref_primary_10_1016_j_aej_2024_08_106
crossref_primary_10_1007_s10479_024_06063_9
crossref_primary_10_3390_math11030673
Cites_doi 10.2139/ssrn.918880
10.3934/jimo.2018053
10.1016/j.insmatheco.2012.04.001
10.1080/1351847X.2012.720269
10.1007/s10463-008-0176-2
10.1016/j.insmatheco.2005.11.001
10.1239/jap/1354716649
10.1080/03461230510009763
10.2307/2348376
10.1007/s40300-013-0007-y
10.1080/10920277.1999.10595795
10.11113/matematika.v31.n1.742
10.1016/j.insmatheco.2017.10.007
10.1007/BF01016429
10.18187/pjsor.v15i1.2803
10.2143/AST.27.1.563211
ContentType Journal Article
Copyright 2020 Taylor & Francis Group, LLC 2020
2020 Taylor & Francis Group, LLC
Copyright_xml – notice: 2020 Taylor & Francis Group, LLC 2020
– notice: 2020 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610918.2020.1741623
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 4395
ExternalDocumentID 10_1080_03610918_2020_1741623
1741623
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-b7bd21e8263e79faa2ca0c9f30c6e059a962cca70ebd7731e6d46017107f8bfb3
ISSN 0361-0918
IngestDate Wed Aug 13 10:08:37 EDT 2025
Tue Jul 01 03:10:01 EDT 2025
Thu Apr 24 22:56:53 EDT 2025
Wed Dec 25 09:05:25 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-b7bd21e8263e79faa2ca0c9f30c6e059a962cca70ebd7731e6d46017107f8bfb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3782-4081
0000-0002-6900-8233
0000-0001-6109-7342
PQID 2704223828
PQPubID 186203
PageCount 24
ParticipantIDs proquest_journals_2704223828
crossref_citationtrail_10_1080_03610918_2020_1741623
informaworld_taylorfrancis_310_1080_03610918_2020_1741623
crossref_primary_10_1080_03610918_2020_1741623
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-03
PublicationDateYYYYMMDD 2022-08-03
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-03
  day: 03
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Klugman S. A. (CIT0011) 2012; 715
CIT0001
David H. A. (CIT0004) 1981
CIT0012
Kazemi R. (CIT0010) 2015; 31
Rényi A. (CIT0015) 1961
CIT0102
CIT0003
CIT0014
CIT0002
Havrda J. (CIT0008) 1967; 3
Hogg R. V. (CIT0009) 2009
CIT0013
CIT0005
CIT0016
CIT0103
CIT0202
CIT0007
CIT0018
CIT0006
CIT0017
CIT0019
References_xml – ident: CIT0005
  doi: 10.2139/ssrn.918880
– ident: CIT0019
  doi: 10.3934/jimo.2018053
– volume: 715
  volume-title: Loss models: From data to decisions
  year: 2012
  ident: CIT0011
– volume: 3
  start-page: 30
  issue: 1
  year: 1967
  ident: CIT0008
  publication-title: Kybernetika
– ident: CIT0006
  doi: 10.1016/j.insmatheco.2012.04.001
– ident: CIT0001
  doi: 10.1080/1351847X.2012.720269
– ident: CIT0014
  doi: 10.1007/s10463-008-0176-2
– volume-title: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics
  year: 1961
  ident: CIT0015
– ident: CIT0018
  doi: 10.1016/j.insmatheco.2005.11.001
– ident: CIT0007
  doi: 10.1239/jap/1354716649
– ident: CIT0003
  doi: 10.1080/03461230510009763
– volume-title: Order statistics
  year: 1981
  ident: CIT0004
– volume-title: Vol. 249 of Wiley series in probability and statistics
  year: 2009
  ident: CIT0009
– ident: CIT0012
  doi: 10.2307/2348376
– ident: CIT0103
  doi: 10.1007/s40300-013-0007-y
– ident: CIT0002
  doi: 10.1080/10920277.1999.10595795
– volume: 31
  start-page: 15
  year: 2015
  ident: CIT0010
  publication-title: Matematika
  doi: 10.11113/matematika.v31.n1.742
– ident: CIT0013
  doi: 10.1016/j.insmatheco.2017.10.007
– ident: CIT0017
  doi: 10.1007/BF01016429
– ident: CIT0102
  doi: 10.18187/pjsor.v15i1.2803
– ident: CIT0016
  doi: 10.2143/AST.27.1.563211
– ident: CIT0202
SSID ssj0003848
Score 2.4495292
Snippet Heavy tailed distributions play very significant role in the study of actuarial and financial risk management data but the probability distributions proposed...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4372
SubjectTerms Actuarial measures
Estimation
Heavy tailed distributions
Insurance
Insurance losses
Maximum likelihood estimators
Monte Carlo simulation
Risk management
Statistical analysis
Statistical models
Weibull distribution
Title A new family of heavy tailed distributions with an application to the heavy tailed insurance loss data
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2020.1741623
https://www.proquest.com/docview/2704223828
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcikHHgHUQkF74BY5sr3Orn2MoKhCSi9tpYqLtWvvqhFNUjU2B34Qv5MZ76M2RJRysSJLM3I8n2dmd2e-IeSDEYWK01pGSQZLlEzNRFRwLaNYIh8ghDzTsesvTvnJRfblcnY5Gv3sVS21jZpWP3b2lfyPVeEe2BW7ZB9g2aAUbsBvsC9cwcJw_Scbz3EguN-jsFnfd8gmJXzpNR69hGlWoYdt0juw9mnnQApr02-7NoJrCJ8T17p2R2bQ7yfpSmmxI8mSPU8nZ8uVmwbm2-Vu2uFR__xqZTH1tVVyGQqDF_JqtWnrrrLgeLkNoeKTK0WT629tf38ClrZYT8F6bozxJIKsxHpZ7d1sGmWJpbzyftgRz1q85T2nikeLvQANKdRsp_N31ZIMGeQTLNtLY6zXSrjtaB6Sbf8WBENpYuI5U52aEtWUTs0j8jiF5QhOymDxaYj4LO-mtIV_6jvFkMN919MMcqABQ-4fGUGX5pw_J0_d-oTOLdhekJFej8kzP_uDulAwJk8Wge93Oyb7ZwEFL4mZU4AltbCkG0M7gFELMDqAJUVYUrmmPVjSZkNB9VAqwJIiLCnC8hW5-Hx8_vEkcuM8ooqxvImUUHWaaFjPMi0KI2VaybgqDIsrriHLlwVPwZ-IWKtaCJZoXmcc6ZxiYXJlFHtN9tabtT4gVNZcsayueGWyTM50YXIcIlUVzEgBag9J5l9wWTmuexy5cl3-1byHZBrEbizZy30CRd96ZdPtshk7Eqdk98geeVOXzqdsy1QgJx_L0_zNQ5_lLdm_-_yOyF5z2-p3kDA36n2H1l8hLrkP
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTwIxEJ0oHtSDKGpEUXvwuri7XVp6JEaCCpw04da03faiASOLif56O_tBQGM8-ANmsjvbzkf39T2AK8eFDuNUBVHiR5REd3ggmFVBqJAP0Jc8l7Prj8Zs8JTcTzqTlbswCKvEGdoVRBF5rsbNjYfRFSTu2mdd5LNEZFYcIiQn8kV8E7Y6gnFUMaDheJmNaTdX0EKTAG2qWzy_uVmrT2vspT-ydV6C-nUw1cMXyJPn9iLTbfP5jdfxf2-3D3tlh0p6xZI6gA07bUC9Un8gZTJowO5oyfg6b8AOdq0F6fMhuB7x3TopDk_IzBGf8d8_CIJVbUpS5OotZbbmBA-CiZqSlT_pJJsR73rdCkHzKAJiyYuPG0Fk6xE89W8fbwZBKegQGD8JZ4HmOo0j6ycaarlwSsVGhUY4GhpmfZ-nBIv9iuKh1SnnNLIsTRgS-oTcdbXT9Bhq09nUngBRKdM0SQ0zLklUxwrXRRkhI6hT3LttQlJ9RmlKtnMU3XiRUUWKWoZZYphlGeYmtJdmrwXdx18GYnWNyCw_Z3GFKIqkf9i2qgUly8wxlzFHVjbqB-HTf7i-hO3B42goh3fjhzPYifHOBuJcaAtq2dvCnvtOKtMX-Vb5AtqMDzA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgOLAXEjg9cU5I4tZsjAqqytOIAEjfL64WqrWiKBF-PJ3EqCkIc-IAZJRN7Fuf5PYAzx3MVp0ZGSeZHlEy1eJQzK6NYIh-gL3muZNfv9Vn3Kbt9btVowkmAVeIM7SqiiDJX4-YeG1cj4s590kU6SwRmpTEichJfwxdhmSF5ON7iiPuzZEzbpYAWmkRoU1_i-c3NXHmaIy_9kazLCtTZAFU_ewU8eWlOC9XUH99oHf_1cpuwHvpTclEtqC1YsMMGbNTaDySkggas9WZ8r5MGrGLPWlE-b4O7IL5XJ9XRCRk54vP92ztBqKo1xCBTbxDZmhA8BiZySL78RyfFiHjX81YImUcJEEsGPmwEca078NS5frzsRkHOIdJ-Di4ixZVJE-vnGWp57qRMtYx17mismfVdnsxZ6tcTj60ynNPEMpMxpPOJuWsrp-guLA1HQ7sHRBqmaGY00y7LZMvmro0iQjqnTnLvdh-y-isKHbjOUXJjIJKaEjWEWWCYRQjzPjRnZuOK7OMvg_zrEhFFecriKkkUQf-wParXkwh5YyJSjpxs1I_BB_9wfQorD1cdcX_TvzuE1RQvbCDIhR7BUvE6tce-jSrUSblRPgFtCA3U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+family+of+heavy+tailed+distributions+with+an+application+to+the+heavy+tailed+insurance+loss+data&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Ahmad%2C+Zubair&rft.au=Mahmoudi%2C+Eisa&rft.au=Dey%2C+Sanku&rft.date=2022-08-03&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=51&rft.issue=8&rft.spage=4372&rft.epage=4395&rft_id=info:doi/10.1080%2F03610918.2020.1741623&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03610918_2020_1741623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon