A Simplified Prediction Model of Structural Seismic Vulnerability Considering a Multivariate Fuzzy Membership Algorithm

Fuzzy decision-making and analytic hierarchical processes are ubiquitously used to predict the seismic damage and vulnerability of building clusters. However, the factors affecting the seismic vulnerability of building structures are diversification, cognitive uncertainty, and complex fuzziness. To...

Full description

Saved in:
Bibliographic Details
Published inJournal of earthquake engineering : JEE Vol. 28; no. 3; pp. 707 - 730
Main Author Li, Si-Qi
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 17.02.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fuzzy decision-making and analytic hierarchical processes are ubiquitously used to predict the seismic damage and vulnerability of building clusters. However, the factors affecting the seismic vulnerability of building structures are diversification, cognitive uncertainty, and complex fuzziness. To probe the impact of multiple fuzzy influencing factors on the vulnerability of regional buildings and the degree of membership between them, the development of a structural vulnerability prediction model based on fuzzy decision-making and a hierarchical system with multiple factors has strong theoretical and practical significance. This study proposes a novel method for rapidly predicting structural vulnerability based on a multivariate fuzzy membership index. Rapid fragility prediction models of fiv4e typical structures considering the multivariate fuzzy membership index are established. A new approach is proposed based on the relationship model between the empirical vulnerability index and seven fuzzy membership parameters. Five types of typical structural vulnerability index rapid prediction innovation models are developed. The new prediction model is compared and verified using the quantitative value of China's macrointensity standard and the structural seismic loss observation data (98,050 × 10 4 m 2 and 995,000 buildings) of 213 typical earthquakes to establish an empirical vulnerability index belt model. The proposed prediction model comprehensively considers multiple fuzzy membership parameters and the empirical structural earthquake damage database. The model analysis and validation results indicate that the proposed model can be further used for the seismic damage evaluation of typical structures and rapid fragility prediction.
AbstractList Fuzzy decision-making and analytic hierarchical processes are ubiquitously used to predict the seismic damage and vulnerability of building clusters. However, the factors affecting the seismic vulnerability of building structures are diversification, cognitive uncertainty, and complex fuzziness. To probe the impact of multiple fuzzy influencing factors on the vulnerability of regional buildings and the degree of membership between them, the development of a structural vulnerability prediction model based on fuzzy decision-making and a hierarchical system with multiple factors has strong theoretical and practical significance. This study proposes a novel method for rapidly predicting structural vulnerability based on a multivariate fuzzy membership index. Rapid fragility prediction models of fiv4e typical structures considering the multivariate fuzzy membership index are established. A new approach is proposed based on the relationship model between the empirical vulnerability index and seven fuzzy membership parameters. Five types of typical structural vulnerability index rapid prediction innovation models are developed. The new prediction model is compared and verified using the quantitative value of China's macrointensity standard and the structural seismic loss observation data (98,050 × 10 4 m 2 and 995,000 buildings) of 213 typical earthquakes to establish an empirical vulnerability index belt model. The proposed prediction model comprehensively considers multiple fuzzy membership parameters and the empirical structural earthquake damage database. The model analysis and validation results indicate that the proposed model can be further used for the seismic damage evaluation of typical structures and rapid fragility prediction.
Fuzzy decision-making and analytic hierarchical processes are ubiquitously used to predict the seismic damage and vulnerability of building clusters. However, the factors affecting the seismic vulnerability of building structures are diversification, cognitive uncertainty, and complex fuzziness. To probe the impact of multiple fuzzy influencing factors on the vulnerability of regional buildings and the degree of membership between them, the development of a structural vulnerability prediction model based on fuzzy decision-making and a hierarchical system with multiple factors has strong theoretical and practical significance. This study proposes a novel method for rapidly predicting structural vulnerability based on a multivariate fuzzy membership index. Rapid fragility prediction models of fiv4e typical structures considering the multivariate fuzzy membership index are established. A new approach is proposed based on the relationship model between the empirical vulnerability index and seven fuzzy membership parameters. Five types of typical structural vulnerability index rapid prediction innovation models are developed. The new prediction model is compared and verified using the quantitative value of China’s macrointensity standard and the structural seismic loss observation data (98,050 × 104 m2 and 995,000 buildings) of 213 typical earthquakes to establish an empirical vulnerability index belt model. The proposed prediction model comprehensively considers multiple fuzzy membership parameters and the empirical structural earthquake damage database. The model analysis and validation results indicate that the proposed model can be further used for the seismic damage evaluation of typical structures and rapid fragility prediction.
