Organocatalysis: A recent development on stereoselective synthesis of o-glycosides
Organocatalysis is the use of non-stoichiometric amounts of low-molecular-weight organic molecules made up of C, H, N, O, S, and P to accelerate stereoselective chemical transformations. Despite having a long history, the use of small organic molecules as chiral catalysts in enantioselective synthes...
Saved in:
Published in | Catalysis reviews. Science and engineering Vol. 66; no. 1; pp. 1 - 118 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Taylor & Francis
02.01.2024
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organocatalysis is the use of non-stoichiometric amounts of low-molecular-weight organic molecules made up of C, H, N, O, S, and P to accelerate stereoselective chemical transformations. Despite having a long history, the use of small organic molecules as chiral catalysts in enantioselective synthesis has only recently intrigued scientists interest. However, in synthetic and medicinal chemistry, there has been a resurgence of interest in performing asymmetric synthesis of a variety of important targets by utilizing an organocatalytic approach as a leading reaction. The development of an asymmetric protocol for the synthesis of enantioenriched molecules of therapeutic relevance is crucial in the development of new drug candidates.
Modern asymmetric catalysis is based on three pillars: (i) biocatalysts (i.e., enzymes), (ii) transition metal catalysis, and (iii) organocatalysis. Among these catalytic systems, organocatalysis has become the most flourishing field within the field of a catalytic regime that offers many significant benefits to synthetic and medicinal chemists. In contrast to many metal-based catalytic models, most organocatalysts have a high tolerance capability for air and moisture, easy availability, easy handling, non-toxic and enantiomeric purity, etc. They are often derived from natural resources of high enantiomeric virtue with the desired stereocentre or easily synthesized in the laboratory in some simple synthetic operations. This perspective aims to draw readers' attention to the power of asymmetric organocatalysis in assembling glycosyl donors and acceptors in the synthesis of biologically significant stereodefined O-glycosides. Glycosylation is a fundamental chemical transformation and is ubiquitous in both nature and chemical laboratories. In nature, the glycosylation processes are carried out by enzyme catalysis. We were interested in portraying the recent impressive progress achieved by the scientific community in the field of chemical glycosylation, specifically O-glycosylation. Poly-functionalized sugar moieties offer many opportunities to discover new drug candidates in which the modification of aglycone through the glycosylation process is a key reaction. |
---|---|
AbstractList | Organocatalysis is the use of non-stoichiometric amounts of low-molecular-weight organic molecules made up of C, H, N, O, S, and P to accelerate stereoselective chemical transformations. Despite having a long history, the use of small organic molecules as chiral catalysts in enantioselective synthesis has only recently intrigued scientists interest. However, in synthetic and medicinal chemistry, there has been a resurgence of interest in performing asymmetric synthesis of a variety of important targets by utilizing an organocatalytic approach as a leading reaction. The development of an asymmetric protocol for the synthesis of enantioenriched molecules of therapeutic relevance is crucial in the development of new drug candidates.
Modern asymmetric catalysis is based on three pillars: (i) biocatalysts (i.e., enzymes), (ii) transition metal catalysis, and (iii) organocatalysis. Among these catalytic systems, organocatalysis has become the most flourishing field within the field of a catalytic regime that offers many significant benefits to synthetic and medicinal chemists. In contrast to many metal-based catalytic models, most organocatalysts have a high tolerance capability for air and moisture, easy availability, easy handling, non-toxic and enantiomeric purity, etc. They are often derived from natural resources of high enantiomeric virtue with the desired stereocentre or easily synthesized in the laboratory in some simple synthetic operations. This perspective aims to draw readers' attention to the power of asymmetric organocatalysis in assembling glycosyl donors and acceptors in the synthesis of biologically significant stereodefined O-glycosides. Glycosylation is a fundamental chemical transformation and is ubiquitous in both nature and chemical laboratories. In nature, the glycosylation processes are carried out by enzyme catalysis. We were interested in portraying the recent impressive progress achieved by the scientific community in the field of chemical glycosylation, specifically O-glycosylation. Poly-functionalized sugar moieties offer many opportunities to discover new drug candidates in which the modification of aglycone through the glycosylation process is a key reaction. Organocatalysis is the use of non-stoichiometric amounts of low-molecular-weight organic molecules made up of C, H, N, O, S, and P to accelerate stereoselective chemical transformations. Despite having a long history, the use of small organic molecules as chiral catalysts in enantioselective synthesis has only recently intrigued scientists interest. However, in synthetic and medicinal chemistry, there has been a resurgence of interest in performing asymmetric synthesis of a variety of important targets by utilizing an organocatalytic approach as a leading reaction. The development of an asymmetric protocol for the synthesis of enantioenriched molecules of therapeutic relevance is crucial in the development of new drug candidates.Modern asymmetric catalysis is based on three pillars: (i) biocatalysts (i.e., enzymes), (ii) transition metal catalysis, and (iii) organocatalysis. Among these catalytic systems, organocatalysis has become the most flourishing field within the field of a catalytic regime that offers many significant benefits to synthetic and medicinal chemists. In contrast to many metal-based catalytic models, most organocatalysts have a high tolerance capability for air and moisture, easy availability, easy handling, non-toxic and enantiomeric purity, etc. They are often derived from natural resources of high enantiomeric virtue with the desired stereocentre or easily synthesized in the laboratory in some simple synthetic operations. This perspective aims to draw readers’ attention to the power of asymmetric organocatalysis in assembling glycosyl donors and acceptors in the synthesis of biologically significant stereodefined O-glycosides. Glycosylation is a fundamental chemical transformation and is ubiquitous in both nature and chemical laboratories. In nature, the glycosylation processes are carried out by enzyme catalysis. We were interested in portraying the recent impressive progress achieved by the scientific community in the field of chemical glycosylation, specifically O-glycosylation. Poly-functionalized sugar moieties offer many opportunities to discover new drug candidates in which the modification of aglycone through the glycosylation process is a key reaction. |
Author | Hossain, Md. Firoj Das, Aparna Srivastava, Ashok Kumar Yadav, Ram Naresh Banik, Bimal Krishna |
Author_xml | – sequence: 1 givenname: Ram Naresh orcidid: 0000-0001-6094-3447 surname: Yadav fullname: Yadav, Ram Naresh email: nareshutpa@gmail.com organization: Veer Bahadur Singh Purvanchal University – sequence: 2 givenname: Md. Firoj orcidid: 0000-0003-1199-7881 surname: Hossain fullname: Hossain, Md. Firoj organization: University of North Bengal – sequence: 3 givenname: Aparna orcidid: 0000-0002-2502-9446 surname: Das fullname: Das, Aparna organization: Prince Mohammad Bin Fahd University – sequence: 4 givenname: Ashok Kumar surname: Srivastava fullname: Srivastava, Ashok Kumar organization: Veer Bahadur Singh Purvanchal University – sequence: 5 givenname: Bimal Krishna orcidid: 0000-0002-7873-9062 surname: Banik fullname: Banik, Bimal Krishna email: bbanik@pmu.edu.sa organization: Prince Mohammad Bin Fahd University |
BookMark | eNp9kE1LAzEQhoNUsK3-BGHB8-ok2W03nizFLygURM8hm0zqlm1Sk1TZf-8urVcvM3N43nfgmZCR8w4JuaZwS6GCO6AzWogCbhkw1o-CcuBnZExLBnk5Bz4i44HJB-iCTGLcAkDBZ2JM3tZho5zXKqm2i028zxZZQI0uZQa_sfX73XB7l8WEAX3EFnVqvjGLnUuf2EcybzOfb9pO-9gYjJfk3Ko24tVpT8nH0-P78iVfrZ9fl4tVrjmvUq4qKC03dcVFzRSlpuSCFVozXlsmKlWrGrGoLQIzuqhKUwO3BhilBWqwjE_JzbF3H_zXAWOSW38Irn8pmaBCCDpnZU-VR0oHH2NAK_eh2anQSQpy0Cf_9MlBnzzp63MPx1zjrA879eNDa2RSXeuDDcrpJkr-f8UvTZV5oQ |
CitedBy_id | crossref_primary_10_3389_fchem_2022_972429 crossref_primary_10_1016_j_foodchem_2022_134118 crossref_primary_10_1002_slct_202401208 crossref_primary_10_1021_acs_orglett_2c03256 |
Cites_doi | 10.1055/s-2007-980384 10.1021/acs.chemrev.8b00442 10.1016/S0140-6736(79)90996-6 10.1002/ange.201504182 10.1016/S0140-6736(84)92556-X 10.1021/acs.orglett.6b02488 10.1021/ja302704m 10.1021/ol402914v 10.1021/ja054171l 10.1039/B916088D 10.1021/acs.orglett.5b02332 10.1021/ol203329u 10.3762/bjoc.15.125 10.2174/157340708786847861 10.1038/s41467-020-16365-8 10.1002/open.201600043 10.1002/anie.201304830 10.1021/acs.orglett.9b00626 10.1002/anie.201302158 10.1016/S0040-4039(00)97693-7 10.1016/j.tetlet.2010.01.048 10.1080/07328303.2012.749264 10.1246/cl.1981.431 10.1021/ol102473kbbb 10.1039/C8OB00423D 10.1021/acs.chemrev.5b00128 10.1021/jacs.8b04525 10.1016/j.cclet.2019.06.014 10.1039/C9CS00191C 10.2174/092986708785908996 10.1021/ol5027443 10.1016/S2213-2600(16)30435-0 10.1002/ajoc.201600307 10.1021/acs.chemrev.6b00023 10.1021/jacs.5b13384 10.1021/ol4003042 10.1126/science.aaq0445 10.1002/ajoc.201900102 10.1002/anie.200503132 10.1246/bcsj.75.1319 10.1002/anie.200704684 10.1021/acs.orglett.6b00926 10.1002/9783527621644 10.1038/s41467-018-06329-4 10.1021/ja068985t 10.1016/0008-6215(92)84153-J 10.1021/ja405051f 10.1038/nature07367 10.3987/COM-18-S(F)28 10.1039/b104800g 10.1021/ol1001895 10.3389/fpls.2020.00357 10.3762/bjoc.13.236 10.1016/j.carres.2019.107887 10.1246/bcsj.40.2380 10.1039/C9CC06151G 10.1021/cr0004310 10.1126/science.270.5243.1797 10.1016/j.catcom.2019.04.006 10.3762/bjoc.14.138 10.3390/md8122871 10.1021/acs.joc.6b02498 10.1021/jacs.0c03165 10.1246/cl.2000.696 10.1016/j.ccc.2012.07.005 10.1021/jacs.5b12528 10.1021/ja982395g 10.1021/ol102473kaaa 10.1002/anie.201600142 10.1126/science.aah4712 10.1021/ol102473k 10.1016/j.carres.2018.10.002 10.1126/science.1182826 10.1021/acs.chemrev.6b00475 10.1002/hlca.19850680134 10.1016/j.bmcl.2006.01.040 10.1039/D1QO00211B 10.1021/acscatal.6b00618 10.1039/c004281a 10.1039/C7CC01673E 10.1002/ejoc.201901465 10.1021/acs.chemrev.7b00731 10.1073/pnas.1006402107 10.1039/C8SC02788A 10.1021/ar100035r 10.1021/ar0300468 10.1021/cr990307k 10.1002/anie.201503156 10.3390/molecules23010089 10.1002/anie.201302158aaa 10.1039/b903816g 10.1021/acs.joc.8b02613 10.1021/jacs.0c00335 10.1039/C7CC05052F 10.1016/j.acthis.2010.02.004 10.1080/07328303.2015.1137580 10.1021/ar500371z 10.1139/v65-298 10.1021/ja00083a014 10.1021/jacs.7b12108 10.1021/acs.orglett.0c01549 10.1021/cr068367v 10.1021/ja00895a056 10.1021/jacs.0c10714 10.1002/anie.200802036 10.1021/acs.orglett.6b01404 10.1039/b415217b 10.1002/anie.202004476 10.1016/j.gene.2005.06.001 10.1002/ejoc.201300723 10.1021/ja906429c 10.1002/anie.201204505 10.1021/acs.chemrev.8b00238 10.1016/0161-5890(93)90012-Z 10.1002/ejoc.201901749 10.1002/1521-3773(20010803)40:15<2818::AID-ANIE2818>3.0.CO;2-Y 10.1073/pnas.1811186116 10.1002/anie.201500700 10.1002/anie.201901346 10.1021/ol501711v 10.1016/S0140-6736(02)08905-5 10.1002/14651858.CD008965.pub4 10.1023/A:1008073215919 10.1021/acs.joc.1c00130 10.1021/acs.orglett.9b03321 10.1021/jacs.7b03198 10.1080/07328303.2014.927882 10.1016/S0008-6215(00)85467-1 10.1517/13543784.2015.1095180 10.1021/cr078412e 10.1246/cl.2001.224 10.1021/ja2062715 10.1007/s41061-018-0222-3 10.1002/ange.200461851 10.1021/acs.joc.8b00340 10.1039/c2sc00907b 10.1002/1097-0142(197610)38:4<1484::AID-CNCR2820380407>3.0.CO;2-I 10.1002/ejoc.201601439 10.1021/cr00020a006 10.1039/b514296m 10.1021/acs.joc.8b00215 10.20772/cancersci1959.58.6_521 10.1002/ajoc.201900055 10.1124/mi.8.1.8 10.3390/molecules22111932 10.3762/bjoc.13.201 10.1016/j.ejmech.2017.10.015 10.1002/ange.201504182aaa 10.1002/ejoc.201700785 10.1021/acs.orglett.6b01962 10.1186/1471-2407-1-11 10.1021/acs.accounts.6b00403 10.1186/1471-2180-7-20 10.3390/molecules25051103 |
ContentType | Journal Article |
Copyright | 2022 Taylor & Francis 2022 2022 Taylor & Francis |
Copyright_xml | – notice: 2022 Taylor & Francis 2022 – notice: 2022 Taylor & Francis |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1080/01614940.2022.2041303 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-5703 |
EndPage | 118 |
ExternalDocumentID | 10_1080_01614940_2022_2041303 2041303 |
Genre | Research Article |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29B 2DF 30N 3YN 4.4 5GY 5VS AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABJVF ABLIJ ABPEM ABQHQ ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFOLD AFWLO AGDLA AGMYJ AHDLD AIJEM AIRXU AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 COF CS3 DKSSO DU5 E.- EBS E~A E~B FUNRP FVPDL GCUZY GTTXZ HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TCY TEN TFL TFT TFW TTHFI TWF UT5 UU3 V1K ZGOLN ~S~ AAYXX ABPAQ AHDZW CITATION DGEBU H13 NW0 TBQAZ TUROJ 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c338t-a805f3db839b2a11d53924cc23bf298ababee4bfe02dc485db03fd02114ec0f23 |
ISSN | 0161-4940 |
IngestDate | Thu Oct 10 19:12:03 EDT 2024 Fri Aug 23 00:38:08 EDT 2024 Wed Jan 31 07:01:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-a805f3db839b2a11d53924cc23bf298ababee4bfe02dc485db03fd02114ec0f23 |
ORCID | 0000-0002-2502-9446 0000-0001-6094-3447 0000-0002-7873-9062 0000-0003-1199-7881 |
PQID | 2919991725 |
PQPubID | 53159 |
PageCount | 118 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_01614940_2022_2041303 proquest_journals_2919991725 crossref_primary_10_1080_01614940_2022_2041303 |
PublicationCentury | 2000 |
PublicationDate | 2024-01-02 |
PublicationDateYYYYMMDD | 2024-01-02 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Catalysis reviews. Science and engineering |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_3_50_1 e_1_3_3_77_1 e_1_3_3_162_1 e_1_3_3_117_1 e_1_3_3_39_1 e_1_3_3_132_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_58_1 e_1_3_3_92_1 e_1_3_3_159_1 e_1_3_3_136_1 e_1_3_3_12_1 e_1_3_3_54_1 e_1_3_3_73_1 e_1_3_3_96_1 e_1_3_3_113_1 e_1_3_3_155_1 e_1_3_3_61_1 e_1_3_3_88_1 e_1_3_3_150_1 McVann A. (e_1_3_3_53_1) 1992; 81 e_1_3_3_9_1 e_1_3_3_105_1 e_1_3_3_128_1 e_1_3_3_109_1 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_69_1 e_1_3_3_80_1 e_1_3_3_120_1 e_1_3_3_147_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_42_1 e_1_3_3_65_1 e_1_3_3_84_1 e_1_3_3_101_1 e_1_3_3_124_1 e_1_3_3_143_1 e_1_3_3_30_1 e_1_3_3_76_1 e_1_3_3_161_1 e_1_3_3_99_1 JingFu L. (e_1_3_3_43_1) 2019 e_1_3_3_116_1 e_1_3_3_139_1 Medina S. (e_1_3_3_68_1) 2016 e_1_3_3_19_1 e_1_3_3_38_1 e_1_3_3_91_1 e_1_3_3_131_1 e_1_3_3_158_1 e_1_3_3_15_1 e_1_3_3_57_1 e_1_3_3_34_1 e_1_3_3_72_1 e_1_3_3_95_1 e_1_3_3_112_1 e_1_3_3_135_1 e_1_3_3_154_1 e_1_3_3_11_1 e_1_3_3_41_1 e_1_3_3_87_1 e_1_3_3_60_1 e_1_3_3_108_1 e_1_3_3_8_1 e_1_3_3_127_1 e_1_3_3_49_1 e_1_3_3_100_1 e_1_3_3_146_1 e_1_3_3_142_1 e_1_3_3_26_1 e_1_3_3_45_1 e_1_3_3_83_1 e_1_3_3_104_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_64_1 e_1_3_3_123_1 e_1_3_3_52_1 e_1_3_3_75_1 e_1_3_3_98_1 e_1_3_3_160_1 e_1_3_3_71_1 e_1_3_3_79_1 e_1_3_3_119_1 e_1_3_3_138_1 e_1_3_3_18_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_90_1 e_1_3_3_111_1 e_1_3_3_157_1 e_1_3_3_130_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_56_1 e_1_3_3_94_1 e_1_3_3_115_1 e_1_3_3_153_1 e_1_3_3_134_1 e_1_3_3_40_1 e_1_3_3_63_1 e_1_3_3_86_1 e_1_3_3_7_1 e_1_3_3_107_1 e_1_3_3_29_1 e_1_3_3_149_1 e_1_3_3_25_1 e_1_3_3_48_1 e_1_3_3_122_1 e_1_3_3_145_1 e_1_3_3_141_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_44_1 e_1_3_3_67_1 e_1_3_3_82_1 e_1_3_3_103_1 e_1_3_3_126_1 e_1_3_3_97_1 e_1_3_3_51_1 e_1_3_3_78_1 e_1_3_3_70_1 e_1_3_3_140_1 e_1_3_3_118_1 e_1_3_3_17_1 Wang C. (e_1_3_3_31_1) 2006; 18 e_1_3_3_110_1 e_1_3_3_133_1 e_1_3_3_156_1 e_1_3_3_13_1 e_1_3_3_59_1 e_1_3_3_36_1 e_1_3_3_93_1 e_1_3_3_114_1 e_1_3_3_137_1 e_1_3_3_152_1 e_1_3_3_55_1 e_1_3_3_32_1 e_1_3_3_74_1 e_1_3_3_62_1 e_1_3_3_89_1 e_1_3_3_151_1 e_1_3_3_6_1 e_1_3_3_129_1 e_1_3_3_106_1 e_1_3_3_28_1 e_1_3_3_24_1 e_1_3_3_121_1 e_1_3_3_47_1 e_1_3_3_81_1 e_1_3_3_148_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_66_1 e_1_3_3_125_1 e_1_3_3_85_1 e_1_3_3_102_1 e_1_3_3_144_1 |
References_xml | – ident: e_1_3_3_134_1 doi: 10.1055/s-2007-980384 – ident: e_1_3_3_15_1 doi: 10.1021/acs.chemrev.8b00442 – ident: e_1_3_3_46_1 doi: 10.1016/S0140-6736(79)90996-6 – ident: e_1_3_3_147_1 doi: 10.1002/ange.201504182 – ident: e_1_3_3_47_1 doi: 10.1016/S0140-6736(84)92556-X – ident: e_1_3_3_150_1 doi: 10.1021/acs.orglett.6b02488 – ident: e_1_3_3_128_1 doi: 10.1021/ja302704m – ident: e_1_3_3_120_1 doi: 10.1021/ol402914v – ident: e_1_3_3_138_1 doi: 10.1021/ja054171l – ident: e_1_3_3_21_1 doi: 10.1039/B916088D – ident: e_1_3_3_119_1 doi: 10.1021/acs.orglett.5b02332 – ident: e_1_3_3_121_1 doi: 10.1021/ol203329u – ident: e_1_3_3_140_1 doi: 10.3762/bjoc.15.125 – ident: e_1_3_3_22_1 doi: 10.2174/157340708786847861 – ident: e_1_3_3_152_1 doi: 10.1038/s41467-020-16365-8 – ident: e_1_3_3_14_1 doi: 10.1002/open.201600043 – ident: e_1_3_3_132_1 doi: 10.1002/anie.201304830 – ident: e_1_3_3_162_1 doi: 10.1021/acs.orglett.9b00626 – ident: e_1_3_3_73_1 doi: 10.1002/anie.201302158 – ident: e_1_3_3_142_1 doi: 10.1016/S0040-4039(00)97693-7 – ident: e_1_3_3_97_1 doi: 10.1016/j.tetlet.2010.01.048 – ident: e_1_3_3_10_1 doi: 10.1080/07328303.2012.749264 – ident: e_1_3_3_110_1 doi: 10.1246/cl.1981.431 – ident: e_1_3_3_109_1 doi: 10.1021/ol102473kbbb – ident: e_1_3_3_125_1 doi: 