Nonlinear convective nanofluid flow in an annular region of two concentric cylinders with generalized Fourier law: An application of Hamilton-Crosser nanofluid model

The current study focuses on nonlinear convective nanofluid (MoS 2 vacuum pump oil) flow with different shapes in an annular region across coaxial cylinders in a permeable media. At the interface of coaxial cylinders velocity slip and temperature jump conditions are incorporated. The phenomenon of t...

Full description

Saved in:
Bibliographic Details
Published inNumerical heat transfer. Part A, Applications Vol. 84; no. 11; pp. 1383 - 1400
Main Authors Ramzan, Muhammad, Shaheen, Naila, Ghazwani, Hassan Ali S., Kadry, Seifedine
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.12.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The current study focuses on nonlinear convective nanofluid (MoS 2 vacuum pump oil) flow with different shapes in an annular region across coaxial cylinders in a permeable media. At the interface of coaxial cylinders velocity slip and temperature jump conditions are incorporated. The phenomenon of thermal transport is enhanced by amalgamating generalized Fourier law with variable thermal conductivity. The Hamilton-Crosser nanofluid flow model is adopted here. The nonlinear equations that govern the flow are simplified via a similarity transformation. For the numerical solution, the bvp4c algorithm is utilized. Graphical analysis is employed to illustrate how important factors affect the temperature and velocity fields. Computational values of the drag force coefficient and Nusselt number are summarized in tabular form. The study reveals that the velocity field upsurges on enhancing the nonlinear convective and radii ratio parameters. On amplifying the rarefaction and thermal conductivity parameters, the thermal field upsurges. Skin friction coefficient exhibits a decreasing behavior on incrementing the porosity parameter. Heat flux diminishes more rapidly by boosting the concentration of nanoparticles. A considerable correlation is apparent graphically and in tabular form by comparing the results of the current investigation with published studies.
AbstractList The current study focuses on nonlinear convective nanofluid (MoS2 vacuum pump oil) flow with different shapes in an annular region across coaxial cylinders in a permeable media. At the interface of coaxial cylinders velocity slip and temperature jump conditions are incorporated. The phenomenon of thermal transport is enhanced by amalgamating generalized Fourier law with variable thermal conductivity. The Hamilton-Crosser nanofluid flow model is adopted here. The nonlinear equations that govern the flow are simplified via a similarity transformation. For the numerical solution, the bvp4c algorithm is utilized. Graphical analysis is employed to illustrate how important factors affect the temperature and velocity fields. Computational values of the drag force coefficient and Nusselt number are summarized in tabular form. The study reveals that the velocity field upsurges on enhancing the nonlinear convective and radii ratio parameters. On amplifying the rarefaction and thermal conductivity parameters, the thermal field upsurges. Skin friction coefficient exhibits a decreasing behavior on incrementing the porosity parameter. Heat flux diminishes more rapidly by boosting the concentration of nanoparticles. A considerable correlation is apparent graphically and in tabular form by comparing the results of the current investigation with published studies.
The current study focuses on nonlinear convective nanofluid (MoS 2 vacuum pump oil) flow with different shapes in an annular region across coaxial cylinders in a permeable media. At the interface of coaxial cylinders velocity slip and temperature jump conditions are incorporated. The phenomenon of thermal transport is enhanced by amalgamating generalized Fourier law with variable thermal conductivity. The Hamilton-Crosser nanofluid flow model is adopted here. The nonlinear equations that govern the flow are simplified via a similarity transformation. For the numerical solution, the bvp4c algorithm is utilized. Graphical analysis is employed to illustrate how important factors affect the temperature and velocity fields. Computational values of the drag force coefficient and Nusselt number are summarized in tabular form. The study reveals that the velocity field upsurges on enhancing the nonlinear convective and radii ratio parameters. On amplifying the rarefaction and thermal conductivity parameters, the thermal field upsurges. Skin friction coefficient exhibits a decreasing behavior on incrementing the porosity parameter. Heat flux diminishes more rapidly by boosting the concentration of nanoparticles. A considerable correlation is apparent graphically and in tabular form by comparing the results of the current investigation with published studies.
Author Ghazwani, Hassan Ali S.
Shaheen, Naila
Kadry, Seifedine
Ramzan, Muhammad
Author_xml – sequence: 1
  givenname: Muhammad
  orcidid: 0000-0002-9523-5800
  surname: Ramzan
  fullname: Ramzan, Muhammad
  organization: Department of Computer Science, Bahria University
– sequence: 2
  givenname: Naila
  surname: Shaheen
  fullname: Shaheen, Naila
  organization: Department of Mechanical Engineering, Faculty of Engineering, Jazan University
– sequence: 3
  givenname: Hassan Ali S.
  surname: Ghazwani
  fullname: Ghazwani, Hassan Ali S.
  organization: Department of Mechanical Engineering, Faculty of Engineering, Jazan University
– sequence: 4
  givenname: Seifedine
  surname: Kadry
  fullname: Kadry, Seifedine
  organization: Department of Electrical and Computer Engineering, Lebanese American University
BookMark eNp9kUtLxDAUhYMo-PwJQsB1xzzapnWlDL5AdKPrkKY3GskkY5qxjP_H_2nKjLjzEkgC3zn3wDlEuz54QOiUkhklDTmnpCRCNGzGCOMzRkUlynYHHdCK0YLUvNzN78wUE7SPDofhneRhrD1A34_BO-tBRayD_wSd7Cdgr3wwbmV7bFwYsfVYTcevXOYivNrgcTA4jWFSafApWo31Ojv1EAc82vSGX8FDVM5-QY9vwipaiNip8QJfZa_l0lmt0tboTi2sS8EX8xiGIXN_ARahB3eM9oxyA5xs7yP0cnP9PL8rHp5u7-dXD4XmvEmF6su2JwbqnuhKdNCpqgOqOetqXgstOtWIStXcAMvDp08LXEDZVg2nxvAjdLbxXcbwsYIhyfcc3OeVkjWiFnVNK5GpakPpKW0EI5fRLlRcS0rk1Ij8bUROjchtI1l3udFZb0JcqDFE18uk1i5EE5XXdpD8f4sfFAiYTw
CitedBy_id crossref_primary_10_1007_s11771_023_5339_z
crossref_primary_10_1080_10407790_2023_2252597
crossref_primary_10_1080_10407782_2023_2235074
Cites_doi 10.1016/j.icheatmasstransfer.2021.105677
10.1016/j.csite.2022.101837
10.1016/j.matcom.2021.02.005
10.1002/htj.22033
10.3390/coatings11121490
10.1007/s10973-021-10573-0
10.1115/1.1571080
10.1016/j.cjph.2021.07.030
10.1016/j.rinp.2017.08.001
10.1038/s41598-022-05703-z
10.1063/1.1602578
10.1016/j.jppr.2018.04.004
10.2298/TSCI21S2411A
10.1080/17455030.2021.2024300
10.1371/journal.pone.0264208
10.1016/j.powtec.2018.12.071
10.1016/j.mechrescom.2008.11.003
10.1038/s41598-020-65648-z
10.1080/01457632.2021.1919973
10.1016/j.aej.2021.11.004
10.1016/j.csite.2022.102361
10.1007/s10973-021-10586-9
10.1016/j.ijft.2022.100151
10.1063/1.1341218
10.1063/1.1454184
10.1016/j.expthermflusci.2009.01.005
10.1063/1.1613374
10.1007/s40819-021-01207-y
10.1142/S0217979221501769
10.1016/j.aej.2021.08.047
10.1063/1.1408272
10.1016/j.aej.2022.06.058
10.1016/j.ijheatmasstransfer.2006.09.034
10.1016/j.jksus.2014.12.002
10.1002/mma.7756
10.1016/j.icheatmasstransfer.2021.105240
10.1021/i160003a005
10.1016/j.aej.2022.01.067
10.1515/nleng-2020-0010
10.1371/journal.pone.0265026
10.3390/molecules26123711
10.1016/j.icheatmasstransfer.2022.105962
10.1063/1.2093936
10.1109/ACCESS.2021.3051740
10.1140/epjp/s13360-021-01106-7
10.1016/j.icheatmasstransfer.2022.105920
10.1115/1.2150834
10.1177/09576509221117936
10.1016/j.rinp.2020.103812
10.3390/nano11071735
ContentType Journal Article
Copyright 2023 Taylor & Francis Group, LLC 2023
2023 Taylor & Francis Group, LLC
Copyright_xml – notice: 2023 Taylor & Francis Group, LLC 2023
– notice: 2023 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/10407782.2023.2175749
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1521-0634
EndPage 1400
ExternalDocumentID 10_1080_10407782_2023_2175749
2175749
Genre Articles
GroupedDBID -~X
.7F
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJVF
ABLIJ
ABPEM
ABPTK
ABQHQ
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
DKSSO
EAP
EBS
EST
ESX
E~A
E~B
FUNRP
FVPDL
GEVLZ
GTTXZ
HF~
HZ~
H~P
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEN
TFL
TFT
TFW
TNC
TTHFI
TWF
UT5
UU3
V1K
ZGOLN
~02
~S~
AAYXX
ABPAQ
CITATION
DGEBU
H13
NX~
TBQAZ
TUROJ
7SC
7TB
8FD
EMK
EPL
FR3
H8D
I-F
JQ2
KR7
L7M
L~C
L~D
TUS
ID FETCH-LOGICAL-c338t-ad49d0fe6d0c57beba5be1c32b6367c7ba875a63fe22223875a9e37e495831ff3
ISSN 1040-7782
IngestDate Thu Aug 29 12:22:32 EDT 2024
Fri Aug 23 03:11:07 EDT 2024
Sun Oct 15 04:10:27 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-ad49d0fe6d0c57beba5be1c32b6367c7ba875a63fe22223875a9e37e495831ff3
ORCID 0000-0002-9523-5800
PQID 2876766157
PQPubID 53105
PageCount 18
ParticipantIDs proquest_journals_2876766157
crossref_primary_10_1080_10407782_2023_2175749
informaworld_taylorfrancis_310_1080_10407782_2023_2175749
PublicationCentury 2000
PublicationDate 2023-12-02
PublicationDateYYYYMMDD 2023-12-02
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-02
  day: 02
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Numerical heat transfer. Part A, Applications
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_3_52_1
e_1_3_3_50_1
e_1_3_3_18_1
e_1_3_3_39_1
Cattaneo C. (e_1_3_3_35_1) 1948; 3
e_1_3_3_37_1
e_1_3_3_16_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_56_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_54_1
e_1_3_3_40_1
Fourier J. B. J. (e_1_3_3_34_1) 1822
e_1_3_3_7_1
e_1_3_3_9_1
e_1_3_3_29_1
e_1_3_3_25_1
e_1_3_3_48_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_30_1
e_1_3_3_51_1
e_1_3_3_17_1
Kanimozhi B. (e_1_3_3_11_1) 2022
Gambo D. (e_1_3_3_41_1) 2021; 4
e_1_3_3_19_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_57_1
e_1_3_3_55_1
e_1_3_3_32_1
e_1_3_3_53_1
Choi S. U. (e_1_3_3_14_1) 1995; 66
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_28_1
e_1_3_3_24_1
e_1_3_3_49_1
e_1_3_3_26_1
e_1_3_3_47_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
References_xml – ident: e_1_3_3_6_1
  doi: 10.1016/j.icheatmasstransfer.2021.105677
– ident: e_1_3_3_53_1
  doi: 10.1016/j.csite.2022.101837
– ident: e_1_3_3_56_1
  doi: 10.1016/j.matcom.2021.02.005
– ident: e_1_3_3_47_1
  doi: 10.1002/htj.22033
– ident: e_1_3_3_32_1
  doi: 10.3390/coatings11121490
– ident: e_1_3_3_37_1
  doi: 10.1007/s10973-021-10573-0
– ident: e_1_3_3_20_1
  doi: 10.1115/1.1571080
– ident: e_1_3_3_29_1
  doi: 10.1016/j.cjph.2021.07.030