Author Li, Si-Qi
Author_xml – sequence: 1
  givenname: Si-Qi
  surname: Li
  fullname: Li, Si-Qi
  email: lisiqi@hlju.edu.cn
  organization: Harbin Institute of Technology
BookMark eNqFkE1r3DAQQEVJoEnan1AQ9OytZNlri166LE1byNLCJqE3IesjmSBL25GcsPn19bLppYf2NHN4bwbeOTmJKTpC3nG24KxnH7hYirpZykXNarGoa97Jpn1Fznjbyqpn_c-TeZ-Z6gC9Juc5PzDGm04sz8jTim5h3AXw4Cz9gc6CKZAi3STrAk2ebgtOpkyoA906yCMYejuF6FAPEKDs6TrFDNYhxDuq6WYKBR41gi6OXk7Pz3u6cePgMN_Djq7CXUIo9-Mbcup1yO7ty7wgN5efr9dfq6vvX76tV1eVEaIv1cC0127gzjS2d9Lr2krWWdsIKaRsmR5sK1u9bDpj7NDwQfBZFLbrjO6Et-KCvD_e3WH6Nblc1EOaMM4vVS1rzkQrRDNTH4-UwZQzOq8MFH3oUFBDUJypQ2n1p7Q6lFYvpWe7_cveIYwa9__1Ph09iD7hqJ8SBquK3oeEHnU0kJX494nf0J-Z-A
CitedBy_id crossref_primary_10_1007_s43452_024_00874_0
crossref_primary_10_1007_s42452_024_06099_3
crossref_primary_10_1016_j_ress_2024_110460
crossref_primary_10_1016_j_eswa_2024_123962
crossref_primary_10_1007_s10518_024_01879_z
crossref_primary_10_1007_s10518_024_01938_5
crossref_primary_10_1016_j_istruc_2024_107989
crossref_primary_10_1016_j_jobe_2024_110799
crossref_primary_10_1016_j_soildyn_2023_108256
crossref_primary_10_1016_j_soildyn_2024_108763
crossref_primary_10_1007_s10518_024_01880_6
crossref_primary_10_1016_j_cscm_2024_e03827
crossref_primary_10_1016_j_jobe_2025_112066
crossref_primary_10_1016_j_soildyn_2024_108871
crossref_primary_10_1007_s10518_023_01814_8
crossref_primary_10_1007_s10518_024_02049_x
crossref_primary_10_1016_j_ress_2024_110743
crossref_primary_10_1007_s42417_024_01410_3
Cites_doi 10.1016/j.autcon.2022.104143
10.3390/app10072375
10.1016/j.strusafe.2014.09.008
10.1016/j.soildyn.2020.106439
10.1007/s10518-015-9759-5
10.1007/s11803-018-0439-8
10.1016/j.soildyn.2012.03.010
10.1016/j.istruc.2022.03.022
10.1016/j.autcon.2020.103490
10.3390/geosciences13010006
10.1016/j.cscm.2022.e01094
10.1007/s10518-021-01222-w
10.1016/j.soildyn.2022.107630
10.1080/15732479.2023.2208565
10.1016/j.strusafe.2019.101909
10.1007/s11069-020-04187-2
10.1016/j.strusafe.2012.09.008
10.1002/eqe.3582
10.1061/(ASCE)ST.1943-541X.0003164
10.1016/j.engstruct.2003.10.005
10.1177/8755293020944174
10.1007/s10518-022-01395-y
10.1007/s10518-021-01057-5
10.1016/j.istruc.2021.07.055
10.1016/j.engstruct.2021.113358
10.1193/1.2358176
10.1016/j.cscm.2022.e01420
10.1080/19475705.2022.2077146
10.1007/s10518-021-01063-7
10.1016/j.ijdrr.2023.103617
10.1080/13632460802003785
10.1016/j.istruc.2020.09.048
10.1111/mice.12747
10.1016/j.strusafe.2016.06.008
10.3390/su142316318
10.1016/j.istruc.2021.09.023
10.1016/j.istruc.2022.03.024
10.1016/j.soildyn.2021.106580
10.1002/(SICI)1096-9845(199603)25:3<235::AID-EQE552>3.0.CO;2-3
10.1016/j.soildyn.2023.107864
10.1016/j.engstruct.2021.111874
10.1007/s10518-022-01585-8
10.1002/eqe.3542
10.1080/13632469.2019.1597784
10.1016/j.strusafe.2010.04.004
10.1016/j.ijdrr.2018.11.017
10.1016/j.jobe.2023.106130
10.1016/0167-4730(93)90015-S
10.1016/j.istruc.2023.01.130
10.1080/13632460802211990
10.1007/s10518-018-0499-1
10.1007/s11069-013-0997-z
10.1080/13632469.2019.1692742
10.1016/j.asej.2023.102287
10.1016/j.engstruct.2021.112272
10.1016/j.soildyn.2016.11.004
10.1007/s11431-010-4082-5
10.1007/s00500-006-0063-9
10.1002/eqe.3567
10.1016/j.jobe.2021.103162
10.1193/1.1586168
10.1002/eqe.1169
10.1002/eqe.481
10.1111/mice.12028
10.1193/1.3280115
ContentType Journal Article
Copyright 2023 Taylor & Francis Group, LLC 2023
2023 Taylor & Francis Group, LLC
Copyright_xml – notice: 2023 Taylor & Francis Group, LLC 2023
– notice: 2023 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
DOI 10.1080/13632469.2023.2217945
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1559-808X
EndPage 730
ExternalDocumentID 10_1080_13632469_2023_2217945
2217945
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRAH
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWJ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~02
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
TASJS
ID FETCH-LOGICAL-c338t-b0afaeb1ec4d8e9fa2d907dd43939950abd595a647ccdb41b31c333d77ca73fd3
ISSN 1363-2469
IngestDate Wed Aug 13 07:34:55 EDT 2025
Tue Jul 01 04:15:06 EDT 2025
Thu Apr 24 22:56:45 EDT 2025
Wed Dec 25 09:06:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-b0afaeb1ec4d8e9fa2d907dd43939950abd595a647ccdb41b31c333d77ca73fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2921035334
PQPubID 53172
PageCount 24
ParticipantIDs crossref_citationtrail_10_1080_13632469_2023_2217945
informaworld_taylorfrancis_310_1080_13632469_2023_2217945
proquest_journals_2921035334
crossref_primary_10_1080_13632469_2023_2217945
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-17
PublicationDateYYYYMMDD 2024-02-17
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-17
  day: 17
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of earthquake engineering : JEE
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_3_52_1
e_1_3_3_75_1
e_1_3_3_50_1
Zhang Y. (e_1_3_3_77_1) 1996; 26
e_1_3_3_18_1
e_1_3_3_37_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_58_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_56_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_54_1
e_1_3_3_63_1
e_1_3_3_61_1
China Earthquake Administration and National Bureau of Statistics (e_1_3_3_7_1) 1996
China Earthquake Administration and National Bureau of Statistics (e_1_3_3_9_1) 2005
e_1_3_3_29_1
e_1_3_3_25_1
e_1_3_3_48_1
De Iuliis M. (e_1_3_3_14_1) 2019
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_69_1
e_1_3_3_3_1
e_1_3_3_44_1
e_1_3_3_67_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_65_1
e_1_3_3_30_1
e_1_3_3_51_1
e_1_3_3_78_1
e_1_3_3_70_1
Xu Z. S. (e_1_3_3_71_1) 2001; 16
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_13_1
e_1_3_3_38_1
Li S. Q. (e_1_3_3_39_1) 2022; 22
e_1_3_3_59_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_57_1
e_1_3_3_34_1
e_1_3_3_55_1
e_1_3_3_72_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_53_1
e_1_3_3_74_1
e_1_3_3_41_1
e_1_3_3_62_1
e_1_3_3_60_1
Zhang G. X. (e_1_3_3_76_1) 2018; 35
Yin Z. Q. (e_1_3_3_73_1) 2004
Li S. Q. (e_1_3_3_40_1) 2022; 22
e_1_3_3_6_1
China Earthquake Administration and National Bureau of Statistics (e_1_3_3_8_1) 2001
e_1_3_3_28_1
e_1_3_3_24_1
e_1_3_3_49_1
e_1_3_3_26_1
e_1_3_3_47_1
e_1_3_3_68_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_66_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
References_xml – ident: e_1_3_3_51_1
  doi: 10.1016/j.autcon.2022.104143
– ident: e_1_3_3_23_1
  doi: 10.3390/app10072375
– volume: 22
  start-page: 609
  issue: 6
  year: 2022
  ident: e_1_3_3_39_1
  article-title: Empirical seismic fragility rapid prediction probability model of regional group reinforced concrete girder bridges
  publication-title: Earthquakes and Structures
– ident: e_1_3_3_30_1
  doi: 10.1016/j.strusafe.2014.09.008
– ident: e_1_3_3_49_1
  doi: 10.1016/j.soildyn.2020.106439
– ident: e_1_3_3_68_1
  doi: 10.1007/s10518-015-9759-5
– ident: e_1_3_3_61_1
  doi: 10.1007/s11803-018-0439-8
– ident: e_1_3_3_70_1
  doi: 10.1016/j.soildyn.2012.03.010
– ident: e_1_3_3_2_1
  doi: 10.1016/j.istruc.2022.03.022
– ident: e_1_3_3_50_1
  doi: 10.1016/j.autcon.2020.103490
– ident: e_1_3_3_3_1
  doi: 10.3390/geosciences13010006
– ident: e_1_3_3_44_1
  doi: 10.1016/j.cscm.2022.e01094
– ident: e_1_3_3_6_1
  doi: 10.1007/s10518-021-01222-w
– ident: e_1_3_3_34_1
  doi: 10.1016/j.soildyn.2022.107630
– ident: e_1_3_3_48_1
  doi: 10.1080/15732479.2023.2208565
– ident: e_1_3_3_67_1
  doi: 10.1016/j.strusafe.2019.101909
– ident: e_1_3_3_36_1
  doi: 10.1007/s11069-020-04187-2
– ident: e_1_3_3_11_1
  doi: 10.1016/j.strusafe.2012.09.008
– ident: e_1_3_3_58_1
  doi: 10.1002/eqe.3582
– ident: e_1_3_3_17_1
  doi: 10.1061/(ASCE)ST.1943-541X.0003164
– ident: e_1_3_3_55_1
  doi: 10.1016/j.engstruct.2003.10.005
– volume: 35
  start-page: 185
  issue: 12
  year: 2018
  ident: e_1_3_3_76_1
  article-title: Seismic damage prediction for a single building based on a fuzzy analytical hierarchy approach
  publication-title: Engineering Mechanics
– ident: e_1_3_3_41_1
  doi: 10.1177/8755293020944174
– ident: e_1_3_3_46_1
  doi: 10.1007/s10518-022-01395-y
– ident: e_1_3_3_53_1
  doi: 10.1007/s10518-021-01057-5
– volume-title: Compilation of loss assessment for earthquake disasters in mainland China (2001-2005)
  year: 2005
  ident: e_1_3_3_9_1
– volume: 26
  start-page: 151
  year: 1996
  ident: e_1_3_3_77_1
  article-title: Response analysis for fuzzy stochastic dynamical systems with multiple degrees of freedom
  publication-title: Earthquake Engineering & Structural Dynamics
– ident: e_1_3_3_75_1
  doi: 10.1016/j.istruc.2021.07.055
– ident: e_1_3_3_69_1
  doi: 10.1016/j.engstruct.2021.113358
– ident: e_1_3_3_15_1
  doi: 10.1193/1.2358176
– ident: e_1_3_3_31_1
  doi: 10.1016/j.cscm.2022.e01420
– ident: e_1_3_3_43_1
  doi: 10.1080/19475705.2022.2077146
– ident: e_1_3_3_29_1
  doi: 10.1007/s10518-021-01063-7
– ident: e_1_3_3_37_1
  doi: 10.1016/j.ijdrr.2023.103617
– ident: e_1_3_3_63_1
  doi: 10.1080/13632460802003785
– start-page: 63
  year: 2019
  ident: e_1_3_3_14_1
  article-title: A methodology to estimate the downtime of building structures using fuzzy logic
  publication-title: Atti Del XVIII Convegno ANIDIS L’ingegneria Sismica in Italia: Ascoli Piceno
– ident: e_1_3_3_22_1
  doi: 10.1016/j.istruc.2020.09.048
– ident: e_1_3_3_25_1
  doi: 10.1111/mice.12747
– ident: e_1_3_3_28_1
  doi: 10.1016/j.strusafe.2016.06.008
– ident: e_1_3_3_4_1
  doi: 10.3390/su142316318
– ident: e_1_3_3_47_1
  doi: 10.1016/j.istruc.2021.09.023
– ident: e_1_3_3_45_1
  doi: 10.1016/j.istruc.2022.03.024
– ident: e_1_3_3_19_1
  doi: 10.1016/j.soildyn.2021.106580
– ident: e_1_3_3_78_1
  doi: 10.1002/(SICI)1096-9845(199603)25:3<235::AID-EQE552>3.0.CO;2-3
– ident: e_1_3_3_35_1
  doi: 10.1016/j.soildyn.2023.107864
– ident: e_1_3_3_62_1
  doi: 10.1016/j.engstruct.2021.111874
– ident: e_1_3_3_38_1
  doi: 10.1007/s10518-022-01585-8
– ident: e_1_3_3_74_1
  doi: 10.1002/eqe.3542
– volume-title: Compilation of loss assessment for earthquake disasters in mainland China (1990-1995)
  year: 1996
  ident: e_1_3_3_7_1
– ident: e_1_3_3_16_1
  doi: 10.1080/13632469.2019.1597784
– ident: e_1_3_3_18_1
  doi: 10.1016/j.strusafe.2010.04.004
– ident: e_1_3_3_13_1
  doi: 10.1016/j.ijdrr.2018.11.017
– ident: e_1_3_3_42_1
  doi: 10.1016/j.jobe.2023.106130
– ident: e_1_3_3_12_1
  doi: 10.1016/0167-4730(93)90015-S
– volume: 22
  start-page: 387
  issue: 4
  year: 2022
  ident: e_1_3_3_40_1
  article-title: Assessment of seismic damage inspection and empirical vulnerability probability matrices for masonry structure
  publication-title: Earthquakes and Structures
– ident: e_1_3_3_32_1
  doi: 10.1016/j.istruc.2023.01.130
– ident: e_1_3_3_57_1
  doi: 10.1080/13632460802211990
– ident: e_1_3_3_5_1
  doi: 10.1007/s10518-018-0499-1
– ident: e_1_3_3_72_1
  doi: 10.1007/s11069-013-0997-z
– ident: e_1_3_3_59_1
  doi: 10.1080/13632469.2019.1692742
– volume: 16
  start-page: 311
  issue: 4
  year: 2001
  ident: e_1_3_3_71_1
  article-title: Algorithm for priority of fuzzy complementary judgement matrix
  publication-title: Journal of Systems Engineering
– ident: e_1_3_3_33_1
  doi: 10.1016/j.asej.2023.102287
– ident: e_1_3_3_54_1
  doi: 10.1016/j.engstruct.2021.112272
– ident: e_1_3_3_66_1
  doi: 10.1016/j.soildyn.2016.11.004
– ident: e_1_3_3_60_1
  doi: 10.1007/s11431-010-4082-5
– volume-title: Seismic loss analysis and fortification criterion
  year: 2004
  ident: e_1_3_3_73_1
– ident: e_1_3_3_27_1
  doi: 10.1007/s00500-006-0063-9
– ident: e_1_3_3_26_1
  doi: 10.1002/eqe.3567
– ident: e_1_3_3_52_1
  doi: 10.1016/j.jobe.2021.103162
– ident: e_1_3_3_56_1
  doi: 10.1193/1.1586168
– ident: e_1_3_3_10_1
  doi: 10.1002/eqe.1169
– ident: e_1_3_3_20_1
  doi: 10.1002/eqe.481
– ident: e_1_3_3_24_1
  doi: 10.1111/mice.12028
– volume-title: Compilation of loss assessment for earthquake disasters in mainland China (1996-2000)
  year: 2001
  ident: e_1_3_3_8_1
– ident: e_1_3_3_65_1
  doi: 10.1193/1.3280115
SSID ssj0014736
Score 2.4856942
Snippet Fuzzy decision-making and analytic hierarchical processes are ubiquitously used to predict the seismic damage and vulnerability of building clusters. However,...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 707
SubjectTerms Algorithms
Buildings
Cognitive ability
Damage assessment
Decision analysis
Decision making
Decision theory
Earthquake damage
Earthquakes
Empirical analysis
Fragility
fuzzy correlation weight model
fuzzy membership parameter complementary symmetric matrix
Mathematical models
Multivariate analysis
Multivariate fuzzy membership parameter
Parameters
Prediction models
rapid prediction vulnerability model
Regional development
Seismic activity
Seismic hazard
Seismic surveys
Structures
Vulnerability
vulnerability indices
Title A Simplified Prediction Model of Structural Seismic Vulnerability Considering a Multivariate Fuzzy Membership Algorithm
URI https://www.tandfonline.com/doi/abs/10.1080/13632469.2023.2217945
https://www.proquest.com/docview/2921035334
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgu8AB8VMMBvKBW5WQ2G7THCNoVU3bADWFiktkJ84WUVrYUtD61_Oe4_yoOhhwiaJUjpV-n5-f7fe9R8grLXUWwrLLyYVmjlAh2EGVckcKoXI-UCJNUe98cjqYzMTRvD9vw4qMuqRUbrq5VlfyP6jCM8AVVbL_gGzzUngA94AvXAFhuP4VxlFvWmBEeI5-5PsLPHMxcGKBM-NjTk12WJNZY6qLS4yD_7heYKJpExN71dTrNFLFnlHj_oDVMzigvfF6s7nqnWisGGJCuqLF2eqiKM-__sahhTFTnn9fyy-6p9ssh2bP4WjUCB6mhfOhUmQX3R0HJjBIuRJYGo7EO8U_OhFIaEPxaJiJqgKLq61dxd1Gz1QRbgwvG3YIxjtWNKgK4doJOagObnZsfRUcib1hZy7WgXcZQwPTbye3-kD_9F0ynh0fJ_FoHt8m-wwWFWAV96PJ28-fmlMnEZiSks0H1Iqvoff62m62fJmtTLc7M7txV-L75J6FhUYVaR6QW3r5kNztZJ98RH5GtKUPbelDDX3oKqctfailD92iD-3Qh0rapQ819KEtfWhDn8dkNh7FbyaOrcPhpJwPS0d5Mpcwp-tUZEMd5pJloRdkGfiyKIz2pMr6YV8ORAADWwlfcR8a8iwIUhnwPONPyN5ytdRPCfVFrpSnpC-lRq2eAv_JZ7mEVpx5Ijggov5Hk9QmqcdaKYvEt7lsayASBCKxQBwQt2n2rcrSclODsAtXUhpO5xWdE35D28Ma28Qag8uEhcz3OOran_355-fkTjumDskeAKlfgF9bqpeWjr8A61Kh_w
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VcgAOvBGFAj7AccP6kV32wCECopQ2EVJa1JuxvTZEpAlqNlTJz-Kv8IeY2V1XLQj1gHrgvBpr1vPy2DPfADz3xpcFpl1JUF4kyhboB62TiVHKBplZ5Rz1Ow9H2eBAvT_sHm7Aj9gLQ2WVlEOHBiii9tVk3HQZHUviXnJJIOMZ9ZkI2RGClCoWVu761QmmbYvXO29Rxi-E6L_bfzNI2skCicOUrEpsaoJBL-WdKl_5IhhRYpJYlhidqdUzNbbsFl2TqRxZtYpbyZFQlnnuTC5DKXHdK3C1W2Q52ZZMR6cvFyqvxxISiwnxGLuG_sb2uXh4Di31j-hQh7z-LfgZN6updPnaWVa249a_4Uj-X7t5G262J3DWa0zmDmz42V24cQaX8R6c9Nh4QqX2AQ_o7MMxPWaRAjOaHDdl88DGNewuQZawsZ8sjiaOfVxOCcG7LjZesTgIFddjhtVtzt8NGnvlWX-5Xq_Y0NMoFqqVY73p5_nxpPpydB8OLuXPH8DmbD7zD4FxFaxNreHGeOpis3iy4CIYpJIiVfkWqKgn2rXw7TRFZKp5i_Ia5ahJjrqV4xZ0Tsm-NfglFxEUZ5VQV_XFUWimvGh5Ae121FjdusKFFoXgqaSO70f_sPQzuDbYH-7pvZ3R7mO4jp8U1c7zfBs2UeL-CR4NK_u0tkUGny5bXX8B5Wlp4A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VIiE4lGdFS4E9wNHB-4iNDxwiStRSGlUKRb2ZfUJEmlSNQ5X8K_4Kv4gZ21u1INQD6oGzNav1zszOjD3fNwAvvPauwLIrCcqLRJkC70FjZaKVMkFmRllLeOf9QbZzqN4fdY9W4EfEwlBbJdXQoSGKqO9qcu4TF2JH3CsuiWM8I5iJkB0hyKZiX-WeX5xh1TZ7s7uNKn4pRP_dx7c7STtYILFYkVWJSXXQeEl5q9xrXwQtHNaIzmFwJqRnqo3rFl2dqRx3ahQ3kqOgdHludS6Dk7juDbiZEbCTUCPp4PzHhcrrqYS0xYT2GEFDf9v2pXB4iSz1j-BQR7z-XfgZz6ppdPnWmVemY5e_0Uj-V4d5D9ba_Jv1Goe5Dyt-8gDuXGBlfAhnPTYcUaN9wPScHZzSrywyX0Zz48ZsGtiwJt0lwhI29KPZ8ciyT_Mx8XfXrcYLFseg4npMsxrk_F2jq1ee9efL5YLtexrEQp1yrDf-Mj0dVV-PH8Hhtbz5OqxOphP_GBhXwZjUaK61JwybwbyCi6BRSopU5RugopmUtiVvpxki45K3HK9RjyXpsWz1uAGdc7GThr3kKoHiog2WVf3ZKDQzXkp5hexWNNiyvQhnpSgETyXhvTf_YenncOtgu19-2B3sPYHb-ERR4zzPt2AVFe6fYl5YmWe1JzL4fN3W-gv2_2iE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Simplified+Prediction+Model+of+Structural+Seismic+Vulnerability+Considering+a+Multivariate+Fuzzy+Membership+Algorithm&rft.jtitle=Journal+of+earthquake+engineering+%3A+JEE&rft.au=Si-Qi%2C+Li&rft.date=2024-02-17&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1363-2469&rft.eissn=1559-808X&rft.volume=28&rft.issue=3&rft.spage=707&rft.epage=730&rft_id=info:doi/10.1080%2F13632469.2023.2217945&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1363-2469&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1363-2469&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1363-2469&client=summon