Control strategies for dynamic motorway traffic subject to flow uncertainties

This paper analyses the performance of motorway control strategies subject to real-time flow measurement and modeling uncertainties. The control strategies are derived and tested on the cell transmission model with which global optimal solutions can be derived through solving linear programs. In par...

Full description

Saved in:
Bibliographic Details
Published inTransportmetrica. (Abingdon, Oxfordshire, UK) Vol. 7; no. 1; pp. 559 - 575
Main Authors Li, Ying, Chow, Andy H. F., Zhong, Renxin
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 23.12.2019
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper analyses the performance of motorway control strategies subject to real-time flow measurement and modeling uncertainties. The control strategies are derived and tested on the cell transmission model with which global optimal solutions can be derived through solving linear programs. In particular, we present an adaptive control strategy which incorporates prevailing variations in traffic flow through a rolling horizon optimization framework. This adaptive strategy is compared with a min-max robust control formulation on a Monte Carlo stochastic simulation test bed. The robust control delivers the best performance in terms of minimizing delay variability due to its underlying conservativeness, while it comes at the expense of overall delay reduction. In contrast, the adaptive controller outperforms the robust controller in terms of delay reduction. Nevertheless, the benefit gained from the adaptive control diminishes as the motorway system gets saturated with traffic. It is also found that the adaptive controller is not effective in improving travel time reliability, at least under recurrent conditions. The findings reveal the limitation of adaptive control and provide insight to control design and infrastructure planning concerning installation of an advanced traffic control system.
AbstractList This paper analyses the performance of motorway control strategies subject to real-time flow measurement and modeling uncertainties. The control strategies are derived and tested on the cell transmission model with which global optimal solutions can be derived through solving linear programs. In particular, we present an adaptive control strategy which incorporates prevailing variations in traffic flow through a rolling horizon optimization framework. This adaptive strategy is compared with a min-max robust control formulation on a Monte Carlo stochastic simulation test bed. The robust control delivers the best performance in terms of minimizing delay variability due to its underlying conservativeness, while it comes at the expense of overall delay reduction. In contrast, the adaptive controller outperforms the robust controller in terms of delay reduction. Nevertheless, the benefit gained from the adaptive control diminishes as the motorway system gets saturated with traffic. It is also found that the adaptive controller is not effective in improving travel time reliability, at least under recurrent conditions. The findings reveal the limitation of adaptive control and provide insight to control design and infrastructure planning concerning installation of an advanced traffic control system.
Author Chow, Andy H. F.
Li, Ying
Zhong, Renxin
Author_xml – sequence: 1
  givenname: Ying
  surname: Li
  fullname: Li, Ying
  organization: School of Information Engineering, Chang'an University
– sequence: 2
  givenname: Andy H. F.
  orcidid: 0000-0002-2877-357X
  surname: Chow
  fullname: Chow, Andy H. F.
  email: andychow@cityu.edu.hk
  organization: Systems Engineering and Engineering Management, City University of Hong Kong
– sequence: 3
  givenname: Renxin
  surname: Zhong
  fullname: Zhong, Renxin
  organization: Research Center of Intelligent Transportation System, Sun Yat-sen University
BookMark eNqFkMtKAzEUhoNUsNY-gjDgujWXSZrBjVK8QcWNrkMmk0jKTFKTDGXe3gytLlxoNif8Od855DsHE-edBuASwSWCHF5jxDikjC0xRHyJynJVIngCpmO-gJTjyc-dsTMwj3EL8-G8RJRMwcvauxR8W8QUZNIfVsfC-FA0g5OdVUXnkw97ORT52ZgcxL7eapWK5AvT-n3RO6VDktaljF6AUyPbqOfHOgPvD_dv66fF5vXxeX23WShCeFrIXBoNGWdUk5pVsqxoWWJjENc5xrVhHOsKE0UbiJqaSN1UpFYVNYxJrMkMXB3m7oL_7HVMYuv74PJKgQmp4ApxjHPXzaFLBR9j0EYom2Sy44-lbQWCYlQovhWKUaE4Ksw0_UXvgu1kGP7lbg-cdVlkJ_c-tI1Icmh9MEE6ZaMgf4_4Ah8Kinc
CitedBy_id crossref_primary_10_1002_rnc_5237
crossref_primary_10_1155_2023_6672303
crossref_primary_10_2174_2212797613666200210113800
crossref_primary_10_1051_e3sconf_202337103072
crossref_primary_10_34220_2311_8873_2022_80_90
Cites_doi 10.1098/rspa.1955.0088
10.1287/opre.4.1.42
10.1016/S0167-6377(99)00016-4
10.1016/j.trc.2009.06.003
10.1080/18128600902717483
10.1007/978-0-387-74388-2
10.1016/j.trc.2008.11.002
10.1177/0361198106195900110
10.1002/atr.1334
10.1016/j.trc.2011.08.007
10.1016/j.trc.2015.03.029
10.1016/j.trc.2015.01.009
10.1016/j.trb.2010.09.006
10.1007/BF01448839
10.3141/2470-13
10.1002/atr.5670360307
10.1016/j.trc.2006.08.001
10.1016/S0191-2615(98)00042-3
10.1109/TITS.2014.2310454
10.1080/23249935.2015.1114977
10.1002/atr.1241
10.1080/23249935.2013.871094
10.3141/2644-11
10.1080/18128602.2012.751680
10.1023/A:1011537329508
10.1016/j.trb.2017.02.006
10.1016/j.trb.2008.03.005
10.1080/0144164042000195072
10.1111/gean.12026
10.1061/(ASCE)TE.1943-5436.0000781
10.1016/0191-2615(94)90002-7
10.17265/2159-5313/2016.09.003
10.1287/trsc.34.1.37.12281
10.14257/ijt.2014.2.2.02
10.14257/ijt.2014.2.2.05
10.1109/TITS.2002.806803
ContentType Journal Article
Copyright 2018 Hong Kong Society for Transportation Studies Limited 2018
2018 Hong Kong Society for Transportation Studies Limited
Copyright_xml – notice: 2018 Hong Kong Society for Transportation Studies Limited 2018
– notice: 2018 Hong Kong Society for Transportation Studies Limited
DBID AAYXX
CITATION
DOI 10.1080/21680566.2018.1447410
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 2168-0582
EndPage 575
ExternalDocumentID 10_1080_21680566_2018_1447410
1447410
Genre Article
GrantInformation_xml – fundername: Royal Society
  funderid: 10.13039/501100000288
– fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 0BK
0R~
30N
4.4
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABLIJ
ABPAQ
ABXUL
ABXYU
ACGFS
ACIWK
ADCVX
ADGTB
AEOZL
AGDLA
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
BLEHA
CCCUG
DEAQA
DGEBU
EBS
EUPTU
GTTXZ
H13
HZ~
KYCEM
LJTGL
M4Z
O9-
RIG
RNANH
ROSJB
RTWRZ
SNACF
SOJIQ
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
ZGOLN
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AMPGV
CITATION
TASJS
ID FETCH-LOGICAL-c338t-ac33de06865e3b69a495442ff18ee062bf682e923c5d01db3aed93bc95f66a2e3
ISSN 2168-0566
IngestDate Wed Aug 13 07:14:21 EDT 2025
Tue Jul 01 01:16:37 EDT 2025
Thu Apr 24 22:50:53 EDT 2025
Wed Dec 25 09:08:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-ac33de06865e3b69a495442ff18ee062bf682e923c5d01db3aed93bc95f66a2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2877-357X
PQID 2339071822
PQPubID 2043357
PageCount 17
ParticipantIDs proquest_journals_2339071822
crossref_citationtrail_10_1080_21680566_2018_1447410
crossref_primary_10_1080_21680566_2018_1447410
informaworld_taylorfrancis_310_1080_21680566_2018_1447410
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-23
PublicationDateYYYYMMDD 2019-12-23
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-23
  day: 23
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Transportmetrica. (Abingdon, Oxfordshire, UK)
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT00016
CIT00038
CIT00015
CIT00037
CIT00014
CIT00036
CIT00013
CIT00035
Powell W. (CIT00034) 2010
CIT00011
CIT00033
CIT00010
CIT00032
CIT00031
CIT00019
CIT00018
CIT00017
CIT00039
Ahmed A. (CIT0002) 2016; 4
CIT00040
CIT00027
CIT00026
CIT00025
CIT00024
CIT00023
CIT00045
CIT00022
CIT00044
CIT0001
CIT00021
CIT00043
CIT00020
CIT00042
Bertsekas D. (CIT0005) 2005; 1
CIT00029
CIT00028
Chow A. H. F. (CIT00012) 2015; 3
CIT0003
CIT00030
CIT0004
CIT0007
CIT0006
CIT0009
Zhang H. (CIT00041) 2013; 1
CIT0008
References_xml – ident: CIT00026
  doi: 10.1098/rspa.1955.0088
– ident: CIT00035
  doi: 10.1287/opre.4.1.42
– ident: CIT0004
  doi: 10.1016/S0167-6377(99)00016-4
– ident: CIT0001
  doi: 10.1016/j.trc.2009.06.003
– ident: CIT0008
  doi: 10.1080/18128600902717483
– ident: CIT00037
  doi: 10.1007/978-0-387-74388-2
– ident: CIT00018
– ident: CIT00033
  doi: 10.1016/j.trc.2008.11.002
– ident: CIT00014
– ident: CIT00023
  doi: 10.1177/0361198106195900110
– ident: CIT00042
  doi: 10.1002/atr.1334
– ident: CIT00022
  doi: 10.1016/j.trc.2011.08.007
– ident: CIT00030
  doi: 10.1016/j.trc.2015.03.029
– ident: CIT0009
  doi: 10.1016/j.trc.2015.01.009
– ident: CIT0006
– ident: CIT00036
  doi: 10.1016/j.trb.2010.09.006
– volume: 1
  volume-title: Dynamic Programming and Optimal Control
  year: 2005
  ident: CIT0005
– volume: 1
  start-page: 33
  issue: 1
  year: 2013
  ident: CIT00041
  publication-title: Transportmetrica B
– ident: CIT00016
  doi: 10.1007/BF01448839
– ident: CIT00024
  doi: 10.3141/2470-13
– ident: CIT00028
  doi: 10.1002/atr.5670360307
– ident: CIT00020
  doi: 10.1016/j.trc.2006.08.001
– ident: CIT00027
  doi: 10.1016/S0191-2615(98)00042-3
– ident: CIT00010
  doi: 10.1109/TITS.2014.2310454
– ident: CIT00044
  doi: 10.1080/23249935.2015.1114977
– ident: CIT00040
– ident: CIT00015
  doi: 10.1002/atr.1241
– ident: CIT00043
  doi: 10.1080/23249935.2013.871094
– ident: CIT00031
  doi: 10.3141/2644-11
– ident: CIT0003
  doi: 10.1080/18128602.2012.751680
– ident: CIT00021
  doi: 10.1023/A:1011537329508
– ident: CIT00013
  doi: 10.1016/j.trb.2017.02.006
– volume: 3
  start-page: 169
  issue: 3
  year: 2015
  ident: CIT00012
  publication-title: Transportmetrica B
– ident: CIT00039
  doi: 10.1016/j.trb.2008.03.005
– volume-title: Approximate Dynamic Programming – Solving the Curses of Dimensionality
  year: 2010
  ident: CIT00034
– ident: CIT00038
  doi: 10.1080/0144164042000195072
– ident: CIT0007
  doi: 10.1111/gean.12026
– ident: CIT00011
  doi: 10.1061/(ASCE)TE.1943-5436.0000781
– volume: 4
  start-page: 23
  issue: 1
  year: 2016
  ident: CIT0002
  publication-title: Transportmetrica B
– ident: CIT00017
  doi: 10.1016/0191-2615(94)90002-7
– ident: CIT00025
  doi: 10.17265/2159-5313/2016.09.003
– ident: CIT00045
  doi: 10.1287/trsc.34.1.37.12281
– ident: CIT00019
  doi: 10.14257/ijt.2014.2.2.02
– ident: CIT00029
  doi: 10.14257/ijt.2014.2.2.05
– ident: CIT00032
  doi: 10.1109/TITS.2002.806803
SSID ssj0000884153
Score 2.1707904
Snippet This paper analyses the performance of motorway control strategies subject to real-time flow measurement and modeling uncertainties. The control strategies are...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 559
SubjectTerms Adaptive control
Adaptive ramp metering
cell transmission model
Computer simulation
Controllers
Delay
Flow measurement
optimal control
Optimization
Reliability aspects
Roads & highways
Robust control
robust optimization
rolling horizon
Traffic control
Traffic flow
Traffic planning
Travel time
Uncertainty analysis
Title Control strategies for dynamic motorway traffic subject to flow uncertainties
URI https://www.tandfonline.com/doi/abs/10.1080/21680566.2018.1447410
https://www.proquest.com/docview/2339071822
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgHOCC-CkGA_nArUpJYieNj9O0qYKuSKiVChcrjm3QNFK0Zhrjr-e92E5SdWLAJa1c2an8Ptuf7e-9R8hbkydVbrmOJiVnEa9SFZWiVNEk1jAAjWCWozfy6TyfLvn7Vbbqr2Ja75JGjatfN_qV_I9VoQzsil6y_2DZrlEogO9gX3iCheH5VzY-8jrzTRMCPrSqQe2yzI_ACuuLq_Ia80BgpIjR5lLhsQvyTXu-vhrBmuYUAU2QEp4NVjBk5t8x4VZVjpGIHsIm-qvP_eH8DLuT7eWHwYnCrBUIfA5rYqsd8HEea309mvZi4i_fvCD4k6l_-hDg_gQiadMnOCfhFjOLnWQgA0USzGNpkhcR8Cwf8XpYVmxNxJMdvLlJNXMxw3cme6eOxKawdZTpFXhXDRwp7le3cKM__yhPlrOZXByvFnfJvRR2FZjwgsXz7kgOJlygM6hJ6P5y8Pkq4nc3vmeLzWzFut1Z21vCsnhEHvqdBj10sHlM7pj6CbkfHNE3T8mphw_t4UOhZerhQwN8qIcP9fChzZoifOgWfJ6R5cnx4mga-ewaUcVY0UQlfGiDHkKZYSoXJWyVOU-tTQoDxamyeZEa4P9VpuNEK1YaLZiqRGbzvEwNe0726nVtXhBqhSmMSKCW0lxZ3HNzEfOKaQUbYlHsEx56SVY-9DxmQDmXiY9QGzpXYudK37n7ZNxV--Fir9xWQQxNIJsWmdaBUrJb6h4Ee0k_xDcyZUwABwcS_fLPP78iD_qRcUD2motL8xrYaqPetBj7DWqmjpg
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDGXhjSgU8MCaksSOG4-oApVHO4HEZsWvBdSiJlUFv567PCoKQh06RbJ1lnN-3MN33xFy5URkhOc26GWcBdzEOshkpoNeaOEAOsk8x2zk4UgMXvjDa_L6IxcGwyrRhvYVUER5V-PhRmd0ExJ3HUciBcGNEQZRis-TIBbBbN9KpOhhFQMWjhZ-FjhFIKPwoRmpAiRrEnn-G2lJRC0BmP65sEspdLdLTDP_KvjkrTsrdNd8_YJ2XO8H98hOraTSm2pX7ZMNNz4grSaHOT8kw34V4U7zooGaoDB_aqv69hTWfzKdZ58UuhGjguYzjQ4fWkyof5_MKUjTKhYB8VyPyMvd7XN_ENSFGQIDFm0RZPCxDpNLEse0kBlYWZzH3kepg-ZYe5HGDlRHk9gwspplzkqmjUy8EFns2DHZHE_G7oRQL13qZARU2nLt0VzjMuSGWQ22lEzbhDdroUyNWo7FM95VVIObNrxSyCtV86pNuguyjwq2YxWB_LnQqij9Jb4qbqLYCtpOsytUfQPkKmZMgvoG-tfpGkNfktbgefiknu5Hj2dkG7rK4hUx65DNYjpz56ARFfqi3PLffUr8Cw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6ioF58i29z8Nq1bdLYHEVdfO3iwQVvoWmSi7Jdtl0W_fXOtM3iKuLBU6FlQppkMjPJN98QcmZFlAvHTXCRcRbwPNZBJjMdXIQGFNBK5jhmI_f64nbA718SjyYsW1glxtCuIYqo92pU7pFxHhF3HkciBbuNAIMoxdtJsIoQtS8JJA_HLI6wPztmASUCE4X3zCgVoJjP4_mtpTkLNcdf-mO_ro1Qd51o3_0Ge_LamVS6k398Y3b81_9tkLXWRaWXzZraJAt2uEVWfAZzuU16Vw2-nZaVJ5qg0H1qmur2FGa_GE-zdwqfkaGClhONxz20Kqh7K6YUbGmDREA21x0y6N48X90GbVmGIId4tgoyeBiLqSWJZVrIDGIszmPnotTC61g7kcYWHMc8MWFkNMuskUznMnFCZLFlu2RxWAztHqFO2tTKCKS04dphsMZlyHNmNERSMt0n3E-FylvOciyd8aailtrUj5XCsVLtWO2Tzkxs1JB2_CUgv86zqurTEteUNlHsD9kjvyhUq_-lihmT4LyB93Xwj6ZPyfLTdVc93vUfDskqfKkrV8TsiCxW44k9Bneo0if1gv8EWqb6rw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+strategies+for+dynamic+motorway+traffic+subject+to+flow+uncertainties&rft.jtitle=Transportmetrica.+%28Abingdon%2C+Oxfordshire%2C+UK%29&rft.au=Li%2C+Ying&rft.au=Chow%2C+Andy+H+F&rft.au=Zhong%2C+Renxin&rft.date=2019-12-23&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=2168-0566&rft.eissn=2168-0582&rft.volume=7&rft.issue=1&rft.spage=559&rft_id=info:doi/10.1080%2F21680566.2018.1447410&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-0566&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-0566&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-0566&client=summon