Cross validation for uncertain autoregressive model
Uncertain time series models have been investigated to predict future values based on imprecise observations. The existing researches focus on how to estimate unknown parameters in the uncertain time series model without considering how to determine the lag order. This paper proposes three types of...
Saved in:
Published in | Communications in statistics. Simulation and computation Vol. 51; no. 8; pp. 4715 - 4726 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
03.08.2022
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Uncertain time series models have been investigated to predict future values based on imprecise observations. The existing researches focus on how to estimate unknown parameters in the uncertain time series model without considering how to determine the lag order. This paper proposes three types of cross validation methods, i.e. fixed origin cross validation, rolling origin cross validation, and rolling window cross validation to choose the lag order considering the model's prediction ability, and derives corresponding calculation methods under the framework of uncertainty theory. A numerical example and a real data example illustrate our methods in detail. |
---|---|
AbstractList | Uncertain time series models have been investigated to predict future values based on imprecise observations. The existing researches focus on how to estimate unknown parameters in the uncertain time series model without considering how to determine the lag order. This paper proposes three types of cross validation methods, i.e. fixed origin cross validation, rolling origin cross validation, and rolling window cross validation to choose the lag order considering the model's prediction ability, and derives corresponding calculation methods under the framework of uncertainty theory. A numerical example and a real data example illustrate our methods in detail. |
Author | Liu, Zhe Yang, Xiangfeng |
Author_xml | – sequence: 1 givenname: Zhe orcidid: 0000-0002-6013-1745 surname: Liu fullname: Liu, Zhe organization: Department of Mathematical Sciences, Tsinghua University – sequence: 2 givenname: Xiangfeng orcidid: 0000-0002-9792-9566 surname: Yang fullname: Yang, Xiangfeng organization: School of Information Technology and Management, University of International Business and Economics |
BookMark | eNqFkE1LAzEQhoNUsK3-BGHB89bJx26yeFGKX1DwoueQzWYlZZvUJFvpv3fX1osHPQ0M7_MO88zQxHlnELrEsMAg4BpoiaHCYkGADCvOOHB-gqa4oCRnmOEJmo6ZfAydoVmMawCggokposvgY8x2qrONSta7rPUh6502ISnrMtUnH8x7MDHanck2vjHdOTptVRfNxXHO0dvD_evyKV-9PD4v71a5plSkXBGi6rrlVVlpUqhCV6UuawFG1BwUFbhsgdJGYFEXuqCKQdOQsmprwTFhrKJzdHXo3Qb_0ZuY5Nr3wQ0nJeHACKEVH1PFIaXHT4Jp5TbYjQp7iUGOfuSPHzn6kUc_A3fzi9M2fStIQdnuX_r2QFs3CNuoTx-6Ria173xog3LaRkn_rvgCS11_Dw |
CitedBy_id | crossref_primary_10_1007_s00500_023_09476_z crossref_primary_10_1080_03610918_2024_2378113 crossref_primary_10_3390_axioms13110789 crossref_primary_10_1142_S1752890922430036 crossref_primary_10_3390_sym16091160 crossref_primary_10_1080_00949655_2024_2426702 crossref_primary_10_1142_S1752890922430073 crossref_primary_10_1080_03610926_2021_1906433 crossref_primary_10_1007_s10462_024_10989_8 crossref_primary_10_3233_JIFS_230179 crossref_primary_10_1007_s00500_020_05079_0 crossref_primary_10_1007_s10700_020_09340_x crossref_primary_10_1007_s10700_024_09419_9 crossref_primary_10_1007_s12652_020_02486_x crossref_primary_10_1080_03610918_2023_2213419 crossref_primary_10_1007_s00500_024_09771_3 crossref_primary_10_1007_s10700_024_09432_y crossref_primary_10_1080_03610918_2025_2456574 crossref_primary_10_3233_JIFS_201724 crossref_primary_10_1049_sil2_12227 crossref_primary_10_1080_03610918_2024_2447448 crossref_primary_10_1142_S1752890922430061 crossref_primary_10_3233_JIFS_232789 crossref_primary_10_1016_j_insmatheco_2023_05_003 crossref_primary_10_1080_03610918_2023_2299759 crossref_primary_10_3233_JIFS_191751 crossref_primary_10_47836_mjms_18_2_11 crossref_primary_10_1016_j_segan_2024_101426 crossref_primary_10_1142_S0218488523500186 crossref_primary_10_1007_s00500_021_06362_4 crossref_primary_10_1080_03610926_2022_2050402 crossref_primary_10_1007_s10700_021_09353_0 crossref_primary_10_3233_JIFS_210031 crossref_primary_10_1007_s12652_023_04743_1 crossref_primary_10_1017_S1748499524000319 crossref_primary_10_1007_s10700_020_09339_4 |
Cites_doi | 10.1007/s10700-019-09312-w 10.2307/2344546 10.1098/rsta.1927.0007 10.1007/978-3-540-73165-8_5 10.1007/s00500-017-2521-y 10.1016/0169-2070(89)90068-X 10.1016/0169-2070(92)90008-W 10.1007/s10700-018-9298-z 10.1016/j.jmp.2006.01.004 10.1080/03610926.2020.1713373 10.1016/j.asoc.2009.09.008 10.1016/0169-2070(92)90009-X 10.3233/JIFS-18353 10.1109/TPWRS.2004.835679 10.1007/978-3-540-89484-1 10.1142/S0218488520500336 10.1007/978-3-662-44354-5 10.1016/S0169-2070(00)00065-0 |
ContentType | Journal Article |
Copyright | 2020 Taylor & Francis Group, LLC 2020 2020 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2020 Taylor & Francis Group, LLC 2020 – notice: 2020 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/03610918.2020.1747077 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1532-4141 |
EndPage | 4726 |
ExternalDocumentID | 10_1080_03610918_2020_1747077 1747077 |
Genre | Research Article |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM LJTGL M4Z NA5 NY~ O9- P2P QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c338t-a22abbf7969c25a5c96c6b80e8b70a3816f033d818b5c53a40dd269fb87124493 |
ISSN | 0361-0918 |
IngestDate | Wed Aug 13 05:57:44 EDT 2025 Thu Apr 24 23:13:22 EDT 2025 Tue Jul 01 03:10:01 EDT 2025 Wed Dec 25 09:05:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-a22abbf7969c25a5c96c6b80e8b70a3816f033d818b5c53a40dd269fb87124493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9792-9566 0000-0002-6013-1745 |
PQID | 2704223979 |
PQPubID | 186203 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1080_03610918_2020_1747077 proquest_journals_2704223979 informaworld_taylorfrancis_310_1080_03610918_2020_1747077 crossref_citationtrail_10_1080_03610918_2020_1747077 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-03 |
PublicationDateYYYYMMDD | 2022-08-03 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in statistics. Simulation and computation |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Hjorth U. (CIT0008) 1982; 9 Liu B. (CIT0011) 2008; 2 CIT0010 CIT0021 CIT0001 CIT0012 CIT0023 Box G. (CIT0004) 1970 CIT0022 Walker G. (CIT0020) 1931; 131 Liu B. (CIT0013) 2009; 3 Liu B. (CIT0014) 2015 CIT0003 CIT0002 CIT0024 CIT0005 CIT0016 CIT0015 CIT0018 CIT0006 CIT0017 CIT0009 CIT0019 |
References_xml | – ident: CIT0015 doi: 10.1007/s10700-019-09312-w – ident: CIT0017 doi: 10.2307/2344546 – ident: CIT0024 doi: 10.1098/rsta.1927.0007 – ident: CIT0010 doi: 10.1007/978-3-540-73165-8_5 – volume: 2 start-page: 3 issue: 1 year: 2008 ident: CIT0011 publication-title: Journal of Uncertain Systems – ident: CIT0023 doi: 10.1007/s00500-017-2521-y – ident: CIT0003 doi: 10.1016/0169-2070(89)90068-X – volume-title: Time series analysis: Forecasting and control year: 1970 ident: CIT0004 – ident: CIT0002 doi: 10.1016/0169-2070(92)90008-W – volume: 3 start-page: 3 issue: 1 year: 2009 ident: CIT0013 publication-title: Journal of Uncertain Systems – ident: CIT0021 doi: 10.1007/s10700-018-9298-z – ident: CIT0019 doi: 10.1016/j.jmp.2006.01.004 – ident: CIT0022 doi: 10.1080/03610926.2020.1713373 – ident: CIT0001 doi: 10.1016/j.asoc.2009.09.008 – ident: CIT0006 doi: 