– ident: e_1_3_3_49_1
  doi: 10.1016/j.rinp.2017.08.001
– ident: e_1_3_3_43_1
  doi: 10.1038/s41598-022-05703-z
– ident: e_1_3_3_26_1
  doi: 10.1063/1.1602578
– ident: e_1_3_3_48_1
  doi: 10.1016/j.jppr.2018.04.004
– ident: e_1_3_3_16_1
  doi: 10.2298/TSCI21S2411A
– ident: e_1_3_3_30_1
  doi: 10.1080/17455030.2021.2024300
– ident: e_1_3_3_42_1
  doi: 10.1371/journal.pone.0264208
– ident: e_1_3_3_33_1
  doi: 10.1016/j.powtec.2018.12.071
– ident: e_1_3_3_36_1
  doi: 10.1016/j.mechrescom.2008.11.003
– ident: e_1_3_3_54_1
  doi: 10.1038/s41598-020-65648-z
– ident: e_1_3_3_2_1
  doi: 10.1080/01457632.2021.1919973
– ident: e_1_3_3_9_1
  doi: 10.1016/j.aej.2021.11.004
– ident: e_1_3_3_55_1
  doi: 10.1016/j.csite.2022.102361
– ident: e_1_3_3_38_1
  doi: 10.1007/s10973-021-10586-9
– ident: e_1_3_3_8_1
  doi: 10.1016/j.ijft.2022.100151
– ident: e_1_3_3_23_1
  doi: 10.1063/1.1341218
– volume: 4
  year: 2021
  ident: e_1_3_3_41_1
  article-title: Analysis of free convective hydromagnetic flow of heat generating/absorbing fluid in an annulus with isothermal and adiabatic boundaries
  publication-title: Partial Different. Eq. Appl. Math.
  contributor:
    fullname: Gambo D.
– ident: e_1_3_3_24_1
  doi: 10.1063/1.1454184
– volume: 3
  start-page: 83
  year: 1948
  ident: e_1_3_3_35_1
  article-title: Sulla conduzione del calore
  publication-title: Atti Sem. Mat. Fis. Univ. Modena
  contributor:
    fullname: Cattaneo C.
– ident: e_1_3_3_52_1
  doi: 10.1016/j.expthermflusci.2009.01.005
– ident: e_1_3_3_25_1
  doi: 10.1063/1.1613374
– ident: e_1_3_3_12_1
  doi: 10.1007/s40819-021-01207-y
– ident: e_1_3_3_40_1
  doi: 10.1142/S0217979221501769
– volume: 66
  start-page: 99
  year: 1995
  ident: e_1_3_3_14_1
  article-title: Enhancing thermal conductivity of fluids with nanoparticles
  publication-title: Develop. Appl. Non-Newtonian Flow.
  contributor:
    fullname: Choi S. U.
– ident: e_1_3_3_3_1
  doi: 10.1016/j.aej.2021.08.047
– ident: e_1_3_3_19_1
  doi: 10.1063/1.1408272
– ident: e_1_3_3_51_1
  doi: 10.1016/j.aej.2022.06.058
– ident: e_1_3_3_21_1
– ident: e_1_3_3_18_1
  doi: 10.1016/j.ijheatmasstransfer.2006.09.034
– volume-title: Théorie analytique de la chaleur
  year: 1822
  ident: e_1_3_3_34_1
  contributor:
    fullname: Fourier J. B. J.
– ident: e_1_3_3_50_1
  doi: 10.1016/j.jksus.2014.12.002
– ident: e_1_3_3_45_1
  doi: 10.1002/mma.7756
– ident: e_1_3_3_5_1
  doi: 10.1016/j.icheatmasstransfer.2021.105240
– ident: e_1_3_3_22_1
  doi: 10.1021/i160003a005
– ident: e_1_3_3_10_1
  doi: 10.1016/j.aej.2022.01.067
– start-page: 1
  year: 2022
  ident: e_1_3_3_11_1
  article-title: Coupled buoyancy and Marangoni convection in a hybrid nanofluid-filled cylindrical porous annulus with a circular thin baffle
  publication-title: European Phys. J. Special Topics
  contributor:
    fullname: Kanimozhi B.
– ident: e_1_3_3_57_1
  doi: 10.1515/nleng-2020-0010
– ident: e_1_3_3_4_1
  doi: 10.1371/journal.pone.0265026
– ident: e_1_3_3_46_1
  doi: 10.3390/molecules26123711
– ident: e_1_3_3_31_1
  doi: 10.1016/j.icheatmasstransfer.2022.105962
– ident: e_1_3_3_27_1
  doi: 10.1063/1.2093936
– ident: e_1_3_3_44_1
  doi: 10.1109/ACCESS.2021.3051740
– ident: e_1_3_3_13_1
  doi: 10.1140/epjp/s13360-021-01106-7
– ident: e_1_3_3_15_1
  doi: 10.1016/j.icheatmasstransfer.2022.105920
– ident: e_1_3_3_17_1
  doi: 10.1115/1.2150834
– ident: e_1_3_3_7_1
  doi: 10.1177/09576509221117936
– ident: e_1_3_3_28_1
  doi: 10.1016/j.rinp.2020.103812
– ident: e_1_3_3_39_1
  doi: 10.3390/nano11071735
SSID ssj0000229
Score 2.4304292
Snippet The current study focuses on nonlinear convective nanofluid (MoS 2 vacuum pump oil) flow with different shapes in an annular region across coaxial cylinders in...
The current study focuses on nonlinear convective nanofluid (MoS2 vacuum pump oil) flow with different shapes in an annular region across coaxial cylinders in...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 1383
SubjectTerms Algorithms
Coefficient of friction
Concentric cylinders
Drag
Fluid flow
Fourier law
generalized Fourier law
Heat conductivity
Heat flux
Heat transfer
Mathematical models
nanofluid
Nanofluids
Nanoparticles
nonlinear convective flow
Nonlinear equations
Parameters
Rarefaction
Skin friction
Thermal conductivity
Transport phenomena
Vacuum pumps
variable thermal conductivity
Velocity distribution
Title Nonlinear convective nanofluid flow in an annular region of two concentric cylinders with generalized Fourier law: An application of Hamilton-Crosser nanofluid model
URI https://www.tandfonline.com/doi/abs/10.1080/10407782.2023.2175749
https://www.proquest.com/docview/2876766157/abstract/
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swEBZdx2B7GFu3sW7d0MPegj1biq14b6GsK4PmpSn0zci2tBgcpyQOYfl_9jfudXeSYrttYL_AmMSJZZH7cvfd6XRHyAcdxFoUcejlxQgcFBEEXjIsYi9hWD8tEzI2e6suJvH51fDrdXR9cPCzl7W0bjI_3-7dV_IvUoVrIFfcJfsXkm0HhQvwGuQLZ5AwnP9IxhNb50IubfK4UV2DWtYLXa3LYqCrxQbjGRKP2uSbYh8GyxCbzQLvMsmZZT7Iv1el2ediI7PfbDXqcgt89My1tavkxoURe6veZiEAgyTYivgUTS58s5uCabTTJ8CTtV0iMjswG-xQAbxZLX2gsstmMDaqqrem3i1Dzbc2VHuxnsn5XBZtaGgmZ8rqzoksq9bKfJnJ7cY2rIIJrlbwI4yrcnDptyZGFjaF4FKVGk246kdAGDfZJJ2_PL3XjKSnz03CpLD9jXzldDzDZC8XQ3VGwPap24E97Kn0kNtOO44egEMa7DU9NlcTH4jP83GiPvh7kbAlWe9U9XafPCAPmUgijBrwYNJRCGba67Wz3209GwUf9z7gFqm6VXL3HsUwvGn6jDx1Dg8dW_Q-JweqPiJPemUwj8gjk4acr16QHy2iaYdo2sKJIqJpWVOJh0E0tYimC00B0bRDNG0RTRHRtIdo6hBNAdGf6BjG6hCHA93Fc28CBs8vydXZ5-npuecaiXg556PGk8UwKQKt4iLII5GpTEaZCnPOspjHIheZBK9dxlwrhnQZ3ySKCzVMohEPteavyGG9qNVrQmEolemIa8bVUGQ6kTrOmQadpnJesPCY-DtJpDe2XkwaujK8O9GlKLrUie6YJH15pY1Bs7ZATvlv7j3ZCTd1ammVMuA3Alh3JN78x9BvyePur3ZCDpvlWr0D-t1k7w1UfwGWJN0I
link.rule.ids 315,786,790,27957,27958,60241,61030
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-0ItoHP6piteo--JqQZJPdxrdSPE5t76mFvi37KcEjkTbHYf8f_8_ObBLuqogPhUAIyU4-Zne-8psZgI8hE0E6kSfWHaKDIrMsqUsnkrqg-mlGahFzq04XYn5efr2oLrZyYQhWST50GApFRFlNi5uC0RMkDvfohqBqS6n3d4pGdSXL-j48EKhwaHHybLGRxkXsVJZH5ByOmbJ4_kXmln66Vb30L2kdVdDsKdjp4QfkyY901ZvUXv9R1_Fub_cMnowWKjsaptRzuOfbPdjdqlu4Bw8jbtRevYDfi-Ee-pJF_HqUnqzVbReWq8axsOzWrGmZpq0lyCujVhBdy7rA-nVHoyI-tLHM_lo2MdWGUXCYfR8KYjfX3rHZ0FmPLfX6EztCWpvf7kRoTlEa6oV8TN8Ur9s8QOz08xLOZ5_PjufJ2Pkhsegy94l2Ze2y4IXLbCWNN7oyPre8MIILaaXR6GZpwYMvyL6hg9pz6dHbO-R5CPwV7LRd618DQ1LehIqHgvtSmlDrIGwRcBJ6y12R70M68Vv9HAp8qHysmzpxQhEn1MiJfai3Z4XqY2QlDG1QFP_P2INpCqlRVlwp9FmFRDOpkm_uQPoDPJqfnZ6oky-Lb2_hMZ2KqJviAHb6y5V_h7ZTb97HxXEDfsYPew
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEQgOPAqohQI-cE2UxIndcKsKq-W14kAlbpZfU0Wskqqb1ar9P_xPPE6ibUGIQ6VIUZR44mSc8YzzzXwAbzETKJ3IE-sOQ4AisyypSyeSuqD6aUZqEXOrvi7E_KT89KOa0ISrEVZJMTQOhSKiraaP-8zhhIgL-xCFhJktJervNPjUlSzr23BHEGUWZXFki60xLiJRWR6Bc6HNlMTzLzHXpqdrxUv_MtZxBpo9AjP1fQCe_EzXvUnt5R9lHW_0cI_h4eifsqNhQD2BW77dhQdXqhbuwt2IGrWrp_BrMdxCn7OIXo-2k7W67XC5bhzDZbdhTcs0bS0BXhkRQXQt65D1m45aRXRoY5m9WDYx0YbR0jA7HcphN5fesdnAq8eWevOOHQVZ25_uJGhOazTEhHxMrzRct-1A5Pl5BiezD9-P58nI-5DYEDD3iXZl7TL0wmW2ksYbXRmfW14YwYW00ugQZGnB0Rfk3dBB7bn0IdY75Dkifw47bdf6PWBBlDdYcSy4L6XBWqOwBYYh6C13Rb4P6aRudTaU91D5WDV10oQiTahRE_tQXx0Uqo_rKjiQoCj-n7YH0whSo6VYqRCxChmcpEq-uIHoN3Dv2_uZ-vJx8fkl3KczEXJTHMBOf772r4Lj1JvX8dP4DTxVDig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+convective+nanofluid+flow+in+an+annular+region+of+two+concentric+cylinders+with+generalized+Fourier+law%3A+An+application+of+Hamilton-Crosser+nanofluid+model&rft.jtitle=Numerical+heat+transfer.+Part+A%2C+Applications&rft.au=Ramzan%2C+Muhammad&rft.au=Shaheen%2C+Naila&rft.au=Ghazwani%2C+Hassan+Ali+S.&rft.au=Kadry%2C+Seifedine&rft.date=2023-12-02&rft.pub=Taylor+%26+Francis&rft.issn=1040-7782&rft.eissn=1521-0634&rft.volume=84&rft.issue=11&rft.spage=1383&rft.epage=1400&rft_id=info:doi/10.1080%2F10407782.2023.2175749&rft.externalDocID=2175749
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-7782&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-7782&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-7782&client=summon