Construction of the average variance extracted index for construct validation in structural equation models with adaptive regressions

A range of indicators, such as the average variance extracted (AVE), is commonly used to validate constructs. In statistics, AVE is a measure of the amount of variance that is captured by a construct in relation to the amount of variance due to measurement error. These conventional indices are forme...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 52; no. 4; pp. 1639 - 1650
Main Authors dos Santos, Patricia Mendes, Cirillo, Marcelo Ângelo
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 03.04.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A range of indicators, such as the average variance extracted (AVE), is commonly used to validate constructs. In statistics, AVE is a measure of the amount of variance that is captured by a construct in relation to the amount of variance due to measurement error. These conventional indices are formed by factor loadings resulting from estimated least squares or maximum likelihood regressions. Thus, a new proposition that provides new factor loadings may result in a more informative AVE index. Consequently, this study consists of the improvement of the index by using adaptive regressions. A Monte Carlo simulation study was performed considering different numbers of outliers generated by distributions with symmetry deviations and excess kurtosis and sample sizes defined as n = 50, 100, and 200. The conclusion was that, in formative structural models, the adaptive linear regression (ALR) method showed good efficiency for correctly specified models. The results obtained from the ALR method for models with specification errors showed low efficiency, as expected.
AbstractList A range of indicators, such as the average variance extracted (AVE), is commonly used to validate constructs. In statistics, AVE is a measure of the amount of variance that is captured by a construct in relation to the amount of variance due to measurement error. These conventional indices are formed by factor loadings resulting from estimated least squares or maximum likelihood regressions. Thus, a new proposition that provides new factor loadings may result in a more informative AVE index. Consequently, this study consists of the improvement of the index by using adaptive regressions. A Monte Carlo simulation study was performed considering different numbers of outliers generated by distributions with symmetry deviations and excess kurtosis and sample sizes defined as n = 50, 100, and 200. The conclusion was that, in formative structural models, the adaptive linear regression (ALR) method showed good efficiency for correctly specified models. The results obtained from the ALR method for models with specification errors showed low efficiency, as expected.
Author dos Santos, Patricia Mendes
Cirillo, Marcelo Ângelo
Author_xml – sequence: 1
  givenname: Patricia Mendes
  orcidid: 0000-0002-6989-7982
  surname: dos Santos
  fullname: dos Santos, Patricia Mendes
  organization: Statistics Department, Federal University of Lavras
– sequence: 2
  givenname: Marcelo Ângelo
  orcidid: 0000-0003-2026-6802
  surname: Cirillo
  fullname: Cirillo, Marcelo Ângelo
  organization: Statistics Department, Federal University of Lavras
BookMark eNqFkc1uEzEURi1UJNLAIyBZYj2p7fnziA0oAopUiQ2srRv7unU1sdNrT9o-AO_NpNNuWMDK0vV3Pusen7OzmCIy9l6KjRRaXIi6k2KQeqOEkhuptZZKvWIr2daqamQjz9jqlKlOoTfsPOdbIUStG71iv7cp5kKTLSFFnjwvN8jhiATXyI9AAaJFjg-FwBZ0PESHD9wn4vYFnGNjcPBUECJfhhPByPFuWsb75HDM_D6UGw4ODiUckRNeE-Y83-e37LWHMeO753PNfn398nN7WV39-PZ9-_mqsnWtSwVod04o3YEYsAWAoW9UWw-2l62wvnc7UGC7dhBSom13Q-u96JVX2inXNU29Zh-W3gOluwlzMbdpojg_aVSvh07Ibu5bs49LylLKmdAbG8rTIrOFMBopzMm7efFuTt7Ns_eZbv-iDxT2QI__5T4tXIiz3j3cJxqdKfA4JvI0f0PIpv53xR-uCJ9t
CitedBy_id crossref_primary_10_1061_JITSE4_ISENG_2395
crossref_primary_10_1080_17517575_2024_2427024
crossref_primary_10_24310_ijtei_101_2024_16950
crossref_primary_10_1108_K_07_2021_0554
crossref_primary_10_1016_j_clet_2025_100901
crossref_primary_10_3390_healthcare13020173
crossref_primary_10_53759_0088_JBSHA202202008
crossref_primary_10_1080_10911359_2024_2439502
crossref_primary_10_1177_02704676241283362
crossref_primary_10_1108_JABES_10_2021_0185
crossref_primary_10_20525_ijrbs_v13i9_3872
crossref_primary_10_1080_08874417_2023_2219668
crossref_primary_10_2478_mmcks_2024_0006
crossref_primary_10_3389_feduc_2022_832644
crossref_primary_10_1007_s10639_025_13347_5
crossref_primary_10_1016_j_actpsy_2025_104780
crossref_primary_10_3389_feduc_2022_880778
crossref_primary_10_1186_s12909_023_04878_x
crossref_primary_10_1080_13527266_2025_2465554
crossref_primary_10_3390_f15060993
crossref_primary_10_1371_journal_pone_0311257
crossref_primary_10_1016_j_actpsy_2023_104025
crossref_primary_10_3389_feduc_2024_1507106
crossref_primary_10_1007_s00146_024_01969_1
crossref_primary_10_31681_jetol_943335
crossref_primary_10_1111_ejed_12927
crossref_primary_10_1177_14673584251316271
crossref_primary_10_1186_s40359_024_01524_z
crossref_primary_10_1016_j_tele_2024_102210
crossref_primary_10_15304_rge_33_3_9714
crossref_primary_10_3389_fpsyg_2024_1437164
crossref_primary_10_55529_jcfmbs_41_50_59
crossref_primary_10_1016_j_indic_2025_100581
crossref_primary_10_1371_journal_pone_0307699
crossref_primary_10_1002_ajcp_12599
crossref_primary_10_1891_PA_2022_0002
crossref_primary_10_1080_10803548_2022_2089468
crossref_primary_10_3389_fpsyg_2022_1063659
crossref_primary_10_1055_a_2112_5105
crossref_primary_10_1080_15290824_2024_2394413
crossref_primary_10_1186_s13690_025_01507_5
crossref_primary_10_55529_jmc_41_10_21
crossref_primary_10_1016_j_actpsy_2025_104790
crossref_primary_10_3390_su17051893
crossref_primary_10_1016_j_ijdrr_2024_104729
crossref_primary_10_1186_s12888_023_05245_2
crossref_primary_10_1038_s41598_024_66047_4
crossref_primary_10_1080_23311975_2023_2216432
crossref_primary_10_5993_AJHB_47_6_16
crossref_primary_10_1108_IJOEM_11_2023_1848
crossref_primary_10_1108_LODJ_06_2023_0295
crossref_primary_10_2478_foli_2024_0030
crossref_primary_10_3390_buildings14030790
crossref_primary_10_1007_s11135_023_01817_2
crossref_primary_10_3846_jbem_2024_21789
crossref_primary_10_1108_JHASS_10_2024_0171
crossref_primary_10_1177_10901981231177075
crossref_primary_10_1007_s10943_024_02119_z
crossref_primary_10_1016_j_ssaho_2024_100884
crossref_primary_10_3390_buildings14030827
crossref_primary_10_1108_JHTI_09_2021_0258
crossref_primary_10_1007_s11126_024_10109_3
crossref_primary_10_1177_02750740241261070
crossref_primary_10_31965_infokes_Vol21_Iss3_1320
crossref_primary_10_1016_j_asej_2024_103228
crossref_primary_10_1017_gmh_2024_15
crossref_primary_10_53973_jopa_2023_58_3_a5
crossref_primary_10_7189_jogh_13_04162
crossref_primary_10_1080_20479700_2024_2390321
crossref_primary_10_1371_journal_pone_0261969
crossref_primary_10_1007_s11115_022_00645_6
crossref_primary_10_3390_su151813648
crossref_primary_10_29333_mathsciteacher_15920
crossref_primary_10_30935_ejimed_12519
crossref_primary_10_1007_s11115_021_00597_3
crossref_primary_10_1007_s11365_023_00860_7
crossref_primary_10_1080_10911359_2024_2447856
crossref_primary_10_15561_20755279_2022_0604
crossref_primary_10_1007_s11356_024_33117_z
Cites_doi 10.1007/s10802-012-9683-y
10.1016/j.jbusres.2008.07.003
10.1590/0102-3772e322225
10.1080/02664769922322
10.1016/j.csda.2019.05.003
10.1207/s15327906mbr2701_5
10.1016/j.jbusres.2009.05.003
10.1002/9781118150740
10.1007/s11747-014-0403-8
10.1080/02664760802382475
10.1016/j.jmva.2016.03.005
10.1080/03610918.2015.1018998
10.1007/s11749-017-0525-7
10.1111/1467-9884.00122
10.2307/3151312
ContentType Journal Article
Copyright 2021 Taylor & Francis Group, LLC 2021
2021 Taylor & Francis Group, LLC
Copyright_xml – notice: 2021 Taylor & Francis Group, LLC 2021
– notice: 2021 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610918.2021.1888122
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 1650
ExternalDocumentID 10_1080_03610918_2021_1888122
1888122
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-aecbd0286a09e5aaa9742539c7150cf7dba2ac659011ec5b95ff072f28d2d6443
ISSN 0361-0918
IngestDate Wed Aug 13 11:12:40 EDT 2025
Tue Jul 01 02:09:42 EDT 2025
Thu Apr 24 23:08:04 EDT 2025
Wed Dec 25 09:05:01 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-aecbd0286a09e5aaa9742539c7150cf7dba2ac659011ec5b95ff072f28d2d6443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2026-6802
0000-0002-6989-7982
PQID 2789601625
PQPubID 186203
PageCount 12
ParticipantIDs informaworld_taylorfrancis_310_1080_03610918_2021_1888122
crossref_citationtrail_10_1080_03610918_2021_1888122
crossref_primary_10_1080_03610918_2021_1888122
proquest_journals_2789601625
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-03
PublicationDateYYYYMMDD 2023-04-03
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-03
  day: 03
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0001
CIT0012
CIT0011
R Core Team (CIT0100) 2019
Leroy A. M. (CIT0010) 1987
CIT0003
CIT0014
CIT0002
CIT0013
CIT0005
CIT0016
CIT0004
CIT0015
CIT0007
CIT0006
CIT0009
CIT0008
References_xml – ident: CIT0012
  doi: 10.1007/s10802-012-9683-y
– ident: CIT0002
  doi: 10.1016/j.jbusres.2008.07.003
– ident: CIT0013
  doi: 10.1590/0102-3772e322225
– ident: CIT0003
  doi: 10.1080/02664769922322
– ident: CIT0014
  doi: 10.1016/j.csda.2019.05.003
– volume-title: R: A language and environment for statistical computing
  year: 2019
  ident: CIT0100
– ident: CIT0011
  doi: 10.1207/s15327906mbr2701_5
– ident: CIT0005
  doi: 10.1016/j.jbusres.2009.05.003
– ident: CIT0009
  doi: 10.1002/9781118150740
– volume-title: Robust regression and outlier detection. Wiley series in probability and mathematical statistics
  year: 1987
  ident: CIT0010
– ident: CIT0007
  doi: 10.1007/s11747-014-0403-8
– ident: CIT0001
  doi: 10.1080/02664760802382475
– ident: CIT0015
  doi: 10.1016/j.jmva.2016.03.005
– ident: CIT0004
  doi: 10.1080/03610918.2015.1018998
– ident: CIT0016
  doi: 10.1007/s11749-017-0525-7
– ident: CIT0008
  doi: 10.1111/1467-9884.00122
– ident: CIT0006
  doi: 10.2307/3151312
SSID ssj0003848
Score 2.6047153
Snippet A range of indicators, such as the average variance extracted (AVE), is commonly used to validate constructs. In statistics, AVE is a measure of the amount of...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1639