10.1016/0169-2070(92)90009-X – volume: 9 start-page: 95 year: 1982 ident: CIT0008 publication-title: Scandinavian Journal of Statistics – volume: 131 start-page: 518 year: 1931 ident: CIT0020 publication-title: Proceedings of the Royal Society of London, Series A, – ident: CIT0009 doi: 10.3233/JIFS-18353 – ident: CIT0005 doi: 10.1109/TPWRS.2004.835679 – ident: CIT0012 doi: 10.1007/978-3-540-89484-1 – ident: CIT0016 doi: 10.1142/S0218488520500336 – volume-title: Uncertainty theory year: 2015 ident: CIT0014 doi: 10.1007/978-3-662-44354-5 – ident: CIT0018 doi: 10.1016/S0169-2070(00)00065-0 |
SSID | ssj0003848 |
Score | 2.474264 |
Snippet | Uncertain time series models have been investigated to predict future values based on imprecise observations. The existing researches focus on how to estimate... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4715 |
SubjectTerms | Autoregressive models Average testing error Cross validation Imprecise observations Lag order Parameter uncertainty Time series Uncertain time series |
Title | Cross validation for uncertain autoregressive model |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610918.2020.1747077 https://www.proquest.com/docview/2704223979 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaWcikHHguIPkA5cFt5lXgSJz5WFVWLoJdupeUUxY4NK8FS0eyFX9_xI95EW6k8LtEqKzuR5_M84plvCHmvQRVVKjWVrBU05wpoUyhOC9VK9A54rrXL8r3k59f5x2WxnEwuBllLm07O1e9760r-Rap4D-Vqq2T_QrJxUryBv1G-eEUJ4_WPZHxqTdwMZ1y125xBNFT-mH_WWH4C7QJqmx_kmt4MndFRcYjLi7XlRZ65eT67Wv0Irb362rebzfjc_tNq4842vkVwfAlfn5cIuq9GB6sYPipgPGqTICDCYLHT32OgloBnFL0MrzV1rzYZzTNPYdXr1UAk6_FTDZQk2sNiYHDz0tfM7yjzkP0IlhE-s2l4LLX5V2UaGr-MebLDP4_IY4YRg21mAellNMpQuUZq8eX7Yi5Ls37fA0ZuyojEdsdoO09k8Zw8DSFEcuLx8IJM9HpKnvXtOZKgrafkyedIyXs7JftXUbYvCTjkJFvkJPjkJCInGSMncch5Ra7PPixOz2lon0EVQNXRhrFGSlMKLhQrcAcKrrisUl3JMm3sgbFJAVr02GShCmjytG0ZF0ZiDI1On4DXZG_9c63fkARayJg2RsrW5E2lZMZMKxqcUUKphDkgeb9atQrc8rbFyfc66ylowyLXdpHrsMgHZB6H3XhylYcGiKEo6s7h1HiI1vDA2ONebnXYw7c1Ky0Hnj3bPvyPqY_I_nYTHZO97tdGv0VftZPvHArvAImUjSs |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTwIxEJ0oHsSDKGpEUffgdXFpt93t0RAJKnCChFuz7baJ0aCR5eKvt7MfBDWGAz9gmp12djrTvr4HcGuoZnGgjK9IKvyQa-onTHOf6VS56oCHxuQo3zEfTMOnGZutvYVBWCX20LYgishzNf7ceBhdQeLuXNZFPktEZpEAITlREEW7sMcEj1DFgAbjVTamca6ghSY-2lSveP4b5sf-9IO99E-2zregfgN09fEF8uS1s8xUR3_94nXczrsjOCwrVO--CKlj2DHzJjQq9QevTAZNOBitGF8XTahj1VqQPp8A7aFvngvil0KyyXP-eW4HLfAHXoLECSbv9F2y9XI1nlOY9h8mvYFfqjP42rW1mZ8QkihlI8GFJswtsOCaqzgwsYqCBO8jbUBp6goCxTSjSRikKeHCKteiuZpC0DOozd_n5hw8mtIuMdYqldowibXqEpuKxI2oaKSFbUFYrYnUJXU5Kmi8yW7FcFrOmcQ5k-WctaCzMvsouDs2GYj1BZdZfmhiC4UTSTfYtqvokGUaWEgSIcUaXp1ebDH0DewPJqOhHD6Ony-hTvABBoJWaBtq2efSXLmyKFPXedx_AwSR_Vk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsMwEFxBkVA5UCggCgVy4JqS2okTH1GhKq-KA5W4WfFLQqCCaLjw9XgTp6IgxKEfsFZsb8a7yXgG4NRQlWSRNKEkmocxUzTME8XCRGnpqgMWG1OyfMdsNImvH5OaTTjztErsoW0lFFFiNb7cb9rWjLgzB7ooZ4nELBIhIyeN0nQV1hiKh-Mtjmg8B2OalQZaGBJiTH2J569hFo6nBfHSX2BdnkDDFsj62SviyXPvo5A99flD1nGpyW3Bpq9Pg_MqobZhxUzb0Kq9HwIPBW3YuJvrvc7a0MSatZJ83gE6wKkFLoWfKsOmwE0vcOdnxT4IcpRNMGWf76A2KL14dmEyvHwYjELvzRAq19QWYU5ILqVNOeOKJG57OVNMZpHJZBrl-DfSRpRqVw7IRCU0jyOtCeNWugbNVRSc7kFj-jo1-xBQTfvEWCultnGeKdknVvPcjShpqrjtQFxviVBeuBz9M15Ev9Y39WsmcM2EX7MO9OZhb5Vyx38B_Pt-i6L8ZGIrfxNB_4nt1skhPAjMBElRYA1_nB4sMfQJrN9fDMXt1fjmEJoEb18gY4V2oVG8f5gjVxMV8rjM-i_alvv9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross+validation+for+uncertain+autoregressive+model&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Liu%2C+Zhe&rft.au=Yang%2C+Xiangfeng&rft.date=2022-08-03&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=51&rft.issue=8&rft.spage=4715&rft.epage=4726&rft_id=info:doi/10.1080%2F03610918.2020.1747077&rft.externalDocID=1747077 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon |