Cross validation for uncertain autoregressive model

Uncertain time series models have been investigated to predict future values based on imprecise observations. The existing researches focus on how to estimate unknown parameters in the uncertain time series model without considering how to determine the lag order. This paper proposes three types of...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 51; no. 8; pp. 4715 - 4726
Main Authors Liu, Zhe, Yang, Xiangfeng
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 03.08.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Uncertain time series models have been investigated to predict future values based on imprecise observations. The existing researches focus on how to estimate unknown parameters in the uncertain time series model without considering how to determine the lag order. This paper proposes three types of cross validation methods, i.e. fixed origin cross validation, rolling origin cross validation, and rolling window cross validation to choose the lag order considering the model's prediction ability, and derives corresponding calculation methods under the framework of uncertainty theory. A numerical example and a real data example illustrate our methods in detail.
AbstractList Uncertain time series models have been investigated to predict future values based on imprecise observations. The existing researches focus on how to estimate unknown parameters in the uncertain time series model without considering how to determine the lag order. This paper proposes three types of cross validation methods, i.e. fixed origin cross validation, rolling origin cross validation, and rolling window cross validation to choose the lag order considering the model's prediction ability, and derives corresponding calculation methods under the framework of uncertainty theory. A numerical example and a real data example illustrate our methods in detail.
Author Liu, Zhe
Yang, Xiangfeng
Author_xml – sequence: 1
  givenname: Zhe
  orcidid: 0000-0002-6013-1745
  surname: Liu
  fullname: Liu, Zhe
  organization: Department of Mathematical Sciences, Tsinghua University
– sequence: 2
  givenname: Xiangfeng
  orcidid: 0000-0002-9792-9566
  surname: Yang
  fullname: Yang, Xiangfeng
  organization: School of Information Technology and Management, University of International Business and Economics
BookMark eNqFkE1LAzEQhoNUsK3-BGHB89bJx26yeFGKX1DwoueQzWYlZZvUJFvpv3fX1osHPQ0M7_MO88zQxHlnELrEsMAg4BpoiaHCYkGADCvOOHB-gqa4oCRnmOEJmo6ZfAydoVmMawCggokposvgY8x2qrONSta7rPUh6502ISnrMtUnH8x7MDHanck2vjHdOTptVRfNxXHO0dvD_evyKV-9PD4v71a5plSkXBGi6rrlVVlpUqhCV6UuawFG1BwUFbhsgdJGYFEXuqCKQdOQsmprwTFhrKJzdHXo3Qb_0ZuY5Nr3wQ0nJeHACKEVH1PFIaXHT4Jp5TbYjQp7iUGOfuSPHzn6kUc_A3fzi9M2fStIQdnuX_r2QFs3CNuoTx-6Ria173xog3LaRkn_rvgCS11_Dw
CitedBy_id crossref_primary_10_1007_s00500_023_09476_z
crossref_primary_10_1080_03610918_2024_2378113
crossref_primary_10_3390_axioms13110789
crossref_primary_10_1142_S1752890922430036
crossref_primary_10_3390_sym16091160
crossref_primary_10_1080_00949655_2024_2426702
crossref_primary_10_1142_S1752890922430073
crossref_primary_10_1080_03610926_2021_1906433
crossref_primary_10_1007_s10462_024_10989_8
crossref_primary_10_3233_JIFS_230179
crossref_primary_10_1007_s00500_020_05079_0
crossref_primary_10_1007_s10700_020_09340_x
crossref_primary_10_1007_s10700_024_09419_9
crossref_primary_10_1007_s12652_020_02486_x
crossref_primary_10_1080_03610918_2023_2213419
crossref_primary_10_1007_s00500_024_09771_3
crossref_primary_10_1007_s10700_024_09432_y
crossref_primary_10_1080_03610918_2025_2456574
crossref_primary_10_3233_JIFS_201724
crossref_primary_10_1049_sil2_12227
crossref_primary_10_1080_03610918_2024_2447448
