Construction of the average variance extracted index for construct validation in structural equation models with adaptive regressions
A range of indicators, such as the average variance extracted (AVE), is commonly used to validate constructs. In statistics, AVE is a measure of the amount of variance that is captured by a construct in relation to the amount of variance due to measurement error. These conventional indices are forme...
Saved in:
Published in | Communications in statistics. Simulation and computation Vol. 52; no. 4; pp. 1639 - 1650 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
03.04.2023
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A range of indicators, such as the average variance extracted (AVE), is commonly used to validate constructs. In statistics, AVE is a measure of the amount of variance that is captured by a construct in relation to the amount of variance due to measurement error. These conventional indices are formed by factor loadings resulting from estimated least squares or maximum likelihood regressions. Thus, a new proposition that provides new factor loadings may result in a more informative AVE index. Consequently, this study consists of the improvement of the index by using adaptive regressions. A Monte Carlo simulation study was performed considering different numbers of outliers generated by distributions with symmetry deviations and excess kurtosis and sample sizes defined as n = 50, 100, and 200. The conclusion was that, in formative structural models, the adaptive linear regression (ALR) method showed good efficiency for correctly specified models. The results obtained from the ALR method for models with specification errors showed low efficiency, as expected. |
---|---|
AbstractList | A range of indicators, such as the average variance extracted (AVE), is commonly used to validate constructs. In statistics, AVE is a measure of the amount of variance that is captured by a construct in relation to the amount of variance due to measurement error. These conventional indices are formed by factor loadings resulting from estimated least squares or maximum likelihood regressions. Thus, a new proposition that provides new factor loadings may result in a more informative AVE index. Consequently, this study consists of the improvement of the index by using adaptive regressions. A Monte Carlo simulation study was performed considering different numbers of outliers generated by distributions with symmetry deviations and excess kurtosis and sample sizes defined as n = 50, 100, and 200. The conclusion was that, in formative structural models, the adaptive linear regression (ALR) method showed good efficiency for correctly specified models. The results obtained from the ALR method for models with specification errors showed low efficiency, as expected. |
Author | dos Santos, Patricia Mendes Cirillo, Marcelo Ângelo |
Author_xml | – sequence: 1 givenname: Patricia Mendes orcidid: 0000-0002-6989-7982 surname: dos Santos fullname: dos Santos, Patricia Mendes organization: Statistics Department, Federal University of Lavras – sequence: 2 givenname: Marcelo Ângelo orcidid: 0000-0003-2026-6802 surname: Cirillo fullname: Cirillo, Marcelo Ângelo organization: Statistics Department, Federal University of Lavras |
BookMark | eNqFkc1uEzEURi1UJNLAIyBZYj2p7fnziA0oAopUiQ2srRv7unU1sdNrT9o-AO_NpNNuWMDK0vV3Pusen7OzmCIy9l6KjRRaXIi6k2KQeqOEkhuptZZKvWIr2daqamQjz9jqlKlOoTfsPOdbIUStG71iv7cp5kKTLSFFnjwvN8jhiATXyI9AAaJFjg-FwBZ0PESHD9wn4vYFnGNjcPBUECJfhhPByPFuWsb75HDM_D6UGw4ODiUckRNeE-Y83-e37LWHMeO753PNfn398nN7WV39-PZ9-_mqsnWtSwVod04o3YEYsAWAoW9UWw-2l62wvnc7UGC7dhBSom13Q-u96JVX2inXNU29Zh-W3gOluwlzMbdpojg_aVSvh07Ibu5bs49LylLKmdAbG8rTIrOFMBopzMm7efFuTt7Ns_eZbv-iDxT2QI__5T4tXIiz3j3cJxqdKfA4JvI0f0PIpv53xR-uCJ9t |
CitedBy_id | crossref_primary_10_1061_JITSE4_ISENG_2395 crossref_primary_10_1080_17517575_2024_2427024 crossref_primary_10_24310_ijtei_101_2024_16950 crossref_primary_10_1108_K_07_2021_0554 crossref_primary_10_1016_j_clet_2025_100901 crossref_primary_10_3390_healthcare13020173 crossref_primary_10_53759_0088_JBSHA202202008 crossref_primary_10_1080_10911359_2024_2439502 crossref_primary_10_1177_02704676241283362 crossref_primary_10_1108_JABES_10_2021_0185 crossref_primary_10_20525_ijrbs_v13i9_3872 crossref_primary_10_1080_08874417_2023_2219668 crossref_primary_10_2478_mmcks_2024_0006 crossref_primary_10_3389_feduc_2022_832644 crossref_primary_10_1007_s10639_025_13347_5 crossref_primary_10_1016_j_actpsy_2025_104780 crossref_primary_10_3389_feduc_2022_880778 crossref_primary_10_1186_s12909_023_04878_x crossref_primary_10_1080_13527266_2025_2465554 crossref_primary_10_3390_f15060993 crossref_primary_10_1371_journal_pone_0311257 crossref_primary_10_1016_j_actpsy_2023_104025 crossref_primary_10_3389_feduc_2024_1507106 crossref_primary_10_1007_s00146_024_01969_1 crossref_primary_10_31681_jetol_943335 crossref_primary_10_1111_ejed_12927 crossref_primary_10_1177_14673584251316271 crossref_primary_10_1186_s40359_024_01524_z crossref_primary_10_1016_j_tele_2024_102210 crossref_primary_10_15304_rge_33_3_9714 crossref_primary_10_3389_fpsyg_2024_1437164 crossref_primary_10_55529_jcfmbs_41_50_59 crossref_primary_10_1016_j_indic_2025_100581 crossref_primary_10_1371_journal_pone_0307699 crossref_primary_10_1002_ajcp_12599 crossref_primary_10_1891_PA_2022_0002 crossref_primary_10_1080_10803548_2022_2089468 crossref_primary_10_3389_fpsyg_2022_1063659 crossref_primary_10_1055_a_2112_5105 crossref_primary_10_1080_15290824_2024_2394413 crossref_primary_10_1186_s13690_025_01507_5 crossref_primary_10_55529_jmc_41_10_21 crossref_primary_10_1016_j_actpsy_2025_104790 crossref_primary_10_3390_su17051893 crossref_primary_10_1016_j_ijdrr_2024_104729 crossref_primary_10_1186_s12888_023_05245_2 crossref_primary_10_1038_s41598_024_66047_4 crossref_primary_10_1080_23311975_2023_2216432 crossref_primary_10_5993_AJHB_47_6_16 crossref_primary_10_1108_IJOEM_11_2023_1848 crossref_primary_10_1108_LODJ_06_2023_0295 crossref_primary_10_2478_foli_2024_0030 crossref_primary_10_3390_buildings14030790 crossref_primary_10_1007_s11135_023_01817_2 crossref_primary_10_3846_jbem_2024_21789 crossref_primary_10_1108_JHASS_10_2024_0171 crossref_primary_10_1177_10901981231177075 crossref_primary_10_1007_s10943_024_02119_z crossref_primary_10_1016_j_ssaho_2024_100884 crossref_primary_10_3390_buildings14030827 crossref_primary_10_1108_JHTI_09_2021_0258 crossref_primary_10_1007_s11126_024_10109_3 crossref_primary_10_1177_02750740241261070 crossref_primary_10_31965_infokes_Vol21_Iss3_1320 crossref_primary_10_1016_j_asej_2024_103228 crossref_primary_10_1017_gmh_2024_15 crossref_primary_10_53973_jopa_2023_58_3_a5 crossref_primary_10_7189_jogh_13_04162 crossref_primary_10_1080_20479700_2024_2390321 crossref_primary_10_1371_journal_pone_0261969 crossref_primary_10_1007_s11115_022_00645_6 crossref_primary_10_3390_su151813648 crossref_primary_10_29333_mathsciteacher_15920 crossref_primary_10_30935_ejimed_12519 crossref_primary_10_1007_s11115_021_00597_3 crossref_primary_10_1007_s11365_023_00860_7 crossref_primary_10_1080_10911359_2024_2447856 crossref_primary_10_15561_20755279_2022_0604 crossref_primary_10_1007_s11356_024_33117_z |
Cites_doi | 10.1007/s10802-012-9683-y 10.1016/j.jbusres.2008.07.003 10.1590/0102-3772e322225 10.1080/02664769922322 10.1016/j.csda.2019.05.003 10.1207/s15327906mbr2701_5 10.1016/j.jbusres.2009.05.003 10.1002/9781118150740 10.1007/s11747-014-0403-8 10.1080/02664760802382475 10.1016/j.jmva.2016.03.005 10.1080/03610918.2015.1018998 10.1007/s11749-017-0525-7 10.1111/1467-9884.00122 10.2307/3151312 |
ContentType | Journal Article |
Copyright | 2021 Taylor & Francis Group, LLC 2021 2021 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2021 Taylor & Francis Group, LLC 2021 – notice: 2021 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/03610918.2021.1888122 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1532-4141 |
EndPage | 1650 |
ExternalDocumentID | 10_1080_03610918_2021_1888122 1888122 |
Genre | Research Article |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM LJTGL M4Z NA5 NY~ O9- P2P QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c338t-aecbd0286a09e5aaa9742539c7150cf7dba2ac659011ec5b95ff072f28d2d6443 |
ISSN | 0361-0918 |
IngestDate | Wed Aug 13 11:12:40 EDT 2025 Tue Jul 01 02:09:42 EDT 2025 Thu Apr 24 23:08:04 EDT 2025 Wed Dec 25 09:05:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-aecbd0286a09e5aaa9742539c7150cf7dba2ac659011ec5b95ff072f28d2d6443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2026-6802 0000-0002-6989-7982 |
PQID | 2789601625 |
PQPubID | 186203 |
PageCount | 12 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_03610918_2021_1888122 crossref_citationtrail_10_1080_03610918_2021_1888122 crossref_primary_10_1080_03610918_2021_1888122 proquest_journals_2789601625 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-03 |
PublicationDateYYYYMMDD | 2023-04-03 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in statistics. Simulation and computation |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0001 CIT0012 CIT0011 R Core Team (CIT0100) 2019 Leroy A. M. (CIT0010) 1987 CIT0003 CIT0014 CIT0002 CIT0013 CIT0005 CIT0016 CIT0004 CIT0015 CIT0007 CIT0006 CIT0009 CIT0008 |
References_xml | – ident: CIT0012 doi: 10.1007/s10802-012-9683-y – ident: CIT0002 doi: 10.1016/j.jbusres.2008.07.003 – ident: CIT0013 doi: 10.1590/0102-3772e322225 – ident: CIT0003 doi: 10.1080/02664769922322 – ident: CIT0014 doi: 10.1016/j.csda.2019.05.003 – volume-title: R: A language and environment for statistical computing year: 2019 ident: CIT0100 – ident: CIT0011 doi: 10.1207/s15327906mbr2701_5 – ident: CIT0005 doi: 10.1016/j.jbusres.2009.05.003 – ident: CIT0009 doi: 10.1002/9781118150740 – volume-title: Robust regression and outlier detection. Wiley series in probability and mathematical statistics year: 1987 ident: CIT0010 – ident: CIT0007 doi: 10.1007/s11747-014-0403-8 – ident: CIT0001 doi: 10.1080/02664760802382475 – ident: CIT0015 doi: 10.1016/j.jmva.2016.03.005 – ident: CIT0004 doi: 10.1080/03610918.2015.1018998 – ident: CIT0016 doi: 10.1007/s11749-017-0525-7 – ident: CIT0008 doi: 10.1111/1467-9884.00122 – ident: CIT0006 doi: 10.2307/3151312 |
SSID | ssj0003848 |
Score | 2.6047153 |
Snippet | A range of indicators, such as the average variance extracted (AVE), is commonly used to validate constructs. In statistics, AVE is a measure of the amount of... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1639 |
SubjectTerms | Adaptive regression Error analysis Kurtosis Monte Carlo simulation Multivariate statistical analysis Outliers Outliers (statistics) Structural equation model Structural equation modeling Structural models Variance |
Title | Construction of the average variance extracted index for construct validation in structural equation models with adaptive regressions |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610918.2021.1888122 https://www.proquest.com/docview/2789601625 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbKclkOPAqIhQX5wK1KVdtxmhzRCrRC6l7alfYW2bGDKpW2u-0ixJ1fxZ9jxo_UVVdaHherSuI07XwZj-2Z7yPkPbxEjWllnhmrdJYzzTIloZG6HSttmDRObGJyUZxf5p-v5FWv9yvJWrrd6mHz4866kn-xKhwDu2KV7F9YtrspHIDPYF9owcLQ_pGNUW0z8r_GzX4FvwLzcL7BJNiVA4D3dZTMSLJk7HeXV9jEjnDZYu5llXDlwx90TBz22pOAe62cWARn1NrlGt3YLz6BNiz2Ra6DtNxk4--I5RPIBT0cTOdfg1hYrKZb3-5nApjVZjBFWeNEPmCuMPXW7HIdz-Y387BjNMFKzcVqgNv9Jcf83FW6jMGFy34RHfBmB4oiiSMUBcsgrvF-2kZHzQFanjQrenLJE8TmiVuGoLNKhnhWeLLbg-Ej5FsK5KBnmPjH2ZCVJQRBfDdedlmM4cwD8pDDHAXlM8ToogsDROmk27qHj-VjSOx-1xfsBUZ7tLkHYYKLfWZPyeMwaaEfPAKfkZ5d9smTKAhCw_jQJ48mHQnwpk-Op53tn5OfKVbpqqVwIQ1YpRGrtMMqdVil8HS0wyrdYRVO0x1WacQq9ViliFUasUoTrL4gl58-zs7OsyABkjVClNtM2UYbCIELNaqsVErB9JdLUTVjmMg07dhoxVVTuAJq20hdybYdjXnLS8MNhPriJTlarpb2FaFtUeWqYpzltsgrIXTFtVWV5kzDNCMXJySP_3_dBH58lGlZ1CzS6Aaz1Wi2OpjthAy7bmtPEHNfhyo1br11yG896GtxT9_TiIQ6-KFNjbXsSKrE5ev_uPUbcrx7LU_JEdjQvoV4e6vfOVz_BhKH12w |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09bxQxELVQUhCKBA4QIQGmoN3jbK934xIhogNyVyVSOsufCBFdEu6SIj3_mxl7fUpAKEWaLXY91u6O_Txjjd9j7D1OIh-SapsQrWta7nhjFV6US711gauQxSZm82560n49Vae3zsJQWSXl0KkQRWSspslNm9G1JO4Doi7xWVJlluBjjkkcFwjDm0p3PakYyMl8jcbyICtokUlDNvUUz_-6ubM-3WEv_Qet8xJ0uMN8fflSefJzfLVyY3_zF6_jw77uKdseIlT4WIbUM_YoLkZsp6o_wAAGI_ZktmZ8XY7YFkWthfT5OftNMqCVmBbOE2BDsDhpELzgGrNzGmqAy0Lmig6QKRsB_wH4aojNzn4UvSd8DOUmUYRAvCzs5JBFfJZAO8lgg70g4IZf8Xup7F0sX7CTw8_Hn6bNoPfQeEyUV42N3gWMdzo70VFZazHXEUpq32PU6lMfnBXWd_m0bPTKaZXSpBdJHAQRMK6TL9nG4nwRXzFInW6t5oK3sWu1lE4LF612gjuMKVu5y9rqZeMHMnTS5DgzvHKmDl4w5AUzeGGXjddmF4UN5D4DfXsImVXehklFM8XIe2z363gzA7AsDR1cJgYdoV4_oOt37PH0eHZkjr7Mv-2xLXwkczWS3Gcb6M_4BgOtlXubZ9IfXSAcRw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1VRarKoYUFRGkBH7hmWdtxtj5WwKq0dMWBStwsfyLUars0Cwfu_G9m7HhFQaiHXnJIPFaSsZ9nrPF7AK9wEvmQVNuEaF3Tcscbq_CiXJpaF7gKWWzibN4dn7cnn1WtJuyHskrKoVMhishYTZN7GVKtiHuNoEt0llSYJfiYYw7HBaLwvY7Iw-kUx2S-BmN5mAW0yKQhm3qI53_d3FiebpCX_gPWeQWa7YKr714KTy7G31du7H_-Ret4p497ADtDfMqOyoB6CBtxMYLdqv3ABigYwf2zNd9rP4JtilkL5fMj-EUioJWWll0lhg2ZxSmD0MV-YG5OA43hopCZogPLhI0MfwHz1RCbXX4tak_4mJWbRBDC4rfCTc6yhE_PaB-Z2WCXBNvsOn4pdb2L_jGcz959enPcDGoPjcc0edXY6F3AaKezEx2VtRYzHaGk9lOMWX2aBmeF9V0-Kxu9clqlNJmKJA6DCBjVySewubhaxKfAUqdbq7ngbexaLaXTwkWrneAOI8pW7kFbnWz8QIVOihyXhlfG1MELhrxgBi_swXhttixcILcZ6D9HkFnlTZhUFFOMvMX2oA43M8BKb-jYMvHnCPXsDl2_hK2Pb2fmw_v56T5s4xOZS5HkAWyiO-NzjLJW7kWeR78Bwc8a6w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+the+average+variance+extracted+index+for+construct+validation+in+structural+equation+models+with+adaptive+regressions&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=dos+Santos%2C+Patricia+Mendes&rft.au=Cirillo%2C+Marcelo+%C3%82ngelo&rft.date=2023-04-03&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=52&rft.issue=4&rft.spage=1639&rft.epage=1650&rft_id=info:doi/10.1080%2F03610918.2021.1888122&rft.externalDocID=1888122 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon |