On a solution method in indefinite quadratic programming under linear constraints
We establish some properties of the Proximal Difference-of-Convex functions decomposition algorithm in indefinite quadratic programming under linear constraints. The first property states that any iterative sequence generated by the algorithm is root linearly convergent to a Karush-Kuhn-Tucker point...
Saved in:
Published in | Optimization Vol. 73; no. 4; pp. 1087 - 1112 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
02.04.2024
Taylor & Francis LLC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We establish some properties of the Proximal Difference-of-Convex functions decomposition algorithm in indefinite quadratic programming under linear constraints. The first property states that any iterative sequence generated by the algorithm is root linearly convergent to a Karush-Kuhn-Tucker point, provided that the problem has a solution. The second property says that iterative sequences generated by the algorithm converge to a locally unique solution of the problem if the initial points are taken from a suitably chosen neighbourhood of it. Through a series of numerical tests, we analyse the influence of the decomposition parameter on the rate of convergence of the iterative sequences and compare the performance of the Proximal Difference-of-Convex functions decomposition algorithm with that of the Projection Difference-of-Convex functions decomposition algorithm. In addition, the performances of the above algorithms and the Gurobi software in solving some randomly generated nonconvex quadratic programs are compared. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0233-1934 1029-4945 |
DOI: | 10.1080/02331934.2022.2141056 |