crossref_primary_10_1142_S1752890922430061
crossref_primary_10_3233_JIFS_232789
crossref_primary_10_1016_j_insmatheco_2023_05_003
crossref_primary_10_1080_03610918_2023_2299759
crossref_primary_10_3233_JIFS_191751
crossref_primary_10_47836_mjms_18_2_11
crossref_primary_10_1016_j_segan_2024_101426
crossref_primary_10_1142_S0218488523500186
crossref_primary_10_1007_s00500_021_06362_4
crossref_primary_10_1080_03610926_2022_2050402
crossref_primary_10_1007_s10700_021_09353_0
crossref_primary_10_3233_JIFS_210031
crossref_primary_10_1007_s12652_023_04743_1
crossref_primary_10_1017_S1748499524000319
crossref_primary_10_1007_s10700_020_09339_4
Cites_doi 10.1007/s10700-019-09312-w
10.2307/2344546
10.1098/rsta.1927.0007
10.1007/978-3-540-73165-8_5
10.1007/s00500-017-2521-y
10.1016/0169-2070(89)90068-X
10.1016/0169-2070(92)90008-W
10.1007/s10700-018-9298-z
10.1016/j.jmp.2006.01.004
10.1080/03610926.2020.1713373
10.1016/j.asoc.2009.09.008
10.1016/0169-2070(92)90009-X
10.3233/JIFS-18353
10.1109/TPWRS.2004.835679
10.1007/978-3-540-89484-1
10.1142/S0218488520500336
10.1007/978-3-662-44354-5
10.1016/S0169-2070(00)00065-0
ContentType Journal Article
Copyright 2020 Taylor & Francis Group, LLC 2020
2020 Taylor & Francis Group, LLC
Copyright_xml – notice: 2020 Taylor & Francis Group, LLC 2020
– notice: 2020 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610918.2020.1747077
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 4726
ExternalDocumentID 10_1080_03610918_2020_1747077
1747077
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-a22abbf7969c25a5c96c6b80e8b70a3816f033d818b5c53a40dd269fb87124493
ISSN 0361-0918
IngestDate Wed Aug 13 05:57:44 EDT 2025
Thu Apr 24 23:13:22 EDT 2025
Tue Jul 01 03:10:01 EDT 2025
Wed Dec 25 09:05:25 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-a22abbf7969c25a5c96c6b80e8b70a3816f033d818b5c53a40dd269fb87124493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9792-9566
0000-0002-6013-1745
PQID 2704223979
PQPubID 186203
PageCount 12
ParticipantIDs crossref_primary_10_1080_03610918_2020_1747077
proquest_journals_2704223979
informaworld_taylorfrancis_310_1080_03610918_2020_1747077
crossref_citationtrail_10_1080_03610918_2020_1747077
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-03
PublicationDateYYYYMMDD 2022-08-03
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-03
  day: 03
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Hjorth U. (CIT0008) 1982; 9
Liu B. (CIT0011) 2008; 2
CIT0010
CIT0021
CIT0001
CIT0012
CIT0023
Box G. (CIT0004) 1970
CIT0022
Walker G. (CIT0020) 1931; 131
Liu B. (CIT0013) 2009; 3
Liu B. (CIT0014) 2015
CIT0003
CIT0002
CIT0024
CIT0005
CIT0016
CIT0015
CIT0018
CIT0006
CIT0017
CIT0009
CIT0019
References_xml – ident: CIT0015
  doi: 10.1007/s10700-019-09312-w
– ident: CIT0017
  doi: 10.2307/2344546
– ident: CIT0024
  doi: 10.1098/rsta.1927.0007
– ident: CIT0010
  doi: 10.1007/978-3-540-73165-8_5
– volume: 2
  start-page: 3
  issue: 1
  year: 2008
  ident: CIT0011
  publication-title: Journal of Uncertain Systems
– ident: CIT0023
  doi: 10.1007/s00500-017-2521-y
– ident: CIT0003
  doi: 10.1016/0169-2070(89)90068-X
– volume-title: Time series analysis: Forecasting and control
  year: 1970
  ident: CIT0004
– ident: CIT0002
  doi: 10.1016/0169-2070(92)90008-W
– volume: 3
  start-page: 3
  issue: 1
  year: 2009
  ident: CIT0013
  publication-title: Journal of Uncertain Systems
– ident: CIT0021
  doi: 10.1007/s10700-018-9298-z
– ident: CIT0019
  doi: 10.1016/j.jmp.2006.01.004
– ident: CIT0022
  doi: 10.1080/03610926.2020.1713373
– ident: CIT0001
  doi: 10.1016/j.asoc.2009.09.008
– ident: CIT0006
  doi: 10.1016/0169-2070(92)90009-X
– volume: 9
  start-page: 95
  year: 1982
  ident: CIT0008
  publication-title: Scandinavian Journal of Statistics
– volume: 131
  start-page: 518
  year: 1931
  ident: CIT0020
  publication-title: Proceedings of the Royal Society of London, Series A,
– ident: CIT0009
  doi: 10.3233/JIFS-18353
– ident: CIT0005
  doi: 10.1109/TPWRS.2004.835679
– ident: CIT0012
  doi: 10.1007/978-3-540-89484-1
– ident: CIT0016
  doi: 10.1142/S0218488520500336
– volume-title: Uncertainty theory
  year: 2015
  ident: CIT0014
  doi: 10.1007/978-3-662-44354-5
– ident: CIT0018
  doi: 10.1016/S0169-2070(00)00065-0
SSID ssj0003848
Score 2.474264
Snippet Uncertain time series models have been investigated to predict future values based on imprecise observations. The existing researches focus on how to estimate...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4715
SubjectTerms Autoregressive models
Average testing error
Cross validation
Imprecise observations
Lag order
Parameter uncertainty
Time series
Uncertain time series
Title Cross validation for uncertain autoregressive model
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2020.1747077
https://www.proquest.com/docview/2704223979
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaWcikHHguIPkA5cFt5lXgSJz5WFVWLoJdupeUUxY4NK8FS0eyFX9_xI95EW6k8LtEqKzuR5_M84plvCHmvQRVVKjWVrBU05wpoUyhOC9VK9A54rrXL8r3k59f5x2WxnEwuBllLm07O1e9760r-Rap4D-Vqq2T_QrJxUryBv1G-eEUJ4_WPZHxqTdwMZ1y125xBNFT-mH_WWH4C7QJqmx_kmt4MndFRcYjLi7XlRZ65eT67Wv0Irb362rebzfjc_tNq4842vkVwfAlfn5cIuq9GB6sYPipgPGqTICDCYLHT32OgloBnFL0MrzV1rzYZzTNPYdXr1UAk6_FTDZQk2sNiYHDz0tfM7yjzkP0IlhE-s2l4LLX5V2UaGr-MebLDP4_IY4YRg21mAellNMpQuUZq8eX7Yi5Ls37fA0ZuyojEdsdoO09k8Zw8DSFEcuLx8IJM9HpKnvXtOZKgrafkyedIyXs7JftXUbYvCTjkJFvkJPjkJCInGSMncch5Ra7PPixOz2lon0EVQNXRhrFGSlMKLhQrcAcKrrisUl3JMm3sgbFJAVr02GShCmjytG0ZF0ZiDI1On4DXZG_9c63fkARayJg2RsrW5E2lZMZMKxqcUUKphDkgeb9atQrc8rbFyfc66ylowyLXdpHrsMgHZB6H3XhylYcGiKEo6s7h1HiI1vDA2ONebnXYw7c1Ky0Hnj3bPvyPqY_I_nYTHZO97tdGv0VftZPvHArvAImUjSs
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTwIxEJ0oHsSDKGpEUffgdXFpt93t0RAJKnCChFuz7baJ0aCR5eKvt7MfBDWGAz9gmp12djrTvr4HcGuoZnGgjK9IKvyQa-onTHOf6VS56oCHxuQo3zEfTMOnGZutvYVBWCX20LYgishzNf7ceBhdQeLuXNZFPktEZpEAITlREEW7sMcEj1DFgAbjVTamca6ghSY-2lSveP4b5sf-9IO99E-2zregfgN09fEF8uS1s8xUR3_94nXczrsjOCwrVO--CKlj2DHzJjQq9QevTAZNOBitGF8XTahj1VqQPp8A7aFvngvil0KyyXP-eW4HLfAHXoLECSbv9F2y9XI1nlOY9h8mvYFfqjP42rW1mZ8QkihlI8GFJswtsOCaqzgwsYqCBO8jbUBp6goCxTSjSRikKeHCKteiuZpC0DOozd_n5hw8mtIuMdYqldowibXqEpuKxI2oaKSFbUFYrYnUJXU5Kmi8yW7FcFrOmcQ5k-WctaCzMvsouDs2GYj1BZdZfmhiC4UTSTfYtqvokGUaWEgSIcUaXp1ebDH0DewPJqOhHD6Ony-hTvABBoJWaBtq2efSXLmyKFPXedx_AwSR_Vk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsMwEFxBkVA5UCggCgVy4JqS2okTH1GhKq-KA5W4WfFLQqCCaLjw9XgTp6IgxKEfsFZsb8a7yXgG4NRQlWSRNKEkmocxUzTME8XCRGnpqgMWG1OyfMdsNImvH5OaTTjztErsoW0lFFFiNb7cb9rWjLgzB7ooZ4nELBIhIyeN0nQV1hiKh-Mtjmg8B2OalQZaGBJiTH2J569hFo6nBfHSX2BdnkDDFsj62SviyXPvo5A99flD1nGpyW3Bpq9Pg_MqobZhxUzb0Kq9HwIPBW3YuJvrvc7a0MSatZJ83gE6wKkFLoWfKsOmwE0vcOdnxT4IcpRNMGWf76A2KL14dmEyvHwYjELvzRAq19QWYU5ILqVNOeOKJG57OVNMZpHJZBrl-DfSRpRqVw7IRCU0jyOtCeNWugbNVRSc7kFj-jo1-xBQTfvEWCultnGeKdknVvPcjShpqrjtQFxviVBeuBz9M15Ev9Y39WsmcM2EX7MO9OZhb5Vyx38B_Pt-i6L8ZGIrfxNB_4nt1skhPAjMBElRYA1_nB4sMfQJrN9fDMXt1fjmEJoEb18gY4V2oVG8f5gjVxMV8rjM-i_alvv9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross+validation+for+uncertain+autoregressive+model&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Liu%2C+Zhe&rft.au=Yang%2C+Xiangfeng&rft.date=2022-08-03&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=51&rft.issue=8&rft.spage=4715&rft.epage=4726&rft_id=info:doi/10.1080%2F03610918.2020.1747077&rft.externalDocID=1747077
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon