Organocatalysis: A recent development on stereoselective synthesis of o-glycosides

Organocatalysis is the use of non-stoichiometric amounts of low-molecular-weight organic molecules made up of C, H, N, O, S, and P to accelerate stereoselective chemical transformations. Despite having a long history, the use of small organic molecules as chiral catalysts in enantioselective synthes...

Full description

Saved in:
Bibliographic Details
Published inCatalysis reviews. Science and engineering Vol. 66; no. 1; pp. 1 - 118
Main Authors Yadav, Ram Naresh, Hossain, Md. Firoj, Das, Aparna, Srivastava, Ashok Kumar, Banik, Bimal Krishna
Format Journal Article
LanguageEnglish
Published New York Taylor & Francis 02.01.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organocatalysis is the use of non-stoichiometric amounts of low-molecular-weight organic molecules made up of C, H, N, O, S, and P to accelerate stereoselective chemical transformations. Despite having a long history, the use of small organic molecules as chiral catalysts in enantioselective synthesis has only recently intrigued scientists interest. However, in synthetic and medicinal chemistry, there has been a resurgence of interest in performing asymmetric synthesis of a variety of important targets by utilizing an organocatalytic approach as a leading reaction. The development of an asymmetric protocol for the synthesis of enantioenriched molecules of therapeutic relevance is crucial in the development of new drug candidates. Modern asymmetric catalysis is based on three pillars: (i) biocatalysts (i.e., enzymes), (ii) transition metal catalysis, and (iii) organocatalysis. Among these catalytic systems, organocatalysis has become the most flourishing field within the field of a catalytic regime that offers many significant benefits to synthetic and medicinal chemists. In contrast to many metal-based catalytic models, most organocatalysts have a high tolerance capability for air and moisture, easy availability, easy handling, non-toxic and enantiomeric purity, etc. They are often derived from natural resources of high enantiomeric virtue with the desired stereocentre or easily synthesized in the laboratory in some simple synthetic operations. This perspective aims to draw readers' attention to the power of asymmetric organocatalysis in assembling glycosyl donors and acceptors in the synthesis of biologically significant stereodefined O-glycosides. Glycosylation is a fundamental chemical transformation and is ubiquitous in both nature and chemical laboratories. In nature, the glycosylation processes are carried out by enzyme catalysis. We were interested in portraying the recent impressive progress achieved by the scientific community in the field of chemical glycosylation, specifically O-glycosylation. Poly-functionalized sugar moieties offer many opportunities to discover new drug candidates in which the modification of aglycone through the glycosylation process is a key reaction.
AbstractList Organocatalysis is the use of non-stoichiometric amounts of low-molecular-weight organic molecules made up of C, H, N, O, S, and P to accelerate stereoselective chemical transformations. Despite having a long history, the use of small organic molecules as chiral catalysts in enantioselective synthesis has only recently intrigued scientists interest. However, in synthetic and medicinal chemistry, there has been a resurgence of interest in performing asymmetric synthesis of a variety of important targets by utilizing an organocatalytic approach as a leading reaction. The development of an asymmetric protocol for the synthesis of enantioenriched molecules of therapeutic relevance is crucial in the development of new drug candidates. Modern asymmetric catalysis is based on three pillars: (i) biocatalysts (i.e., enzymes), (ii) transition metal catalysis, and (iii) organocatalysis. Among these catalytic systems, organocatalysis has become the most flourishing field within the field of a catalytic regime that offers many significant benefits to synthetic and medicinal chemists. In contrast to many metal-based catalytic models, most organocatalysts have a high tolerance capability for air and moisture, easy availability, easy handling, non-toxic and enantiomeric purity, etc. They are often derived from natural resources of high enantiomeric virtue with the desired stereocentre or easily synthesized in the laboratory in some simple synthetic operations. This perspective aims to draw readers' attention to the power of asymmetric organocatalysis in assembling glycosyl donors and acceptors in the synthesis of biologically significant stereodefined O-glycosides. Glycosylation is a fundamental chemical transformation and is ubiquitous in both nature and chemical laboratories. In nature, the glycosylation processes are carried out by enzyme catalysis. We were interested in portraying the recent impressive progress achieved by the scientific community in the field of chemical glycosylation, specifically O-glycosylation. Poly-functionalized sugar moieties offer many opportunities to discover new drug candidates in which the modification of aglycone through the glycosylation process is a key reaction.
Organocatalysis is the use of non-stoichiometric amounts of low-molecular-weight organic molecules made up of C, H, N, O, S, and P to accelerate stereoselective chemical transformations. Despite having a long history, the use of small organic molecules as chiral catalysts in enantioselective synthesis has only recently intrigued scientists interest. However, in synthetic and medicinal chemistry, there has been a resurgence of interest in performing asymmetric synthesis of a variety of important targets by utilizing an organocatalytic approach as a leading reaction. The development of an asymmetric protocol for the synthesis of enantioenriched molecules of therapeutic relevance is crucial in the development of new drug candidates.Modern asymmetric catalysis is based on three pillars: (i) biocatalysts (i.e., enzymes), (ii) transition metal catalysis, and (iii) organocatalysis. Among these catalytic systems, organocatalysis has become the most flourishing field within the field of a catalytic regime that offers many significant benefits to synthetic and medicinal chemists. In contrast to many metal-based catalytic models, most organocatalysts have a high tolerance capability for air and moisture, easy availability, easy handling, non-toxic and enantiomeric purity, etc. They are often derived from natural resources of high enantiomeric virtue with the desired stereocentre or easily synthesized in the laboratory in some simple synthetic operations. This perspective aims to draw readers’ attention to the power of asymmetric organocatalysis in assembling glycosyl donors and acceptors in the synthesis of biologically significant stereodefined O-glycosides. Glycosylation is a fundamental chemical transformation and is ubiquitous in both nature and chemical laboratories. In nature, the glycosylation processes are carried out by enzyme catalysis. We were interested in portraying the recent impressive progress achieved by the scientific community in the field of chemical glycosylation, specifically O-glycosylation. Poly-functionalized sugar moieties offer many opportunities to discover new drug candidates in which the modification of aglycone through the glycosylation process is a key reaction.
Author Hossain, Md. Firoj
Das, Aparna
Srivastava, Ashok Kumar
Yadav, Ram Naresh
Banik, Bimal Krishna
Author_xml – sequence: 1
  givenname: Ram Naresh
  orcidid: 0000-0001-6094-3447
  surname: Yadav
  fullname: Yadav, Ram Naresh
  email: nareshutpa@gmail.com
  organization: Veer Bahadur Singh Purvanchal University
– sequence: 2
  givenname: Md. Firoj
  orcidid: 0000-0003-1199-7881
  surname: Hossain
  fullname: Hossain, Md. Firoj
  organization: University of North Bengal
– sequence: 3
  givenname: Aparna
  orcidid: 0000-0002-2502-9446
  surname: Das
  fullname: Das, Aparna
  organization: Prince Mohammad Bin Fahd University
– sequence: 4
  givenname: Ashok Kumar
  surname: Srivastava
  fullname: Srivastava, Ashok Kumar
  organization: Veer Bahadur Singh Purvanchal University
– sequence: 5
  givenname: Bimal Krishna
  orcidid: 0000-0002-7873-9062
  surname: Banik
  fullname: Banik, Bimal Krishna
  email: bbanik@pmu.edu.sa
  organization: Prince Mohammad Bin Fahd University
BookMark eNp9kE1LAzEQhoNUsK3-BGHB8-ok2W03nizFLygURM8hm0zqlm1Sk1TZf-8urVcvM3N43nfgmZCR8w4JuaZwS6GCO6AzWogCbhkw1o-CcuBnZExLBnk5Bz4i44HJB-iCTGLcAkDBZ2JM3tZho5zXKqm2i028zxZZQI0uZQa_sfX73XB7l8WEAX3EFnVqvjGLnUuf2EcybzOfb9pO-9gYjJfk3Ko24tVpT8nH0-P78iVfrZ9fl4tVrjmvUq4qKC03dcVFzRSlpuSCFVozXlsmKlWrGrGoLQIzuqhKUwO3BhilBWqwjE_JzbF3H_zXAWOSW38Irn8pmaBCCDpnZU-VR0oHH2NAK_eh2anQSQpy0Cf_9MlBnzzp63MPx1zjrA879eNDa2RSXeuDDcrpJkr-f8UvTZV5oQ
CitedBy_id crossref_primary_10_3389_fchem_2022_972429
crossref_primary_10_1016_j_foodchem_2022_134118
crossref_primary_10_1002_slct_202401208
crossref_primary_10_1021_acs_orglett_2c03256
Cites_doi 10.1055/s-2007-980384
10.1021/acs.chemrev.8b00442
10.1016/S0140-6736(79)90996-6
10.1002/ange.201504182
10.1016/S0140-6736(84)92556-X
10.1021/acs.orglett.6b02488
10.1021/ja302704m
10.1021/ol402914v
10.1021/ja054171l
10.1039/B916088D
10.1021/acs.orglett.5b02332
10.1021/ol203329u
10.3762/bjoc.15.125
10.2174/157340708786847861
10.1038/s41467-020-16365-8
10.1002/open.201600043
10.1002/anie.201304830
10.1021/acs.orglett.9b00626
10.1002/anie.201302158
10.1016/S0040-4039(00)97693-7
10.1016/j.tetlet.2010.01.048
10.1080/07328303.2012.749264
10.1246/cl.1981.431
10.1021/ol102473kbbb
10.1039/C8OB00423D
10.1021/acs.chemrev.5b00128
10.1021/jacs.8b04525
10.1016/j.cclet.2019.06.014
10.1039/C9CS00191C
10.2174/092986708785908996
10.1021/ol5027443
10.1016/S2213-2600(16)30435-0
10.1002/ajoc.201600307
10.1021/acs.chemrev.6b00023
10.1021/jacs.5b13384
10.1021/ol4003042
10.1126/science.aaq0445
10.1002/ajoc.201900102
10.1002/anie.200503132
10.1246/bcsj.75.1319
10.1002/anie.200704684
10.1021/acs.orglett.6b00926
10.1002/9783527621644
10.1038/s41467-018-06329-4
10.1021/ja068985t
10.1016/0008-6215(92)84153-J
10.1021/ja405051f
10.1038/nature07367
10.3987/COM-18-S(F)28
10.1039/b104800g
10.1021/ol1001895
10.3389/fpls.2020.00357
10.3762/bjoc.13.236
10.1016/j.carres.2019.107887
10.1246/bcsj.40.2380
10.1039/C9CC06151G
10.1021/cr0004310
10.1126/science.270.5243.1797
10.1016/j.catcom.2019.04.006
10.3762/bjoc.14.138
10.3390/md8122871
10.1021/acs.joc.6b02498
10.1021/jacs.0c03165
10.1246/cl.2000.696
10.1016/j.ccc.2012.07.005
10.1021/jacs.5b12528
10.1021/ja982395g
10.1021/ol102473kaaa
10.1002/anie.201600142
10.1126/science.aah4712
10.1021/ol102473k
10.1016/j.carres.2018.10.002
10.1126/science.1182826
10.1021/acs.chemrev.6b00475
10.1002/hlca.19850680134
10.1016/j.bmcl.2006.01.040
10.1039/D1QO00211B
10.1021/acscatal.6b00618
10.1039/c004281a
10.1039/C7CC01673E
10.1002/ejoc.201901465
10.1021/acs.chemrev.7b00731
10.1073/pnas.1006402107
10.1039/C8SC02788A
10.1021/ar100035r
10.1021/ar0300468
10.1021/cr990307k
10.1002/anie.201503156
10.3390/molecules23010089
10.1002/anie.201302158aaa
10.1039/b903816g
10.1021/acs.joc.8b02613
10.1021/jacs.0c00335
10.1039/C7CC05052F
10.1016/j.acthis.2010.02.004
10.1080/07328303.2015.1137580
10.1021/ar500371z
10.1139/v65-298
10.1021/ja00083a014
10.1021/jacs.7b12108
10.1021/acs.orglett.0c01549
10.1021/cr068367v
10.1021/ja00895a056
10.1021/jacs.0c10714
10.1002/anie.200802036
10.1021/acs.orglett.6b01404
10.1039/b415217b
10.1002/anie.202004476
10.1016/j.gene.2005.06.001
10.1002/ejoc.201300723
10.1021/ja906429c
10.1002/anie.201204505
10.1021/acs.chemrev.8b00238
10.1016/0161-5890(93)90012-Z
10.1002/ejoc.201901749
10.1002/1521-3773(20010803)40:15<2818::AID-ANIE2818>3.0.CO;2-Y
10.1073/pnas.1811186116
10.1002/anie.201500700
10.1002/anie.201901346
10.1021/ol501711v
10.1016/S0140-6736(02)08905-5
10.1002/14651858.CD008965.pub4
10.1023/A:1008073215919
10.1021/acs.joc.1c00130
10.1021/acs.orglett.9b03321
10.1021/jacs.7b03198
10.1080/07328303.2014.927882
10.1016/S0008-6215(00)85467-1
10.1517/13543784.2015.1095180
10.1021/cr078412e
10.1246/cl.2001.224
10.1021/ja2062715
10.1007/s41061-018-0222-3
10.1002/ange.200461851
10.1021/acs.joc.8b00340
10.1039/c2sc00907b
10.1002/1097-0142(197610)38:4<1484::AID-CNCR2820380407>3.0.CO;2-I
10.1002/ejoc.201601439
10.1021/cr00020a006
10.1039/b514296m
10.1021/acs.joc.8b00215
10.20772/cancersci1959.58.6_521
10.1002/ajoc.201900055
10.1124/mi.8.1.8
10.3390/molecules22111932
10.3762/bjoc.13.201
10.1016/j.ejmech.2017.10.015
10.1002/ange.201504182aaa
10.1002/ejoc.201700785
10.1021/acs.orglett.6b01962
10.1186/1471-2407-1-11
10.1021/acs.accounts.6b00403
10.1186/1471-2180-7-20
10.3390/molecules25051103
ContentType Journal Article
Copyright 2022 Taylor & Francis 2022
2022 Taylor & Francis
Copyright_xml – notice: 2022 Taylor & Francis 2022
– notice: 2022 Taylor & Francis
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1080/01614940.2022.2041303
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5703
EndPage 118
ExternalDocumentID 10_1080_01614940_2022_2041303
2041303
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29B
2DF
30N
3YN
4.4
5GY
5VS
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABJVF
ABLIJ
ABPEM
ABQHQ
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
COF
CS3
DKSSO
DU5
E.-
EBS
E~A
E~B
FUNRP
FVPDL
GCUZY
GTTXZ
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TCY
TEN
TFL
TFT
TFW
TTHFI
TWF
UT5
UU3
V1K
ZGOLN
~S~
AAYXX
ABPAQ
AHDZW
CITATION
DGEBU
H13
NW0
TBQAZ
TUROJ
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c338t-a805f3db839b2a11d53924cc23bf298ababee4bfe02dc485db03fd02114ec0f23
ISSN 0161-4940
IngestDate Thu Oct 10 19:12:03 EDT 2024
Fri Aug 23 00:38:08 EDT 2024
Wed Jan 31 07:01:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-a805f3db839b2a11d53924cc23bf298ababee4bfe02dc485db03fd02114ec0f23
ORCID 0000-0002-2502-9446
0000-0001-6094-3447
0000-0002-7873-9062
0000-0003-1199-7881
PQID 2919991725
PQPubID 53159
PageCount 118
ParticipantIDs informaworld_taylorfrancis_310_1080_01614940_2022_2041303
proquest_journals_2919991725
crossref_primary_10_1080_01614940_2022_2041303
PublicationCentury 2000
PublicationDate 2024-01-02
PublicationDateYYYYMMDD 2024-01-02
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-02
  day: 02
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Catalysis reviews. Science and engineering
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_3_50_1
e_1_3_3_77_1
e_1_3_3_162_1
e_1_3_3_117_1
e_1_3_3_39_1
e_1_3_3_132_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_58_1
e_1_3_3_92_1
e_1_3_3_159_1
e_1_3_3_136_1
e_1_3_3_12_1
e_1_3_3_54_1
e_1_3_3_73_1
e_1_3_3_96_1
e_1_3_3_113_1
e_1_3_3_155_1
e_1_3_3_61_1
e_1_3_3_88_1
e_1_3_3_150_1
McVann A. (e_1_3_3_53_1) 1992; 81
e_1_3_3_9_1
e_1_3_3_105_1
e_1_3_3_128_1
e_1_3_3_109_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_69_1
e_1_3_3_80_1
e_1_3_3_120_1
e_1_3_3_147_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_65_1
e_1_3_3_84_1
e_1_3_3_101_1
e_1_3_3_124_1
e_1_3_3_143_1
e_1_3_3_30_1
e_1_3_3_76_1
e_1_3_3_161_1
e_1_3_3_99_1
JingFu L. (e_1_3_3_43_1) 2019
e_1_3_3_116_1
e_1_3_3_139_1
Medina S. (e_1_3_3_68_1) 2016
e_1_3_3_19_1
e_1_3_3_38_1
e_1_3_3_91_1
e_1_3_3_131_1
e_1_3_3_158_1
e_1_3_3_15_1
e_1_3_3_57_1
e_1_3_3_34_1
e_1_3_3_72_1
e_1_3_3_95_1
e_1_3_3_112_1
e_1_3_3_135_1
e_1_3_3_154_1
e_1_3_3_11_1
e_1_3_3_41_1
e_1_3_3_87_1
e_1_3_3_60_1
e_1_3_3_108_1
e_1_3_3_8_1
e_1_3_3_127_1
e_1_3_3_49_1
e_1_3_3_100_1
e_1_3_3_146_1
e_1_3_3_142_1
e_1_3_3_26_1
e_1_3_3_45_1
e_1_3_3_83_1
e_1_3_3_104_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_64_1
e_1_3_3_123_1
e_1_3_3_52_1
e_1_3_3_75_1
e_1_3_3_98_1
e_1_3_3_160_1
e_1_3_3_71_1
e_1_3_3_79_1
e_1_3_3_119_1
e_1_3_3_138_1
e_1_3_3_18_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_90_1
e_1_3_3_111_1
e_1_3_3_157_1
e_1_3_3_130_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_56_1
e_1_3_3_94_1
e_1_3_3_115_1
e_1_3_3_153_1
e_1_3_3_134_1
e_1_3_3_40_1
e_1_3_3_63_1
e_1_3_3_86_1
e_1_3_3_7_1
e_1_3_3_107_1
e_1_3_3_29_1
e_1_3_3_149_1
e_1_3_3_25_1
e_1_3_3_48_1
e_1_3_3_122_1
e_1_3_3_145_1
e_1_3_3_141_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_67_1
e_1_3_3_82_1
e_1_3_3_103_1
e_1_3_3_126_1
e_1_3_3_97_1
e_1_3_3_51_1
e_1_3_3_78_1
e_1_3_3_70_1
e_1_3_3_140_1
e_1_3_3_118_1
e_1_3_3_17_1
Wang C. (e_1_3_3_31_1) 2006; 18
e_1_3_3_110_1
e_1_3_3_133_1
e_1_3_3_156_1
e_1_3_3_13_1
e_1_3_3_59_1
e_1_3_3_36_1
e_1_3_3_93_1
e_1_3_3_114_1
e_1_3_3_137_1
e_1_3_3_152_1
e_1_3_3_55_1
e_1_3_3_32_1
e_1_3_3_74_1
e_1_3_3_62_1
e_1_3_3_89_1
e_1_3_3_151_1
e_1_3_3_6_1
e_1_3_3_129_1
e_1_3_3_106_1
e_1_3_3_28_1
e_1_3_3_24_1
e_1_3_3_121_1
e_1_3_3_47_1
e_1_3_3_81_1
e_1_3_3_148_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_66_1
e_1_3_3_125_1
e_1_3_3_85_1
e_1_3_3_102_1
e_1_3_3_144_1
References_xml – ident: e_1_3_3_134_1
  doi: 10.1055/s-2007-980384
– ident: e_1_3_3_15_1
  doi: 10.1021/acs.chemrev.8b00442
– ident: e_1_3_3_46_1
  doi: 10.1016/S0140-6736(79)90996-6
– ident: e_1_3_3_147_1
  doi: 10.1002/ange.201504182
– ident: e_1_3_3_47_1
  doi: 10.1016/S0140-6736(84)92556-X
– ident: e_1_3_3_150_1
  doi: 10.1021/acs.orglett.6b02488
– ident: e_1_3_3_128_1
  doi: 10.1021/ja302704m
– ident: e_1_3_3_120_1
  doi: 10.1021/ol402914v
– ident: e_1_3_3_138_1
  doi: 10.1021/ja054171l
– ident: e_1_3_3_21_1
  doi: 10.1039/B916088D
– ident: e_1_3_3_119_1
  doi: 10.1021/acs.orglett.5b02332
– ident: e_1_3_3_121_1
  doi: 10.1021/ol203329u
– ident: e_1_3_3_140_1
  doi: 10.3762/bjoc.15.125
– ident: e_1_3_3_22_1
  doi: 10.2174/157340708786847861
– ident: e_1_3_3_152_1
  doi: 10.1038/s41467-020-16365-8
– ident: e_1_3_3_14_1
  doi: 10.1002/open.201600043
– ident: e_1_3_3_132_1
  doi: 10.1002/anie.201304830
– ident: e_1_3_3_162_1
  doi: 10.1021/acs.orglett.9b00626
– ident: e_1_3_3_73_1
  doi: 10.1002/anie.201302158
– ident: e_1_3_3_142_1
  doi: 10.1016/S0040-4039(00)97693-7
– ident: e_1_3_3_97_1
  doi: 10.1016/j.tetlet.2010.01.048
– ident: e_1_3_3_10_1
  doi: 10.1080/07328303.2012.749264
– ident: e_1_3_3_110_1
  doi: 10.1246/cl.1981.431
– ident: e_1_3_3_109_1
  doi: 10.1021/ol102473kbbb
– ident: e_1_3_3_125_1
  doi: 10.1039/C8OB00423D
– ident: e_1_3_3_38_1
  doi: 10.1021/acs.chemrev.5b00128
– ident: e_1_3_3_19_1
  doi: 10.1021/jacs.8b04525
– ident: e_1_3_3_156_1
  doi: 10.1016/j.cclet.2019.06.014
– ident: e_1_3_3_137_1
  doi: 10.1039/C9CS00191C
– ident: e_1_3_3_52_1
  doi: 10.2174/092986708785908996
– ident: e_1_3_3_122_1
  doi: 10.1021/ol5027443
– volume: 18
  start-page: 761
  year: 2006
  ident: e_1_3_3_31_1
  publication-title: Progress in Chemistry
  contributor:
    fullname: Wang C.
– ident: e_1_3_3_57_1
  doi: 10.1016/S2213-2600(16)30435-0
– ident: e_1_3_3_78_1
  doi: 10.1002/ajoc.201600307
– ident: e_1_3_3_12_1
  doi: 10.1021/acs.chemrev.6b00023
– ident: e_1_3_3_104_1
  doi: 10.1021/jacs.5b13384
– ident: e_1_3_3_93_1
  doi: 10.1021/ol4003042
– ident: e_1_3_3_39_1
  doi: 10.1126/science.aaq0445
– ident: e_1_3_3_13_1
  doi: 10.1002/ajoc.201900102
– ident: e_1_3_3_29_1
  doi: 10.1002/anie.200503132
– ident: e_1_3_3_94_1
  doi: 10.1246/bcsj.75.1319
– ident: e_1_3_3_28_1
  doi: 10.1002/anie.200704684
– ident: e_1_3_3_44_1
– ident: e_1_3_3_149_1
  doi: 10.1021/acs.orglett.6b00926
– ident: e_1_3_3_18_1
  doi: 10.1002/9783527621644
– ident: e_1_3_3_79_1
  doi: 10.1038/s41467-018-06329-4
– ident: e_1_3_3_136_1
  doi: 10.1021/ja068985t
– ident: e_1_3_3_145_1
  doi: 10.1016/0008-6215(92)84153-J
– ident: e_1_3_3_161_1
  doi: 10.1021/ja405051f
– ident: e_1_3_3_32_1
  doi: 10.1021/ja405051f
– ident: e_1_3_3_25_1
  doi: 10.1038/nature07367
– ident: e_1_3_3_155_1
  doi: 10.3987/COM-18-S(F)28
– ident: e_1_3_3_63_1
  doi: 10.1039/b104800g
– ident: e_1_3_3_130_1
  doi: 10.1021/ol1001895
– ident: e_1_3_3_51_1
  doi: 10.3389/fpls.2020.00357
– ident: e_1_3_3_160_1
  doi: 10.3762/bjoc.13.236
– ident: e_1_3_3_84_1
  doi: 10.1016/j.carres.2019.107887
– ident: e_1_3_3_113_1
  doi: 10.1246/bcsj.40.2380
– ident: e_1_3_3_141_1
  doi: 10.1039/C9CC06151G
– ident: e_1_3_3_6_1
  doi: 10.1021/cr0004310
– ident: e_1_3_3_34_1
  doi: 10.1126/science.270.5243.1797
– ident: e_1_3_3_80_1
  doi: 10.1016/j.catcom.2019.04.006
– ident: e_1_3_3_114_1
  doi: 10.3762/bjoc.14.138
– ident: e_1_3_3_4_1
  doi: 10.3390/md8122871
– ident: e_1_3_3_75_1
  doi: 10.1021/acs.joc.6b02498
– ident: e_1_3_3_111_1
  doi: 10.1021/jacs.0c03165
– ident: e_1_3_3_108_1
  doi: 10.1246/cl.2000.696
– ident: e_1_3_3_58_1
  doi: 10.1016/j.ccc.2012.07.005
– ident: e_1_3_3_127_1
  doi: 10.1021/jacs.5b12528
– ident: e_1_3_3_95_1
  doi: 10.1021/ja982395g
– ident: e_1_3_3_107_1
  doi: 10.1021/ol102473kaaa
– ident: e_1_3_3_87_1
  doi: 10.1002/anie.201600142
– ident: e_1_3_3_88_1
  doi: 10.1126/science.aah4712
– ident: e_1_3_3_103_1
  doi: 10.1021/ol102473k
– ident: e_1_3_3_154_1
  doi: 10.1016/j.carres.2018.10.002
– ident: e_1_3_3_71_1
  doi: 10.1126/science.1182826
– ident: e_1_3_3_7_1
  doi: 10.1002/9783527621644
– ident: e_1_3_3_42_1
  doi: 10.1021/acs.chemrev.6b00475
– ident: e_1_3_3_102_1
  doi: 10.1002/hlca.19850680134
– ident: e_1_3_3_158_1
  doi: 10.1016/j.bmcl.2006.01.040
– ident: e_1_3_3_112_1
  doi: 10.1039/D1QO00211B
– ident: e_1_3_3_72_1
  doi: 10.1021/acscatal.6b00618
– ident: e_1_3_3_24_1
  doi: 10.1039/c004281a
– ident: e_1_3_3_157_1
  doi: 10.1039/C7CC01673E
– ident: e_1_3_3_124_1
  doi: 10.1002/ejoc.201901465
– ident: e_1_3_3_67_1
  doi: 10.1021/acs.chemrev.7b00731
– ident: e_1_3_3_64_1
  doi: 10.1073/pnas.1006402107
– ident: e_1_3_3_70_1
  doi: 10.1039/C8SC02788A
– ident: e_1_3_3_9_1
  doi: 10.1021/ar100035r
– ident: e_1_3_3_33_1
  doi: 10.1021/ar0300468
– ident: e_1_3_3_17_1
  doi: 10.1021/cr990307k
– ident: e_1_3_3_159_1
  doi: 10.1002/anie.201503156
– ident: e_1_3_3_2_1
  doi: 10.3390/molecules23010089
– ident: e_1_3_3_74_1
  doi: 10.1002/anie.201302158aaa
– start-page: 59
  volume-title: Carbohydr. Chem.
  year: 2016
  ident: e_1_3_3_68_1
  contributor:
    fullname: Medina S.
– ident: e_1_3_3_27_1
  doi: 10.1039/b903816g
– ident: e_1_3_3_143_1
  doi: 10.1021/acs.joc.8b02613
– ident: e_1_3_3_85_1
  doi: 10.1021/jacs.0c00335
– ident: e_1_3_3_131_1
  doi: 10.1039/C7CC05052F
– ident: e_1_3_3_3_1
  doi: 10.1016/j.acthis.2010.02.004
– ident: e_1_3_3_11_1
  doi: 10.1080/07328303.2015.1137580
– ident: e_1_3_3_90_1
  doi: 10.1021/ar500371z
– ident: e_1_3_3_99_1
  doi: 10.1139/v65-298
– ident: e_1_3_3_61_1
  doi: 10.1021/ja00083a014
– ident: e_1_3_3_153_1
  doi: 10.1021/jacs.7b12108
– ident: e_1_3_3_118_1
  doi: 10.1021/acs.orglett.0c01549
– ident: e_1_3_3_30_1
  doi: 10.1021/cr068367v
– ident: e_1_3_3_100_1
  doi: 10.1021/ja00895a056
– ident: e_1_3_3_117_1
  doi: 10.1021/jacs.0c10714
– ident: e_1_3_3_16_1
  doi: 10.1002/anie.200802036
– ident: e_1_3_3_76_1
  doi: 10.1021/acs.orglett.6b01404
– ident: e_1_3_3_37_1
  doi: 10.1039/b415217b
– ident: e_1_3_3_151_1
  doi: 10.1002/anie.202004476
– ident: e_1_3_3_82_1
  doi: 10.1016/j.gene.2005.06.001
– ident: e_1_3_3_98_1
  doi: 10.1002/ejoc.201300723
– volume: 81
  start-page: 139
  year: 1992
  ident: e_1_3_3_53_1
  publication-title: South African Med. J.
  contributor:
    fullname: McVann A.
– ident: e_1_3_3_139_1
  doi: 10.1021/ja906429c
– ident: e_1_3_3_69_1
  doi: 10.1002/anie.201204505
– ident: e_1_3_3_5_1
  doi: 10.1021/acs.chemrev.8b00238
– ident: e_1_3_3_81_1
  doi: 10.1016/0161-5890(93)90012-Z
– ident: e_1_3_3_96_1
  doi: 10.1002/ejoc.201901749
– ident: e_1_3_3_62_1
  doi: 10.1002/1521-3773(20010803)40:15<2818::AID-ANIE2818>3.0.CO;2-Y
– ident: e_1_3_3_86_1
  doi: 10.1073/pnas.1811186116
– ident: e_1_3_3_116_1
  doi: 10.1002/anie.201500700
– ident: e_1_3_3_101_1
  doi: 10.1002/anie.201901346
– ident: e_1_3_3_92_1
  doi: 10.1021/ol501711v
– ident: e_1_3_3_54_1
  doi: 10.1016/S0140-6736(02)08905-5
– ident: e_1_3_3_56_1
  doi: 10.1002/14651858.CD008965.pub4
– ident: e_1_3_3_41_1
  doi: 10.1023/A:1008073215919
– ident: e_1_3_3_91_1
  doi: 10.1021/acs.joc.1c00130
– ident: e_1_3_3_20_1
  doi: 10.1021/acs.orglett.9b03321
– ident: e_1_3_3_129_1
  doi: 10.1021/jacs.7b03198
– ident: e_1_3_3_133_1
  doi: 10.1080/07328303.2014.927882
– ident: e_1_3_3_115_1
  doi: 10.1016/S0008-6215(00)85467-1
– ident: e_1_3_3_59_1
  doi: 10.1517/13543784.2015.1095180
– ident: e_1_3_3_26_1
  doi: 10.1021/cr078412e
– start-page: 487
  volume-title: Progress in Molecular Biology and Translational Science
  year: 2019
  ident: e_1_3_3_43_1
  contributor:
    fullname: JingFu L.
– ident: e_1_3_3_106_1
  doi: 10.1246/cl.2001.224
– ident: e_1_3_3_89_1
  doi: 10.1021/ja2062715
– ident: e_1_3_3_40_1
  doi: 10.1007/s41061-018-0222-3
– ident: e_1_3_3_36_1
  doi: 10.1002/ange.200461851
– ident: e_1_3_3_123_1
  doi: 10.1021/acs.joc.8b00340
– ident: e_1_3_3_65_1
  doi: 10.1039/c2sc00907b
– ident: e_1_3_3_55_1
  doi: 10.1002/1097-0142(197610)38:4<1484::AID-CNCR2820380407>3.0.CO;2-I
– ident: e_1_3_3_105_1
  doi: 10.1002/ejoc.201601439
– ident: e_1_3_3_8_1
  doi: 10.1021/cr00020a006
– ident: e_1_3_3_35_1
  doi: 10.1039/b514296m
– ident: e_1_3_3_146_1
  doi: 10.1021/acs.joc.8b00215
– ident: e_1_3_3_45_1
  doi: 10.20772/cancersci1959.58.6_521
– ident: e_1_3_3_144_1
  doi: 10.1002/ajoc.201900055
– ident: e_1_3_3_49_1
  doi: 10.1124/mi.8.1.8
– ident: e_1_3_3_50_1
  doi: 10.3390/molecules22111932
– ident: e_1_3_3_23_1
  doi: 10.3762/bjoc.13.201
– ident: e_1_3_3_60_1
  doi: 10.1016/j.ejmech.2017.10.015
– ident: e_1_3_3_148_1
  doi: 10.1002/ange.201504182aaa
– ident: e_1_3_3_66_1
  doi: 10.1002/ejoc.201700785
– ident: e_1_3_3_77_1
  doi: 10.1021/acs.orglett.6b01962
– ident: e_1_3_3_48_1
  doi: 10.1186/1471-2407-1-11
– ident: e_1_3_3_135_1
  doi: 10.1021/acs.accounts.6b00403
– ident: e_1_3_3_83_1
  doi: 10.1186/1471-2180-7-20
– ident: e_1_3_3_126_1
  doi: 10.3390/molecules25051103
SSID ssj0004369
Score 2.490911
Snippet Organocatalysis is the use of non-stoichiometric amounts of low-molecular-weight organic molecules made up of C, H, N, O, S, and P to accelerate...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Anomer
anomeric selectivity
Asymmetry
Catalysis
catalyst
Chemical synthesis
Enantiomers
Glycosides
glycosylation
Laboratories
Natural resources
Organic chemistry
Organocatalysis
organocatalyzed
Stereoselectivity
Transition metals
Title Organocatalysis: A recent development on stereoselective synthesis of o-glycosides
URI https://www.tandfonline.com/doi/abs/10.1080/01614940.2022.2041303
https://www.proquest.com/docview/2919991725
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcgAOCAqIQkF74FbZsr12bXOrokYRaoMEjpSbtU8oD7uK3Ujl3_BPmd31Y9NUvC5W5Ci71s5k5pvxzDcIvdG9llLK1Es5517Mcu7lhKdeJEhIpJBpSnW-43xxPF_G71bJajL56VQtXbXM5z9u7Sv5H6nCPZCr7pL9B8kOi8IN-AzyhStIGK5_JWPTSFmbDIwmFrFd5mDC9Pt9MVYD6RcCmg9B1o2ZeqOLhZrrCqBfx0ZSe5--XfNaT-5sXLQ67VfuOlwaf7AFOt8uRy7DwXhQQTdGbPQ7WG6I5Yd08xzcMbWMBefiaHaxrr-MaXI7E_mSrqvBTXxcX2woYNeNzfw2n-uvR6Yg3E1URLFJVIxhbbEzM8QpXDKpzWOIZnNL3uTLzhxDcKs5wlx7bae0bOmlNb6h48VDa9V3HERXUQl76a18eE7djWc8-egR-yqAxftytjw7K4vTVXEH3Y3AlmkjSoLF2HpLzNTE4eH7JjFN337bJlvwZ4scdwcMGIRTPEIPu9AEn1g9e4wmstpH96b9RMB99MAhr3yCPtzQvrf4BFvdw47u4brCN3QPD7qHa4Vd3XuKlrPTYjr3ugkdHickaz2aBYkiggHKZhENQ5EA3I45jwhTUZ5RRpmUMVMyiASPs0SwgCgBsDKMJQ9URJ6hvaqu5HOEMxFSQmFBDiBZxTSTkodK5QwWhCCBHSC_P7jy0hKxlGHPb9uddKlPuuxO-gDl7vGWrdE_ZVWvJH_47WEvi7L7vzdllGvKDgD8yYvff_0S3R_1_xDttesr-Qqga8teG-X5BUqsmNA
link.rule.ids 315,783,787,27936,27937,60218,61007
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB619EB7KK-iUh71gauXxHZIwg0h0EKXPSCQuFnxqwdQUnXDgf76zjiJdgEhDpyjGTkee-bzaOYbgH3qtfTe5zy31nJlSstLaXMunEyldz7PK8p3XE4Pxzfq4ja7XeiFobJKekOHjigi-mq63JSMHkriDgimqFIl-LwT1EwVHfFH-HRIAYvaOJLpvDdSxrF2JMJJZujieU3Nk_j0hL30hbeOIehsBeyw-K7y5G700JqR_feM1_F9f7cKX3uEyo67I7UGH3y9Dssnw2C4dfiywGG4AVexm7OJaSBiNzlixwy9KMYy5uYFSaypGVEy-GYWB--gj2WzxxrRJ4qwJrCG_75_tA0ND519g5uz0-uTMe8HNXCLL9yWV0WSBekMgi0jqjR1GaIuZa2QJoiyqExlvFcm-EQ4q4rMmUQGh8ZKlbdJEHITluqm9t-BFS6tZIUKLWKloKrCe5uGUBpUiFjRbMFoMI_-0_Fx6HSgOe03TtPG6X7jtqBcNKJuYyIkdFNLtHxDdmewuO6v9kyLkpgbEPdlP96h-icsj68vJ3pyPv21DZ_xk4qJHbEDS-3fB7-LUKc1e_Es_weMQ_HY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB21W6ktB0oXqi5siw-9eklsZ5NwQ8AKKKwQ6kq9WfEXB1CCmuwBfj1jJxFsq4oD52hGyYw9fp7MvAH44XstrbUpTbXWVKhc05zrlDLDY26NTdPC5zsu5tOThTj7nfTVhHVXVunv0K4ligix2m_uO-P6irg9j1JELiK83THfSxXi8Ft4N_V__H0XRzR_ao3kYaqdF6Fepm_i-Z-aleNphbz0n2AdTqDZJ1D9u7eFJzeTZaMm-uEvWsdXfdwGrHf4lBy0C-ozvLHlED4c9mPhhrD2jMFwE65CL2cVkkCe22SfHBCMoXiSEfNUjkSqknhCBlvVYewORlhS35eIPVGEVI5U9Pr2Xld-dGi9BYvZ8a_DE9qNaaAa77cNLbIocdwohFqKFXFsEsRcQmvGlWN5VqhCWSuUsxEzWmSJURF3BrFFLKyOHONfYFBWpf0KJDNxwQtUqBEpOVFk1urYuVyhQkSKagST3jvyrmXjkHFPctoZTnrDyc5wI8if-1A2IQ3i2pklkr8gO-4dLruNXUuWe94GRH3J9itU78L7y6OZPD-d_9yBj_hEhKwOG8Og-bO03xDnNOp7WMmPs2fwhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organocatalysis%3A+A+recent+development+on+stereoselective+synthesis+of+o-glycosides&rft.jtitle=Catalysis+reviews.+Science+and+engineering&rft.au=Yadav%2C+Ram+Naresh&rft.au=Hossain%2C+Md+Firoj&rft.au=Das%2C+Aparna&rft.au=Srivastava%2C+Ashok+Kumar&rft.date=2024-01-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0161-4940&rft.eissn=1520-5703&rft.volume=66&rft.issue=1&rft.spage=1&rft.epage=118&rft_id=info:doi/10.1080%2F01614940.2022.2041303&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-4940&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-4940&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-4940&client=summon