A Simplified Prediction Model of Structural Seismic Vulnerability Considering a Multivariate Fuzzy Membership Algorithm
Fuzzy decision-making and analytic hierarchical processes are ubiquitously used to predict the seismic damage and vulnerability of building clusters. However, the factors affecting the seismic vulnerability of building structures are diversification, cognitive uncertainty, and complex fuzziness. To...
Saved in:
Published in | Journal of earthquake engineering : JEE Vol. 28; no. 3; pp. 707 - 730 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
17.02.2024
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fuzzy decision-making and analytic hierarchical processes are ubiquitously used to predict the seismic damage and vulnerability of building clusters. However, the factors affecting the seismic vulnerability of building structures are diversification, cognitive uncertainty, and complex fuzziness. To probe the impact of multiple fuzzy influencing factors on the vulnerability of regional buildings and the degree of membership between them, the development of a structural vulnerability prediction model based on fuzzy decision-making and a hierarchical system with multiple factors has strong theoretical and practical significance. This study proposes a novel method for rapidly predicting structural vulnerability based on a multivariate fuzzy membership index. Rapid fragility prediction models of fiv4e typical structures considering the multivariate fuzzy membership index are established. A new approach is proposed based on the relationship model between the empirical vulnerability index and seven fuzzy membership parameters. Five types of typical structural vulnerability index rapid prediction innovation models are developed. The new prediction model is compared and verified using the quantitative value of China's macrointensity standard and the structural seismic loss observation data (98,050 × 10
4
m
2
and 995,000 buildings) of 213 typical earthquakes to establish an empirical vulnerability index belt model. The proposed prediction model comprehensively considers multiple fuzzy membership parameters and the empirical structural earthquake damage database. The model analysis and validation results indicate that the proposed model can be further used for the seismic damage evaluation of typical structures and rapid fragility prediction. |
---|---|
AbstractList | Fuzzy decision-making and analytic hierarchical processes are ubiquitously used to predict the seismic damage and vulnerability of building clusters. However, the factors affecting the seismic vulnerability of building structures are diversification, cognitive uncertainty, and complex fuzziness. To probe the impact of multiple fuzzy influencing factors on the vulnerability of regional buildings and the degree of membership between them, the development of a structural vulnerability prediction model based on fuzzy decision-making and a hierarchical system with multiple factors has strong theoretical and practical significance. This study proposes a novel method for rapidly predicting structural vulnerability based on a multivariate fuzzy membership index. Rapid fragility prediction models of fiv4e typical structures considering the multivariate fuzzy membership index are established. A new approach is proposed based on the relationship model between the empirical vulnerability index and seven fuzzy membership parameters. Five types of typical structural vulnerability index rapid prediction innovation models are developed. The new prediction model is compared and verified using the quantitative value of China's macrointensity standard and the structural seismic loss observation data (98,050 × 10
4
m
2
and 995,000 buildings) of 213 typical earthquakes to establish an empirical vulnerability index belt model. The proposed prediction model comprehensively considers multiple fuzzy membership parameters and the empirical structural earthquake damage database. The model analysis and validation results indicate that the proposed model can be further used for the seismic damage evaluation of typical structures and rapid fragility prediction. Fuzzy decision-making and analytic hierarchical processes are ubiquitously used to predict the seismic damage and vulnerability of building clusters. However, the factors affecting the seismic vulnerability of building structures are diversification, cognitive uncertainty, and complex fuzziness. To probe the impact of multiple fuzzy influencing factors on the vulnerability of regional buildings and the degree of membership between them, the development of a structural vulnerability prediction model based on fuzzy decision-making and a hierarchical system with multiple factors has strong theoretical and practical significance. This study proposes a novel method for rapidly predicting structural vulnerability based on a multivariate fuzzy membership index. Rapid fragility prediction models of fiv4e typical structures considering the multivariate fuzzy membership index are established. A new approach is proposed based on the relationship model between the empirical vulnerability index and seven fuzzy membership parameters. Five types of typical structural vulnerability index rapid prediction innovation models are developed. The new prediction model is compared and verified using the quantitative value of China’s macrointensity standard and the structural seismic loss observation data (98,050 × 104 m2 and 995,000 buildings) of 213 typical earthquakes to establish an empirical vulnerability index belt model. The proposed prediction model comprehensively considers multiple fuzzy membership parameters and the empirical structural earthquake damage database. The model analysis and validation results indicate that the proposed model can be further used for the seismic damage evaluation of typical structures and rapid fragility prediction. |
Author | Li, Si-Qi |
Author_xml | – sequence: 1 givenname: Si-Qi surname: Li fullname: Li, Si-Qi email: lisiqi@hlju.edu.cn organization: Harbin Institute of Technology |
BookMark | eNqFkE1r3DAQQEVJoEnan1AQ9OytZNlri166LE1byNLCJqE3IesjmSBL25GcsPn19bLppYf2NHN4bwbeOTmJKTpC3nG24KxnH7hYirpZykXNarGoa97Jpn1Fznjbyqpn_c-TeZ-Z6gC9Juc5PzDGm04sz8jTim5h3AXw4Cz9gc6CKZAi3STrAk2ebgtOpkyoA906yCMYejuF6FAPEKDs6TrFDNYhxDuq6WYKBR41gi6OXk7Pz3u6cePgMN_Djq7CXUIo9-Mbcup1yO7ty7wgN5efr9dfq6vvX76tV1eVEaIv1cC0127gzjS2d9Lr2krWWdsIKaRsmR5sK1u9bDpj7NDwQfBZFLbrjO6Et-KCvD_e3WH6Nblc1EOaMM4vVS1rzkQrRDNTH4-UwZQzOq8MFH3oUFBDUJypQ2n1p7Q6lFYvpWe7_cveIYwa9__1Ph09iD7hqJ8SBquK3oeEHnU0kJX494nf0J-Z-A |
CitedBy_id | crossref_primary_10_1007_s43452_024_00874_0 crossref_primary_10_1007_s42452_024_06099_3 crossref_primary_10_1016_j_ress_2024_110460 crossref_primary_10_1016_j_eswa_2024_123962 crossref_primary_10_1007_s10518_024_01879_z crossref_primary_10_1007_s10518_024_01938_5 crossref_primary_10_1016_j_istruc_2024_107989 crossref_primary_10_1016_j_jobe_2024_110799 crossref_primary_10_1016_j_soildyn_2023_108256 crossref_primary_10_1016_j_soildyn_2024_108763 crossref_primary_10_1007_s10518_024_01880_6 crossref_primary_10_1016_j_cscm_2024_e03827 crossref_primary_10_1016_j_jobe_2025_112066 crossref_primary_10_1016_j_soildyn_2024_108871 crossref_primary_10_1007_s10518_023_01814_8 crossref_primary_10_1007_s10518_024_02049_x crossref_primary_10_1016_j_ress_2024_110743 crossref_primary_10_1007_s42417_024_01410_3 |
Cites_doi | 10.1016/j.autcon.2022.104143 10.3390/app10072375 10.1016/j.strusafe.2014.09.008 10.1016/j.soildyn.2020.106439 10.1007/s10518-015-9759-5 10.1007/s11803-018-0439-8 10.1016/j.soildyn.2012.03.010 10.1016/j.istruc.2022.03.022 10.1016/j.autcon.2020.103490 10.3390/geosciences13010006 10.1016/j.cscm.2022.e01094 10.1007/s10518-021-01222-w 10.1016/j.soildyn.2022.107630 10.1080/15732479.2023.2208565 10.1016/j.strusafe.2019.101909 10.1007/s11069-020-04187-2 10.1016/j.strusafe.2012.09.008 10.1002/eqe.3582 10.1061/(ASCE)ST.1943-541X.0003164 10.1016/j.engstruct.2003.10.005 10.1177/8755293020944174 10.1007/s10518-022-01395-y 10.1007/s10518-021-01057-5 10.1016/j.istruc.2021.07.055 10.1016/j.engstruct.2021.113358 10.1193/1.2358176 10.1016/j.cscm.2022.e01420 10.1080/19475705.2022.2077146 10.1007/s10518-021-01063-7 10.1016/j.ijdrr.2023.103617 10.1080/13632460802003785 10.1016/j.istruc.2020.09.048 10.1111/mice.12747 10.1016/j.strusafe.2016.06.008 10.3390/su142316318 10.1016/j.istruc.2021.09.023 10.1016/j.istruc.2022.03.024 10.1016/j.soildyn.2021.106580 10.1002/(SICI)1096-9845(199603)25:3<235::AID-EQE552>3.0.CO;2-3 10.1016/j.soildyn.2023.107864 10.1016/j.engstruct.2021.111874 10.1007/s10518-022-01585-8 10.1002/eqe.3542 10.1080/13632469.2019.1597784 10.1016/j.strusafe.2010.04.004 10.1016/j.ijdrr.2018.11.017 10.1016/j.jobe.2023.106130 10.1016/0167-4730(93)90015-S 10.1016/j.istruc.2023.01.130 10.1080/13632460802211990 10.1007/s10518-018-0499-1 10.1007/s11069-013-0997-z 10.1080/13632469.2019.1692742 10.1016/j.asej.2023.102287 10.1016/j.engstruct.2021.112272 10.1016/j.soildyn.2016.11.004 10.1007/s11431-010-4082-5 10.1007/s00500-006-0063-9 10.1002/eqe.3567 10.1016/j.jobe.2021.103162 10.1193/1.1586168 10.1002/eqe.1169 10.1002/eqe.481 10.1111/mice.12028 10.1193/1.3280115 |
ContentType | Journal Article |
Copyright | 2023 Taylor & Francis Group, LLC 2023 2023 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2023 Taylor & Francis Group, LLC 2023 – notice: 2023 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI |
DOI | 10.1080/13632469.2023.2217945 |
DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1559-808X |
EndPage | 730 |
ExternalDocumentID | 10_1080_13632469_2023_2217945 2217945 |
Genre | Research Article |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRAH AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWJ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~02 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI TASJS |
ID | FETCH-LOGICAL-c338t-b0afaeb1ec4d8e9fa2d907dd43939950abd595a647ccdb41b31c333d77ca73fd3 |
ISSN | 1363-2469 |
IngestDate | Wed Aug 13 07:34:55 EDT 2025 Tue Jul 01 04:15:06 EDT 2025 Thu Apr 24 22:56:45 EDT 2025 Wed Dec 25 09:06:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-b0afaeb1ec4d8e9fa2d907dd43939950abd595a647ccdb41b31c333d77ca73fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2921035334 |
PQPubID | 53172 |
PageCount | 24 |
ParticipantIDs | crossref_citationtrail_10_1080_13632469_2023_2217945 informaworld_taylorfrancis_310_1080_13632469_2023_2217945 proquest_journals_2921035334 crossref_primary_10_1080_13632469_2023_2217945 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-17 |
PublicationDateYYYYMMDD | 2024-02-17 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Journal of earthquake engineering : JEE |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_3_52_1 e_1_3_3_75_1 e_1_3_3_50_1 Zhang Y. (e_1_3_3_77_1) 1996; 26 e_1_3_3_18_1 e_1_3_3_37_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_58_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_56_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_54_1 e_1_3_3_63_1 e_1_3_3_61_1 China Earthquake Administration and National Bureau of Statistics (e_1_3_3_7_1) 1996 China Earthquake Administration and National Bureau of Statistics (e_1_3_3_9_1) 2005 e_1_3_3_29_1 e_1_3_3_25_1 e_1_3_3_48_1 De Iuliis M. (e_1_3_3_14_1) 2019 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_69_1 e_1_3_3_3_1 e_1_3_3_44_1 e_1_3_3_67_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_42_1 e_1_3_3_65_1 e_1_3_3_30_1 e_1_3_3_51_1 e_1_3_3_78_1 e_1_3_3_70_1 Xu Z. S. (e_1_3_3_71_1) 2001; 16 e_1_3_3_17_1 e_1_3_3_19_1 e_1_3_3_13_1 e_1_3_3_38_1 Li S. Q. (e_1_3_3_39_1) 2022; 22 e_1_3_3_59_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_57_1 e_1_3_3_34_1 e_1_3_3_55_1 e_1_3_3_72_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_53_1 e_1_3_3_74_1 e_1_3_3_41_1 e_1_3_3_62_1 e_1_3_3_60_1 Zhang G. X. (e_1_3_3_76_1) 2018; 35 Yin Z. Q. (e_1_3_3_73_1) 2004 Li S. Q. (e_1_3_3_40_1) 2022; 22 e_1_3_3_6_1 China Earthquake Administration and National Bureau of Statistics (e_1_3_3_8_1) 2001 e_1_3_3_28_1 e_1_3_3_24_1 e_1_3_3_49_1 e_1_3_3_26_1 e_1_3_3_47_1 e_1_3_3_68_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_45_1 e_1_3_3_66_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_43_1 |
References_xml | – ident: e_1_3_3_51_1 doi: 10.1016/j.autcon.2022.104143 – ident: e_1_3_3_23_1 doi: 10.3390/app10072375 – volume: 22 start-page: 609 issue: 6 year: 2022 ident: e_1_3_3_39_1 article-title: Empirical seismic fragility rapid prediction probability model of regional group reinforced concrete girder bridges publication-title: Earthquakes and Structures – ident: e_1_3_3_30_1 doi: 10.1016/j.strusafe.2014.09.008 – ident: e_1_3_3_49_1 doi: 10.1016/j.soildyn.2020.106439 – ident: e_1_3_3_68_1 doi: 10.1007/s10518-015-9759-5 – ident: e_1_3_3_61_1 doi: 10.1007/s11803-018-0439-8 – ident: e_1_3_3_70_1 doi: 10.1016/j.soildyn.2012.03.010 – ident: e_1_3_3_2_1 doi: 10.1016/j.istruc.2022.03.022 – ident: e_1_3_3_50_1 doi: 10.1016/j.autcon.2020.103490 – ident: e_1_3_3_3_1 doi: 10.3390/geosciences13010006 – ident: e_1_3_3_44_1 doi: 10.1016/j.cscm.2022.e01094 – ident: e_1_3_3_6_1 doi: 10.1007/s10518-021-01222-w – ident: e_1_3_3_34_1 doi: 10.1016/j.soildyn.2022.107630 – ident: e_1_3_3_48_1 doi: 10.1080/15732479.2023.2208565 – ident: e_1_3_3_67_1 doi: 10.1016/j.strusafe.2019.101909 – ident: e_1_3_3_36_1 doi: 10.1007/s11069-020-04187-2 – ident: e_1_3_3_11_1 doi: 10.1016/j.strusafe.2012.09.008 – ident: e_1_3_3_58_1 doi: 10.1002/eqe.3582 – ident: e_1_3_3_17_1 doi: 10.1061/(ASCE)ST.1943-541X.0003164 – ident: e_1_3_3_55_1 doi: 10.1016/j.engstruct.2003.10.005 – volume: 35 start-page: 185 issue: 12 year: 2018 ident: e_1_3_3_76_1 article-title: Seismic damage prediction for a single building based on a fuzzy analytical hierarchy approach publication-title: Engineering Mechanics – ident: e_1_3_3_41_1 doi: 10.1177/8755293020944174 – ident: e_1_3_3_46_1 doi: 10.1007/s10518-022-01395-y – ident: e_1_3_3_53_1 doi: 10.1007/s10518-021-01057-5 – volume-title: Compilation of loss assessment for earthquake disasters in mainland China (2001-2005) year: 2005 ident: e_1_3_3_9_1 – volume: 26 start-page: 151 year: 1996 ident: e_1_3_3_77_1 article-title: Response analysis for fuzzy stochastic dynamical systems with multiple degrees of freedom publication-title: Earthquake Engineering & Structural Dynamics – ident: e_1_3_3_75_1 doi: 10.1016/j.istruc.2021.07.055 – ident: e_1_3_3_69_1 doi: 10.1016/j.engstruct.2021.113358 – ident: e_1_3_3_15_1 doi: 10.1193/1.2358176 – ident: e_1_3_3_31_1 doi: 10.1016/j.cscm.2022.e01420 – ident: e_1_3_3_43_1 doi: 10.1080/19475705.2022.2077146 – ident: e_1_3_3_29_1 doi: 10.1007/s10518-021-01063-7 – ident: e_1_3_3_37_1 doi: 10.1016/j.ijdrr.2023.103617 – ident: e_1_3_3_63_1 doi: 10.1080/13632460802003785 – start-page: 63 year: 2019 ident: e_1_3_3_14_1 article-title: A methodology to estimate the downtime of building structures using fuzzy logic publication-title: Atti Del XVIII Convegno ANIDIS L’ingegneria Sismica in Italia: Ascoli Piceno – ident: e_1_3_3_22_1 doi: 10.1016/j.istruc.2020.09.048 – ident: e_1_3_3_25_1 doi: 10.1111/mice.12747 – ident: e_1_3_3_28_1 doi: 10.1016/j.strusafe.2016.06.008 – ident: e_1_3_3_4_1 doi: 10.3390/su142316318 – ident: e_1_3_3_47_1 doi: 10.1016/j.istruc.2021.09.023 – ident: e_1_3_3_45_1 doi: 10.1016/j.istruc.2022.03.024 – ident: e_1_3_3_19_1 doi: 10.1016/j.soildyn.2021.106580 – ident: e_1_3_3_78_1 doi: 10.1002/(SICI)1096-9845(199603)25:3<235::AID-EQE552>3.0.CO;2-3 – ident: e_1_3_3_35_1 doi: 10.1016/j.soildyn.2023.107864 – ident: e_1_3_3_62_1 doi: 10.1016/j.engstruct.2021.111874 – ident: e_1_3_3_38_1 doi: 10.1007/s10518-022-01585-8 – ident: e_1_3_3_74_1 doi: 10.1002/eqe.3542 – volume-title: Compilation of loss assessment for earthquake disasters in mainland China (1990-1995) year: 1996 ident: e_1_3_3_7_1 – ident: e_1_3_3_16_1 doi: 10.1080/13632469.2019.1597784 – ident: e_1_3_3_18_1 doi: 10.1016/j.strusafe.2010.04.004 – ident: e_1_3_3_13_1 doi: 10.1016/j.ijdrr.2018.11.017 – ident: e_1_3_3_42_1 doi: 10.1016/j.jobe.2023.106130 – ident: e_1_3_3_12_1 doi: 10.1016/0167-4730(93)90015-S – volume: 22 start-page: 387 issue: 4 year: 2022 ident: e_1_3_3_40_1 article-title: Assessment of seismic damage inspection and empirical vulnerability probability matrices for masonry structure publication-title: Earthquakes and Structures – ident: e_1_3_3_32_1 doi: 10.1016/j.istruc.2023.01.130 – ident: e_1_3_3_57_1 doi: 10.1080/13632460802211990 – ident: e_1_3_3_5_1 doi: 10.1007/s10518-018-0499-1 – ident: e_1_3_3_72_1 doi: 10.1007/s11069-013-0997-z – ident: e_1_3_3_59_1 doi: 10.1080/13632469.2019.1692742 – volume: 16 start-page: 311 issue: 4 year: 2001 ident: e_1_3_3_71_1 article-title: Algorithm for priority of fuzzy complementary judgement matrix publication-title: Journal of Systems Engineering – ident: e_1_3_3_33_1 doi: 10.1016/j.asej.2023.102287 – ident: e_1_3_3_54_1 doi: 10.1016/j.engstruct.2021.112272 – ident: e_1_3_3_66_1 doi: 10.1016/j.soildyn.2016.11.004 – ident: e_1_3_3_60_1 doi: 10.1007/s11431-010-4082-5 – volume-title: Seismic loss analysis and fortification criterion year: 2004 ident: e_1_3_3_73_1 – ident: e_1_3_3_27_1 doi: 10.1007/s00500-006-0063-9 – ident: e_1_3_3_26_1 doi: 10.1002/eqe.3567 – ident: e_1_3_3_52_1 doi: 10.1016/j.jobe.2021.103162 – ident: e_1_3_3_56_1 doi: 10.1193/1.1586168 – ident: e_1_3_3_10_1 doi: 10.1002/eqe.1169 – ident: e_1_3_3_20_1 doi: 10.1002/eqe.481 – ident: e_1_3_3_24_1 doi: 10.1111/mice.12028 – volume-title: Compilation of loss assessment for earthquake disasters in mainland China (1996-2000) year: 2001 ident: e_1_3_3_8_1 – ident: e_1_3_3_65_1 doi: 10.1193/1.3280115 |
SSID | ssj0014736 |
Score | 2.4856942 |
Snippet | Fuzzy decision-making and analytic hierarchical processes are ubiquitously used to predict the seismic damage and vulnerability of building clusters. However,... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 707 |
SubjectTerms | Algorithms Buildings Cognitive ability Damage assessment Decision analysis Decision making Decision theory Earthquake damage Earthquakes Empirical analysis Fragility fuzzy correlation weight model fuzzy membership parameter complementary symmetric matrix Mathematical models Multivariate analysis Multivariate fuzzy membership parameter Parameters Prediction models rapid prediction vulnerability model Regional development Seismic activity Seismic hazard Seismic surveys Structures Vulnerability vulnerability indices |
Title | A Simplified Prediction Model of Structural Seismic Vulnerability Considering a Multivariate Fuzzy Membership Algorithm |
URI | https://www.tandfonline.com/doi/abs/10.1080/13632469.2023.2217945 https://www.proquest.com/docview/2921035334 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgu8AB8VMMBvKBW5WQ2G7THCNoVU3bADWFiktkJ84WUVrYUtD61_Oe4_yoOhhwiaJUjpV-n5-f7fe9R8grLXUWwrLLyYVmjlAh2EGVckcKoXI-UCJNUe98cjqYzMTRvD9vw4qMuqRUbrq5VlfyP6jCM8AVVbL_gGzzUngA94AvXAFhuP4VxlFvWmBEeI5-5PsLPHMxcGKBM-NjTk12WJNZY6qLS4yD_7heYKJpExN71dTrNFLFnlHj_oDVMzigvfF6s7nqnWisGGJCuqLF2eqiKM-__sahhTFTnn9fyy-6p9ssh2bP4WjUCB6mhfOhUmQX3R0HJjBIuRJYGo7EO8U_OhFIaEPxaJiJqgKLq61dxd1Gz1QRbgwvG3YIxjtWNKgK4doJOagObnZsfRUcib1hZy7WgXcZQwPTbye3-kD_9F0ynh0fJ_FoHt8m-wwWFWAV96PJ28-fmlMnEZiSks0H1Iqvoff62m62fJmtTLc7M7txV-L75J6FhUYVaR6QW3r5kNztZJ98RH5GtKUPbelDDX3oKqctfailD92iD-3Qh0rapQ819KEtfWhDn8dkNh7FbyaOrcPhpJwPS0d5Mpcwp-tUZEMd5pJloRdkGfiyKIz2pMr6YV8ORAADWwlfcR8a8iwIUhnwPONPyN5ytdRPCfVFrpSnpC-lRq2eAv_JZ7mEVpx5Ijggov5Hk9QmqcdaKYvEt7lsayASBCKxQBwQt2n2rcrSclODsAtXUhpO5xWdE35D28Ma28Qag8uEhcz3OOran_355-fkTjumDskeAKlfgF9bqpeWjr8A61Kh_w |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VcgAOvBGFAj7AccP6kV32wCECopQ2EVJa1JuxvTZEpAlqNlTJz-Kv8IeY2V1XLQj1gHrgvBpr1vPy2DPfADz3xpcFpl1JUF4kyhboB62TiVHKBplZ5Rz1Ow9H2eBAvT_sHm7Aj9gLQ2WVlEOHBiii9tVk3HQZHUviXnJJIOMZ9ZkI2RGClCoWVu761QmmbYvXO29Rxi-E6L_bfzNI2skCicOUrEpsaoJBL-WdKl_5IhhRYpJYlhidqdUzNbbsFl2TqRxZtYpbyZFQlnnuTC5DKXHdK3C1W2Q52ZZMR6cvFyqvxxISiwnxGLuG_sb2uXh4Di31j-hQh7z-LfgZN6updPnaWVa249a_4Uj-X7t5G262J3DWa0zmDmz42V24cQaX8R6c9Nh4QqX2AQ_o7MMxPWaRAjOaHDdl88DGNewuQZawsZ8sjiaOfVxOCcG7LjZesTgIFddjhtVtzt8NGnvlWX-5Xq_Y0NMoFqqVY73p5_nxpPpydB8OLuXPH8DmbD7zD4FxFaxNreHGeOpis3iy4CIYpJIiVfkWqKgn2rXw7TRFZKp5i_Ia5ahJjrqV4xZ0Tsm-NfglFxEUZ5VQV_XFUWimvGh5Ae121FjdusKFFoXgqaSO70f_sPQzuDbYH-7pvZ3R7mO4jp8U1c7zfBs2UeL-CR4NK_u0tkUGny5bXX8B5Wlp4A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VIiE4lGdFS4E9wNHB-4iNDxwiStRSGlUKRb2ZfUJEmlSNQ5X8K_4Kv4gZ21u1INQD6oGzNav1zszOjD3fNwAvvPauwLIrCcqLRJkC70FjZaKVMkFmRllLeOf9QbZzqN4fdY9W4EfEwlBbJdXQoSGKqO9qcu4TF2JH3CsuiWM8I5iJkB0hyKZiX-WeX5xh1TZ7s7uNKn4pRP_dx7c7STtYILFYkVWJSXXQeEl5q9xrXwQtHNaIzmFwJqRnqo3rFl2dqRx3ahQ3kqOgdHludS6Dk7juDbiZEbCTUCPp4PzHhcrrqYS0xYT2GEFDf9v2pXB4iSz1j-BQR7z-XfgZz6ppdPnWmVemY5e_0Uj-V4d5D9ba_Jv1Goe5Dyt-8gDuXGBlfAhnPTYcUaN9wPScHZzSrywyX0Zz48ZsGtiwJt0lwhI29KPZ8ciyT_Mx8XfXrcYLFseg4npMsxrk_F2jq1ee9efL5YLtexrEQp1yrDf-Mj0dVV-PH8Hhtbz5OqxOphP_GBhXwZjUaK61JwybwbyCi6BRSopU5RugopmUtiVvpxki45K3HK9RjyXpsWz1uAGdc7GThr3kKoHiog2WVf3ZKDQzXkp5hexWNNiyvQhnpSgETyXhvTf_YenncOtgu19-2B3sPYHb-ERR4zzPt2AVFe6fYl5YmWe1JzL4fN3W-gv2_2iE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Simplified+Prediction+Model+of+Structural+Seismic+Vulnerability+Considering+a+Multivariate+Fuzzy+Membership+Algorithm&rft.jtitle=Journal+of+earthquake+engineering+%3A+JEE&rft.au=Si-Qi%2C+Li&rft.date=2024-02-17&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1363-2469&rft.eissn=1559-808X&rft.volume=28&rft.issue=3&rft.spage=707&rft.epage=730&rft_id=info:doi/10.1080%2F13632469.2023.2217945&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1363-2469&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1363-2469&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1363-2469&client=summon |