10.1039/C8OB00423D – ident: e_1_3_3_38_1 doi: 10.1021/acs.chemrev.5b00128 – ident: e_1_3_3_19_1 doi: 10.1021/jacs.8b04525 – ident: e_1_3_3_156_1 doi: 10.1016/j.cclet.2019.06.014 – ident: e_1_3_3_137_1 doi: 10.1039/C9CS00191C – ident: e_1_3_3_52_1 doi: 10.2174/092986708785908996 – ident: e_1_3_3_122_1 doi: 10.1021/ol5027443 – volume: 18 start-page: 761 year: 2006 ident: e_1_3_3_31_1 publication-title: Progress in Chemistry contributor: fullname: Wang C. – ident: e_1_3_3_57_1 doi: 10.1016/S2213-2600(16)30435-0 – ident: e_1_3_3_78_1 doi: 10.1002/ajoc.201600307 – ident: e_1_3_3_12_1 doi: 10.1021/acs.chemrev.6b00023 – ident: e_1_3_3_104_1 doi: 10.1021/jacs.5b13384 – ident: e_1_3_3_93_1 doi: 10.1021/ol4003042 – ident: e_1_3_3_39_1 doi: 10.1126/science.aaq0445 – ident: e_1_3_3_13_1 doi: 10.1002/ajoc.201900102 – ident: e_1_3_3_29_1 doi: 10.1002/anie.200503132 – ident: e_1_3_3_94_1 doi: 10.1246/bcsj.75.1319 – ident: e_1_3_3_28_1 doi: 10.1002/anie.200704684 – ident: e_1_3_3_44_1 – ident: e_1_3_3_149_1 doi: 10.1021/acs.orglett.6b00926 – ident: e_1_3_3_18_1 doi: 10.1002/9783527621644 – ident: e_1_3_3_79_1 doi: 10.1038/s41467-018-06329-4 – ident: e_1_3_3_136_1 doi: 10.1021/ja068985t – ident: e_1_3_3_145_1 doi: 10.1016/0008-6215(92)84153-J – ident: e_1_3_3_161_1 doi: 10.1021/ja405051f – ident: e_1_3_3_32_1 doi: 10.1021/ja405051f – ident: e_1_3_3_25_1 doi: 10.1038/nature07367 – ident: e_1_3_3_155_1 doi: 10.3987/COM-18-S(F)28 – ident: e_1_3_3_63_1 doi: 10.1039/b104800g – ident: e_1_3_3_130_1 doi: 10.1021/ol1001895 – ident: e_1_3_3_51_1 doi: 10.3389/fpls.2020.00357 – ident: e_1_3_3_160_1 doi: 10.3762/bjoc.13.236 – ident: e_1_3_3_84_1 doi: 10.1016/j.carres.2019.107887 – ident: e_1_3_3_113_1 doi: 10.1246/bcsj.40.2380 – ident: e_1_3_3_141_1 doi: 10.1039/C9CC06151G – ident: e_1_3_3_6_1 doi: 10.1021/cr0004310 – ident: e_1_3_3_34_1 doi: 10.1126/science.270.5243.1797 – ident: e_1_3_3_80_1 doi: 10.1016/j.catcom.2019.04.006 – ident: e_1_3_3_114_1 doi: 10.3762/bjoc.14.138 – ident: e_1_3_3_4_1 doi: 10.3390/md8122871 – ident: e_1_3_3_75_1 doi: 10.1021/acs.joc.6b02498 – ident: e_1_3_3_111_1 doi: 10.1021/jacs.0c03165 – ident: e_1_3_3_108_1 doi: 10.1246/cl.2000.696 – ident: e_1_3_3_58_1 doi: 10.1016/j.ccc.2012.07.005 – ident: e_1_3_3_127_1 doi: 10.1021/jacs.5b12528 – ident: e_1_3_3_95_1 doi: 10.1021/ja982395g – ident: e_1_3_3_107_1 doi: 10.1021/ol102473kaaa – ident: e_1_3_3_87_1 doi: 10.1002/anie.201600142 – ident: e_1_3_3_88_1 doi: 10.1126/science.aah4712 – ident: e_1_3_3_103_1 doi: 10.1021/ol102473k – ident: e_1_3_3_154_1 doi: 10.1016/j.carres.2018.10.002 – ident: e_1_3_3_71_1 doi: 10.1126/science.1182826 – ident: e_1_3_3_7_1 doi: 10.1002/9783527621644 – ident: e_1_3_3_42_1 doi: 10.1021/acs.chemrev.6b00475 – ident: e_1_3_3_102_1 doi: 10.1002/hlca.19850680134 – ident: e_1_3_3_158_1 doi: 10.1016/j.bmcl.2006.01.040 – ident: e_1_3_3_112_1 doi: 10.1039/D1QO00211B – ident: e_1_3_3_72_1 doi: 10.1021/acscatal.6b00618 – ident: e_1_3_3_24_1 doi: 10.1039/c004281a – ident: e_1_3_3_157_1 doi: 10.1039/C7CC01673E – ident: e_1_3_3_124_1 doi: 10.1002/ejoc.201901465 – ident: e_1_3_3_67_1 doi: 10.1021/acs.chemrev.7b00731 – ident: e_1_3_3_64_1 doi: 10.1073/pnas.1006402107 – ident: e_1_3_3_70_1 doi: 10.1039/C8SC02788A – ident: e_1_3_3_9_1 doi: 10.1021/ar100035r – ident: e_1_3_3_33_1 doi: 10.1021/ar0300468 – ident: e_1_3_3_17_1 doi: 10.1021/cr990307k – ident: e_1_3_3_159_1 doi: 10.1002/anie.201503156 – ident: e_1_3_3_2_1 doi: 10.3390/molecules23010089 – ident: e_1_3_3_74_1 doi: 10.1002/anie.201302158aaa – start-page: 59 volume-title: Carbohydr. Chem. year: 2016 ident: e_1_3_3_68_1 contributor: fullname: Medina S. – ident: e_1_3_3_27_1 doi: 10.1039/b903816g – ident: e_1_3_3_143_1 doi: 10.1021/acs.joc.8b02613 – ident: e_1_3_3_85_1 doi: 10.1021/jacs.0c00335 – ident: e_1_3_3_131_1 doi: 10.1039/C7CC05052F – ident: e_1_3_3_3_1 doi: 10.1016/j.acthis.2010.02.004 – ident: e_1_3_3_11_1 doi: 10.1080/07328303.2015.1137580 – ident: e_1_3_3_90_1 doi: 10.1021/ar500371z – ident: e_1_3_3_99_1 doi: 10.1139/v65-298 – ident: e_1_3_3_61_1 doi: 10.1021/ja00083a014 – ident: e_1_3_3_153_1 doi: 10.1021/jacs.7b12108 – ident: e_1_3_3_118_1 doi: 10.1021/acs.orglett.0c01549 – ident: e_1_3_3_30_1 doi: 10.1021/cr068367v – ident: e_1_3_3_100_1 doi: 10.1021/ja00895a056 – ident: e_1_3_3_117_1 doi: 10.1021/jacs.0c10714 – ident: e_1_3_3_16_1 doi: 10.1002/anie.200802036 – ident: e_1_3_3_76_1 doi: 10.1021/acs.orglett.6b01404 – ident: e_1_3_3_37_1 doi: 10.1039/b415217b – ident: e_1_3_3_151_1 doi: 10.1002/anie.202004476 – ident: e_1_3_3_82_1 doi: 10.1016/j.gene.2005.06.001 – ident: e_1_3_3_98_1 doi: 10.1002/ejoc.201300723 – volume: 81 start-page: 139 year: 1992 ident: e_1_3_3_53_1 publication-title: South African Med. J. contributor: fullname: McVann A. – ident: e_1_3_3_139_1 doi: 10.1021/ja906429c – ident: e_1_3_3_69_1 doi: 10.1002/anie.201204505 – ident: e_1_3_3_5_1 doi: 10.1021/acs.chemrev.8b00238 – ident: e_1_3_3_81_1 doi: 10.1016/0161-5890(93)90012-Z – ident: e_1_3_3_96_1 doi: 10.1002/ejoc.201901749 – ident: e_1_3_3_62_1 doi: 10.1002/1521-3773(20010803)40:15<2818::AID-ANIE2818>3.0.CO;2-Y – ident: e_1_3_3_86_1 doi: 10.1073/pnas.1811186116 – ident: e_1_3_3_116_1 doi: 10.1002/anie.201500700 – ident: e_1_3_3_101_1 doi: 10.1002/anie.201901346 – ident: e_1_3_3_92_1 doi: 10.1021/ol501711v – ident: e_1_3_3_54_1 doi: 10.1016/S0140-6736(02)08905-5 – ident: e_1_3_3_56_1 doi: 10.1002/14651858.CD008965.pub4 – ident: e_1_3_3_41_1 doi: 10.1023/A:1008073215919 – ident: e_1_3_3_91_1 doi: 10.1021/acs.joc.1c00130 – ident: e_1_3_3_20_1 doi: 10.1021/acs.orglett.9b03321 – ident: e_1_3_3_129_1 doi: 10.1021/jacs.7b03198 – ident: e_1_3_3_133_1 doi: 10.1080/07328303.2014.927882 – ident: e_1_3_3_115_1 doi: 10.1016/S0008-6215(00)85467-1 – ident: e_1_3_3_59_1 doi: 10.1517/13543784.2015.1095180 – ident: e_1_3_3_26_1 doi: 10.1021/cr078412e – start-page: 487 volume-title: Progress in Molecular Biology and Translational Science year: 2019 ident: e_1_3_3_43_1 contributor: fullname: JingFu L. – ident: e_1_3_3_106_1 doi: 10.1246/cl.2001.224 – ident: e_1_3_3_89_1 doi: 10.1021/ja2062715 – ident: e_1_3_3_40_1 doi: 10.1007/s41061-018-0222-3 – ident: e_1_3_3_36_1 doi: 10.1002/ange.200461851 – ident: e_1_3_3_123_1 doi: 10.1021/acs.joc.8b00340 – ident: e_1_3_3_65_1 doi: 10.1039/c2sc00907b – ident: e_1_3_3_55_1 doi: 10.1002/1097-0142(197610)38:4<1484::AID-CNCR2820380407>3.0.CO;2-I – ident: e_1_3_3_105_1 doi: 10.1002/ejoc.201601439 – ident: e_1_3_3_8_1 doi: 10.1021/cr00020a006 – ident: e_1_3_3_35_1 doi: 10.1039/b514296m – ident: e_1_3_3_146_1 doi: 10.1021/acs.joc.8b00215 – ident: e_1_3_3_45_1 doi: 10.20772/cancersci1959.58.6_521 – ident: e_1_3_3_144_1 doi: 10.1002/ajoc.201900055 – ident: e_1_3_3_49_1 doi: 10.1124/mi.8.1.8 – ident: e_1_3_3_50_1 doi: 10.3390/molecules22111932 – ident: e_1_3_3_23_1 doi: 10.3762/bjoc.13.201 – ident: e_1_3_3_60_1 doi: 10.1016/j.ejmech.2017.10.015 – ident: e_1_3_3_148_1 doi: 10.1002/ange.201504182aaa – ident: e_1_3_3_66_1 doi: 10.1002/ejoc.201700785 – ident: e_1_3_3_77_1 doi: 10.1021/acs.orglett.6b01962 – ident: e_1_3_3_48_1 doi: 10.1186/1471-2407-1-11 – ident: e_1_3_3_135_1 doi: 10.1021/acs.accounts.6b00403 – ident: e_1_3_3_83_1 doi: 10.1186/1471-2180-7-20 – ident: e_1_3_3_126_1 doi: 10.3390/molecules25051103 |
SSID | ssj0004369 |
Score | 2.490911 |
Snippet | Organocatalysis is the use of non-stoichiometric amounts of low-molecular-weight organic molecules made up of C, H, N, O, S, and P to accelerate... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Anomer anomeric selectivity Asymmetry Catalysis catalyst Chemical synthesis Enantiomers Glycosides glycosylation Laboratories Natural resources Organic chemistry Organocatalysis organocatalyzed Stereoselectivity Transition metals |
Title | Organocatalysis: A recent development on stereoselective synthesis of o-glycosides |
URI | https://www.tandfonline.com/doi/abs/10.1080/01614940.2022.2041303 https://www.proquest.com/docview/2919991725 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcgAOCAqIQkF74FbZsr12bXOrokYRaoMEjpSbtU8oD7uK3Ujl3_BPmd31Y9NUvC5W5Ci71s5k5pvxzDcIvdG9llLK1Es5517Mcu7lhKdeJEhIpJBpSnW-43xxPF_G71bJajL56VQtXbXM5z9u7Sv5H6nCPZCr7pL9B8kOi8IN-AzyhStIGK5_JWPTSFmbDIwmFrFd5mDC9Pt9MVYD6RcCmg9B1o2ZeqOLhZrrCqBfx0ZSe5--XfNaT-5sXLQ67VfuOlwaf7AFOt8uRy7DwXhQQTdGbPQ7WG6I5Yd08xzcMbWMBefiaHaxrr-MaXI7E_mSrqvBTXxcX2woYNeNzfw2n-uvR6Yg3E1URLFJVIxhbbEzM8QpXDKpzWOIZnNL3uTLzhxDcKs5wlx7bae0bOmlNb6h48VDa9V3HERXUQl76a18eE7djWc8-egR-yqAxftytjw7K4vTVXEH3Y3AlmkjSoLF2HpLzNTE4eH7JjFN337bJlvwZ4scdwcMGIRTPEIPu9AEn1g9e4wmstpH96b9RMB99MAhr3yCPtzQvrf4BFvdw47u4brCN3QPD7qHa4Vd3XuKlrPTYjr3ugkdHickaz2aBYkiggHKZhENQ5EA3I45jwhTUZ5RRpmUMVMyiASPs0SwgCgBsDKMJQ9URJ6hvaqu5HOEMxFSQmFBDiBZxTSTkodK5QwWhCCBHSC_P7jy0hKxlGHPb9uddKlPuuxO-gDl7vGWrdE_ZVWvJH_47WEvi7L7vzdllGvKDgD8yYvff_0S3R_1_xDttesr-Qqga8teG-X5BUqsmNA |
link.rule.ids | 315,783,787,27936,27937,60218,61007 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB619EB7KK-iUh71gauXxHZIwg0h0EKXPSCQuFnxqwdQUnXDgf76zjiJdgEhDpyjGTkee-bzaOYbgH3qtfTe5zy31nJlSstLaXMunEyldz7PK8p3XE4Pxzfq4ja7XeiFobJKekOHjigi-mq63JSMHkriDgimqFIl-LwT1EwVHfFH-HRIAYvaOJLpvDdSxrF2JMJJZujieU3Nk_j0hL30hbeOIehsBeyw-K7y5G700JqR_feM1_F9f7cKX3uEyo67I7UGH3y9Dssnw2C4dfiywGG4AVexm7OJaSBiNzlixwy9KMYy5uYFSaypGVEy-GYWB--gj2WzxxrRJ4qwJrCG_75_tA0ND519g5uz0-uTMe8HNXCLL9yWV0WSBekMgi0jqjR1GaIuZa2QJoiyqExlvFcm-EQ4q4rMmUQGh8ZKlbdJEHITluqm9t-BFS6tZIUKLWKloKrCe5uGUBpUiFjRbMFoMI_-0_Fx6HSgOe03TtPG6X7jtqBcNKJuYyIkdFNLtHxDdmewuO6v9kyLkpgbEPdlP96h-icsj68vJ3pyPv21DZ_xk4qJHbEDS-3fB7-LUKc1e_Es_weMQ_HY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB21W6ktB0oXqi5siw-9eklsZ5NwQ8AKKKwQ6kq9WfEXB1CCmuwBfj1jJxFsq4oD52hGyYw9fp7MvAH44XstrbUpTbXWVKhc05zrlDLDY26NTdPC5zsu5tOThTj7nfTVhHVXVunv0K4ligix2m_uO-P6irg9j1JELiK83THfSxXi8Ft4N_V__H0XRzR_ao3kYaqdF6Fepm_i-Z-aleNphbz0n2AdTqDZJ1D9u7eFJzeTZaMm-uEvWsdXfdwGrHf4lBy0C-ozvLHlED4c9mPhhrD2jMFwE65CL2cVkkCe22SfHBCMoXiSEfNUjkSqknhCBlvVYewORlhS35eIPVGEVI5U9Pr2Xld-dGi9BYvZ8a_DE9qNaaAa77cNLbIocdwohFqKFXFsEsRcQmvGlWN5VqhCWSuUsxEzWmSJURF3BrFFLKyOHONfYFBWpf0KJDNxwQtUqBEpOVFk1urYuVyhQkSKagST3jvyrmXjkHFPctoZTnrDyc5wI8if-1A2IQ3i2pklkr8gO-4dLruNXUuWe94GRH3J9itU78L7y6OZPD-d_9yBj_hEhKwOG8Og-bO03xDnNOp7WMmPs2fwhQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organocatalysis%3A+A+recent+development+on+stereoselective+synthesis+of+o-glycosides&rft.jtitle=Catalysis+reviews.+Science+and+engineering&rft.au=Yadav%2C+Ram+Naresh&rft.au=Hossain%2C+Md+Firoj&rft.au=Das%2C+Aparna&rft.au=Srivastava%2C+Ashok+Kumar&rft.date=2024-01-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0161-4940&rft.eissn=1520-5703&rft.volume=66&rft.issue=1&rft.spage=1&rft.epage=118&rft_id=info:doi/10.1080%2F01614940.2022.2041303&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-4940&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-4940&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-4940&client=summon |