SubjectTerms Adaptive regression
Error analysis
Kurtosis
Monte Carlo simulation
Multivariate statistical analysis
Outliers
Outliers (statistics)
Structural equation model
Structural equation modeling
Structural models
Variance
Title Construction of the average variance extracted index for construct validation in structural equation models with adaptive regressions
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2021.1888122
https://www.proquest.com/docview/2789601625
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbKclkOPAqIhQX5wK1KVdtxmhzRCrRC6l7alfYW2bGDKpW2u-0ixJ1fxZ9jxo_UVVdaHherSuI07XwZj-2Z7yPkPbxEjWllnhmrdJYzzTIloZG6HSttmDRObGJyUZxf5p-v5FWv9yvJWrrd6mHz4866kn-xKhwDu2KV7F9YtrspHIDPYF9owcLQ_pGNUW0z8r_GzX4FvwLzcL7BJNiVA4D3dZTMSLJk7HeXV9jEjnDZYu5llXDlwx90TBz22pOAe62cWARn1NrlGt3YLz6BNiz2Ra6DtNxk4--I5RPIBT0cTOdfg1hYrKZb3-5nApjVZjBFWeNEPmCuMPXW7HIdz-Y387BjNMFKzcVqgNv9Jcf83FW6jMGFy34RHfBmB4oiiSMUBcsgrvF-2kZHzQFanjQrenLJE8TmiVuGoLNKhnhWeLLbg-Ej5FsK5KBnmPjH2ZCVJQRBfDdedlmM4cwD8pDDHAXlM8ToogsDROmk27qHj-VjSOx-1xfsBUZ7tLkHYYKLfWZPyeMwaaEfPAKfkZ5d9smTKAhCw_jQJ48mHQnwpk-Op53tn5OfKVbpqqVwIQ1YpRGrtMMqdVil8HS0wyrdYRVO0x1WacQq9ViliFUasUoTrL4gl58-zs7OsyABkjVClNtM2UYbCIELNaqsVErB9JdLUTVjmMg07dhoxVVTuAJq20hdybYdjXnLS8MNhPriJTlarpb2FaFtUeWqYpzltsgrIXTFtVWV5kzDNCMXJySP_3_dBH58lGlZ1CzS6Aaz1Wi2OpjthAy7bmtPEHNfhyo1br11yG896GtxT9_TiIQ6-KFNjbXsSKrE5ev_uPUbcrx7LU_JEdjQvoV4e6vfOVz_BhKH12w
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09bxQxELVQUhCKBA4QIQGmoN3jbK934xIhogNyVyVSOsufCBFdEu6SIj3_mxl7fUpAKEWaLXY91u6O_Txjjd9j7D1OIh-SapsQrWta7nhjFV6US711gauQxSZm82560n49Vae3zsJQWSXl0KkQRWSspslNm9G1JO4Doi7xWVJlluBjjkkcFwjDm0p3PakYyMl8jcbyICtokUlDNvUUz_-6ubM-3WEv_Qet8xJ0uMN8fflSefJzfLVyY3_zF6_jw77uKdseIlT4WIbUM_YoLkZsp6o_wAAGI_ZktmZ8XY7YFkWthfT5OftNMqCVmBbOE2BDsDhpELzgGrNzGmqAy0Lmig6QKRsB_wH4aojNzn4UvSd8DOUmUYRAvCzs5JBFfJZAO8lgg70g4IZf8Xup7F0sX7CTw8_Hn6bNoPfQeEyUV42N3gWMdzo70VFZazHXEUpq32PU6lMfnBXWd_m0bPTKaZXSpBdJHAQRMK6TL9nG4nwRXzFInW6t5oK3sWu1lE4LF612gjuMKVu5y9rqZeMHMnTS5DgzvHKmDl4w5AUzeGGXjddmF4UN5D4DfXsImVXehklFM8XIe2z363gzA7AsDR1cJgYdoV4_oOt37PH0eHZkjr7Mv-2xLXwkczWS3Gcb6M_4BgOtlXubZ9IfXSAcRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1VRarKoYUFRGkBH7hmWdtxtj5WwKq0dMWBStwsfyLUars0Cwfu_G9m7HhFQaiHXnJIPFaSsZ9nrPF7AK9wEvmQVNuEaF3Tcscbq_CiXJpaF7gKWWzibN4dn7cnn1WtJuyHskrKoVMhishYTZN7GVKtiHuNoEt0llSYJfiYYw7HBaLwvY7Iw-kUx2S-BmN5mAW0yKQhm3qI53_d3FiebpCX_gPWeQWa7YKr714KTy7G31du7H_-Ret4p497ADtDfMqOyoB6CBtxMYLdqv3ABigYwf2zNd9rP4JtilkL5fMj-EUioJWWll0lhg2ZxSmD0MV-YG5OA43hopCZogPLhI0MfwHz1RCbXX4tak_4mJWbRBDC4rfCTc6yhE_PaB-Z2WCXBNvsOn4pdb2L_jGcz959enPcDGoPjcc0edXY6F3AaKezEx2VtRYzHaGk9lOMWX2aBmeF9V0-Kxu9clqlNJmKJA6DCBjVySewubhaxKfAUqdbq7ngbexaLaXTwkWrneAOI8pW7kFbnWz8QIVOihyXhlfG1MELhrxgBi_swXhttixcILcZ6D9HkFnlTZhUFFOMvMX2oA43M8BKb-jYMvHnCPXsDl2_hK2Pb2fmw_v56T5s4xOZS5HkAWyiO-NzjLJW7kWeR78Bwc8a6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+the+average+variance+extracted+index+for+construct+validation+in+structural+equation+models+with+adaptive+regressions&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=dos+Santos%2C+Patricia+Mendes&rft.au=Cirillo%2C+Marcelo+%C3%82ngelo&rft.date=2023-04-03&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=52&rft.issue=4&rft.spage=1639&rft.epage=1650&rft_id=info:doi/10.1080%2F03610918.2021.1888122&rft.externalDocID=1888122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon