Incorporation of residual stresses into the SINTAP defect assessment procedure

Residual stresses are an important consideration in the structural integrity assessment of welded joints and reliable predictions of structural integrity therefore require that the residual stress distribution is adequately accounted for. However, distributions are dependent on the weld geometry and...

Full description

Saved in:
Bibliographic Details
Published inEngineering fracture mechanics Vol. 67; no. 6; pp. 573 - 611
Main Authors Stacey, A, Barthelemy, J.-Y, Leggatt, R.H, Ainsworth, R.A
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2000
Subjects
Online AccessGet full text
ISSN0013-7944
1873-7315
DOI10.1016/S0013-7944(00)00075-8

Cover

Abstract Residual stresses are an important consideration in the structural integrity assessment of welded joints and reliable predictions of structural integrity therefore require that the residual stress distribution is adequately accounted for. However, distributions are dependent on the weld geometry and, in the absence of comprehensive information for welded joints, it is usually necessary to make conservative assumptions. This can result in unrealistic predictions, and consequently, further information on the nature and behaviour of residual stress distributions is required to enable the provision of improved guidance on this subject. The further development of the BS 7910 and R6 procedures for the assessment of residual stress effects was a principal task in the EC funded project named structural integrity assessment procedures for European industry, SINTAP, and an extensive investigation of this subject was performed. It entailed an extensive literature review of distributions in the principal weld geometries (including plate butt, pipe butt, pipe to plate, T-butt and tubular welded joints), experimental and numerical investigations and the development and validation of procedures.
AbstractList Residual stresses are an important consideration in the structural integrity assessment of welded joints and reliable predictions of structural integrity therefore require that the residual stress distribution is adequately accounted for. However, distributions are dependent on the weld geometry and, in the absence of comprehensive information for welded joints, it is usually necessary to make conservative assumptions. This can result in unrealisitic predictions, and consequently, further information on the nature and behavior of residual stress distributions is required to enable the provision of improved guidance on this subject. The further development of the BS 7910 and R6 procedures for the assessement of residual stress effects was a principal task in the EC funded project named structural integrity assessment procedures for European industry, SINTAP, and an extensive investigation of this subject was performed. It entailed an extensive literature review of distributions in the principal weld geometries (including plate butt, pipe butt, pipe to plate, T-butt and tubular welded joints), experimental and numerical investigations and the development and validation of procedures. Materials: steel.
Residual stresses are an important consideration in the structural integrity assessment of welded joints and reliable predictions of structural integrity therefore require that the residual stress distribution is adequately accounted for. However, distributions are dependent on the weld geometry and, in the absence of comprehensive information for welded joints, it is usually necessary to make conservative assumptions. This can result in unrealistic predictions, and consequently, further information on the nature and behaviour of residual stress distributions is required to enable the provision of improved guidance on this subject. The further development of the BS 7910 and R6 procedures for the assessment of residual stress effects was a principal task in the EC funded project named structural integrity assessment procedures for European industry, SINTAP, and an extensive investigation of this subject was performed. It entailed an extensive literature review of distributions in the principal weld geometries (including plate butt, pipe butt, pipe to plate, T-butt and tubular welded joints), experimental and numerical investigations and the development and validation of procedures.
Author Barthelemy, J.-Y
Ainsworth, R.A
Stacey, A
Leggatt, R.H
Author_xml – sequence: 1
  givenname: A
  surname: Stacey
  fullname: Stacey, A
  email: alex.stacey@hse.gsi.gov.uk
  organization: Offshore Division, Health & Safety Executive, London, UK
– sequence: 2
  givenname: J.-Y
  surname: Barthelemy
  fullname: Barthelemy, J.-Y
  organization: Institut de Soudure, Ennery, France
– sequence: 3
  givenname: R.H
  surname: Leggatt
  fullname: Leggatt, R.H
  organization: The Welding Institute, Abington, Cambridge, UK
– sequence: 4
  givenname: R.A
  surname: Ainsworth
  fullname: Ainsworth, R.A
  email: bob.ainsworth@british-energy.com
  organization: British Energy Generation Ltd., Structural Integrity Branch, Bornett Way, Barnwood, Gloucestershire GL4 3RS, UK
BookMark eNqFkE9LAzEQxYNUsK1-BCEn0cNqstnNbvAgUvxTKFVoPYdsdhYj201NsoLf3mwrHrz0NMPMe2-Y3wSNOtsBQueUXFNC-c2KEMqSQmTZJSFXhJAiT8ojNKZlEceM5iM0_pOcoIn3H4OIl2SMlvNOW7e1TgVjO2wb7MCbulct9iG2Hjw2XbA4vANezZfr-1dcQwM6YDUs_Qa6gLfOaqh7B6fouFGth7PfOkVvjw_r2XOyeHmaz-4XiWasDImoGEkFy9K8ErXIVV1kTQ7AGBeiLBvNlRA8raCiTVaRlNVKcSpSFsclT5VgU3Sxz42XP3vwQW6M19C2qgPbe5kWnHDG0ii83Qu1s947aKQ2YfdrcMq0khI5MJQ7hnIAJAmRO4ayjO78n3vrzEa574O-u70PIoMvA056baCLjIyL6GRtzYGEH8LxixQ
CitedBy_id crossref_primary_10_1016_j_ijpvp_2017_11_007
crossref_primary_10_1016_j_ijpvp_2004_08_001
crossref_primary_10_1007_BF03321537
crossref_primary_10_1016_S0013_7944_00_00071_0
crossref_primary_10_1016_S0308_0161_03_00131_5
crossref_primary_10_1016_j_jcsr_2007_06_001
crossref_primary_10_1016_S0029_5493_01_00501_5
crossref_primary_10_1016_j_engfracmech_2009_12_004
crossref_primary_10_1016_j_matdes_2010_12_037
crossref_primary_10_37434_as2020_11_04
crossref_primary_10_1016_j_jmatprotec_2017_08_001
crossref_primary_10_1111_j_1460_2695_2012_01712_x
crossref_primary_10_1016_j_nucengdes_2012_01_021
crossref_primary_10_1016_j_tws_2012_03_015
crossref_primary_10_1016_j_ijpvp_2015_09_002
crossref_primary_10_1088_1755_1315_143_1_012031
crossref_primary_10_1016_j_engfracmech_2014_03_015
crossref_primary_10_3795_KSME_A_2009_33_10_1065
crossref_primary_10_1002_stab_200910075
crossref_primary_10_1016_j_engfracmech_2009_06_005
crossref_primary_10_1177_1056789509359676
crossref_primary_10_1179_026708309X12459430509454
crossref_primary_10_1007_s13296_017_6035_3
crossref_primary_10_1016_S1003_6326_13_62616_3
crossref_primary_10_1016_j_tafmec_2017_03_008
crossref_primary_10_1016_j_ijfatigue_2011_07_013
crossref_primary_10_1007_s00170_023_11162_1
crossref_primary_10_1016_j_ijfatigue_2014_08_013
crossref_primary_10_1016_j_prostr_2016_06_003
crossref_primary_10_37434_tpwj2020_11_04
crossref_primary_10_1007_s00170_022_09574_6
crossref_primary_10_1088_0034_4885_70_12_R04
crossref_primary_10_1016_j_ijpvp_2005_06_004
crossref_primary_10_1016_j_ijpvp_2012_05_004
crossref_primary_10_1016_j_msea_2007_07_032
crossref_primary_10_3795_KSME_A_2008_32_12_1123
crossref_primary_10_1016_j_ijpvp_2012_01_002
crossref_primary_10_1016_j_engfracmech_2008_07_002
crossref_primary_10_1016_j_engstruct_2007_03_021
crossref_primary_10_1016_j_ijpvp_2011_05_004
crossref_primary_10_1016_j_engstruct_2016_07_002
crossref_primary_10_1016_j_ijpvp_2013_07_005
crossref_primary_10_1016_j_engfailanal_2008_06_017
crossref_primary_10_1016_j_engstruct_2020_110550
crossref_primary_10_1016_j_jcsr_2011_09_007
Cites_doi 10.1520/STP26359S
10.1243/PIME_PROC_1990_204_086_02
10.1016/0308-0161(84)90028-0
10.1016/0308-0161(83)90021-2
10.1111/j.1475-1305.1987.tb00618.x
10.1016/B978-0-08-025412-8.50045-0
10.1016/0013-7944(86)90008-1
10.1007/978-1-4684-5338-6_64
10.4043/5024-MS
10.1016/0013-7944(92)90156-9
ContentType Journal Article
Copyright 2000 Elsevier Science Ltd
Copyright_xml – notice: 2000 Elsevier Science Ltd
DBID AAYXX
CITATION
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/S0013-7944(00)00075-8
DatabaseName CrossRef
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7315
EndPage 611
ExternalDocumentID 10_1016_S0013_7944_00_00075_8
S0013794400000758
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABEFU
ABFNM
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
8BQ
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c338t-9b30293425b9d95ad74f5ee3369988fc6a9962beb1f4b023daa61923a99862a93
IEDL.DBID AIKHN
ISSN 0013-7944
IngestDate Thu Sep 04 17:29:55 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
Tue Jul 01 04:15:59 EDT 2025
Fri Feb 23 02:33:44 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Welded joints
Stress intensity factors
Residual stresses
Defect assessment
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-9b30293425b9d95ad74f5ee3369988fc6a9962beb1f4b023daa61923a99862a93
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 27606332
PQPubID 23500
PageCount 39
ParticipantIDs proquest_miscellaneous_27606332
crossref_citationtrail_10_1016_S0013_7944_00_00075_8
crossref_primary_10_1016_S0013_7944_00_00075_8
elsevier_sciencedirect_doi_10_1016_S0013_7944_00_00075_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2000-12-01
PublicationDateYYYYMMDD 2000-12-01
PublicationDate_xml – month: 12
  year: 2000
  text: 2000-12-01
  day: 01
PublicationDecade 2000
PublicationTitle Engineering fracture mechanics
PublicationYear 2000
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhou RJ, Pense AW, Basehore ML, Lyons DH. A study of residual stress in pressure vessel steels. Welding Res Council Bull 1985;302
Holden T, Powell B, MacEwen S, Lazor R. Axial strains at a girth weld in a 914 mm linepipe. Second International Symposium on Non-Destructive Characterisation of Materials. 1986. p. 625–31
Ainsworth (BIB45) 1986; 24
Smith SD. Comparison of the PD6493:1991 rho
Guidance on methods for assessing the acceptability of flaws in fusion welded structures. London: British Standards Institution; 1991. BS PD6493:1991
Ueda, Fukuda, Nishimura, Hideaki, Chiba, Fukuda (BIB12) 1983; 12
Tada H, Paris PC, Irwin GR. The stress analysis of cracks handbook. 2nd ed. Hellertown, Pennsylvania: Del Research Corporation; 1985
Leggatt RH, Sanderson RM. Stress intensity due to residual stresses. TWI report SINTAP/TWI/4-6 88269/46/99, 1999
UEG Tubular joints Group. Newsletter Supplement 12, 1989. Appendix A, p. 24–35
Finch, Burdekin (BIB28) 1992; 41
Porter Goff RFD, Free JA, Tsiagbe W. Residual stresses in Y-nodes and PWHT joints. Health and Safety Executive report OTH 89 315. London: Her Majesty's Stationery Office; 1990
Mok, Pick (BIB24) 1990; 204
Assessment of the integrity of structures containing defects. Barnwood, Gloucester: British Energy Generation Ltd; 1999. R/H/R6 – Revision 3
Lidbury (BIB35) 1984; 17
Ritchie D, Leggatt RH. The measurement of the distortion of residual stresses through the thickness of a welded joint. Strain 1987;61–70
Leggatt RH. Recommendations for revised surface residual stress profiles. The Welding Institute report SINTAP/TWI/4-3, 1998
Newman JC, Raju IS. Analysis of surface cracks in finite plates under tension or bending loads. NASA Technical Paper 1578, 1979
Payne J, Porter Goff RFD. Experimental residual stress distributions in welded tubular T-nodes. Paper C134/86. Proceedings of Fatigue and Crack Growth in Offshore Structures conference, Institution of Mechanical Engineers, 1986. p. 109–16
Leggatt RH. Residual stresses at repair welds without PWHT. TWI seminar on repair welding without post weld heat treatment- problems and solutions. London: Institute of Materials; 1993
France CC, Sharples JK, Wignall C. Experimental programme to assess the influence of residual stresses on fracture behaviour- summary report. AEA Technology report AEAT-4236, 1998
Bate SK, Green D, Buttle K. Review of residual stress distributions for the defect assessment of offshore structures. AEA Technology report, 1995
Ueda Y, Nakacho K. Distributions of welding residual stress in various joints in thick plates. Trans JWRI 1986;15(1)
Instruction Manual, Version 231. Framasoft and CSI, 1991
Holden TM, Root JH, Holt RA, Roy G. Neutron diffraction measurements of the residual strain state of a tubular T-joint. Proceedings of the 7th International Conference on Offshore Mechanics and Arctic Engineering ASME 1988:127–31
Scaramangas A, Porter Goff RFD. Residual stresses in cylinder girth butt welds. Paper OTC 5024. 17th Offshore Technology Conference, May 1985. p. 25–30
Barthelemy JY. Compendium of residual stress profiles. Insitut de Soudure, 1998
Morgan H, Gardner L. The influence of post weld heat treatment on the fatigue performance of T-butt welded joints tested at low stress levels, vol. 1. Health and Safety Executive report OTN 92 161, 1991
Recommended practice for fitness-for-service, Issue 12. 1999. API 579 (special release)
Sanderson DJ. Recommendations for revised compendium of residual stress profiles for R6. AEA Technology report AEA-TSD-0554, 1996
Allen AJ, Hutchings MT, Rainey V. Measurement of through-thickness residual stress in offshore steels using the neutron diffraction technique. AEA Technology report AERE R 12178, 1986
Fidler (BIB16) 1983; 14
Porter Goff RFD, Free JA, Tsiagbe W. Residual stresses in welded tubular nodes. In: Dover WD, Glinka G, editors. Fatigue of Offshore Structures. EMAS, 1988. p. 285–95
Leggatt RH. Measurement of residual stresses in complex welded components. Report 5585/12A/91. The Welding Institute, 1991
Bryan RH, Merkle JG, Iskander SK, Whitman GD, Holz PP. Test of a thick vessel with a flaw in a residual stress field. Proceedings of ASME Pressure Vessels and Piping conference, 1979
Leggatt RH. Residual stress measurements at repair welds in pressure vessel steels in the as-welded condition. The Welding Institute report 315/1986, 1986
Barthelemy JY. Post weld heat treatment of a pipeline butt weld. Insitut de Soudure, 1998
Al Laham S. Stress intensity factor and limit load handbook. Nuclear Electric Ltd. report EPD/GEN/REP/0316/98, Issue 2, 1998
Guide on methods for assessing the acceptability of flaws in fusion welded structures. London: British Standards Institution; 1999. BS 7910:1999
factor with FEA results. TWI report SINTAP/TWI/1-2, 1997
Unfired fusion welded pressure vessels. London: British Standards Institution; 1988. BS 5500:1988
Mitchell D. R6 validation exercise – through thickness residual stress measurements on an experimental test vessel rig. CEGB report RD/B/6088/R88, 1988
Bonner N, Smith D. Measurement of residual stresses in a thick section steel weld. Second International Conference on Engineering Assessment, Glasgow, 1994
Leggatt RH. Computer modelling of transverse residual stresses in repair welds. IIW document X-1176-88, 1988
Stout RD. Postweld heat treatment of pressure vessel steels. Welding Res Council Bull 1985;302
R6-CODE. Barnwood, Gloucester: British Energy Generation Ltd; 1999
Leggatt RH. Residual stresses at girth welds in pipes. Welding in energy-related projects, Welding Institute of Canada. New York: Pergamon Press; 1984. p. 429–40
Stacey (BIB7) 1996
Leggatt RH. Residual stresses at circumferential welds in pipes. The Welding Inst Res Bull 1982;181–8
10.1016/S0013-7944(00)00075-8_BIB41
10.1016/S0013-7944(00)00075-8_BIB40
10.1016/S0013-7944(00)00075-8_BIB23
10.1016/S0013-7944(00)00075-8_BIB22
10.1016/S0013-7944(00)00075-8_BIB44
10.1016/S0013-7944(00)00075-8_BIB21
10.1016/S0013-7944(00)00075-8_BIB43
10.1016/S0013-7944(00)00075-8_BIB20
10.1016/S0013-7944(00)00075-8_BIB42
10.1016/S0013-7944(00)00075-8_BIB38
10.1016/S0013-7944(00)00075-8_BIB15
10.1016/S0013-7944(00)00075-8_BIB37
10.1016/S0013-7944(00)00075-8_BIB14
Finch (10.1016/S0013-7944(00)00075-8_BIB28) 1992; 41
10.1016/S0013-7944(00)00075-8_BIB36
10.1016/S0013-7944(00)00075-8_BIB13
10.1016/S0013-7944(00)00075-8_BIB19
Lidbury (10.1016/S0013-7944(00)00075-8_BIB35) 1984; 17
Ainsworth (10.1016/S0013-7944(00)00075-8_BIB45) 1986; 24
10.1016/S0013-7944(00)00075-8_BIB18
10.1016/S0013-7944(00)00075-8_BIB17
10.1016/S0013-7944(00)00075-8_BIB39
10.1016/S0013-7944(00)00075-8_BIB30
Stacey (10.1016/S0013-7944(00)00075-8_BIB7) 1996
10.1016/S0013-7944(00)00075-8_BIB6
10.1016/S0013-7944(00)00075-8_BIB34
10.1016/S0013-7944(00)00075-8_BIB11
10.1016/S0013-7944(00)00075-8_BIB33
10.1016/S0013-7944(00)00075-8_BIB8
10.1016/S0013-7944(00)00075-8_BIB10
10.1016/S0013-7944(00)00075-8_BIB32
10.1016/S0013-7944(00)00075-8_BIB9
10.1016/S0013-7944(00)00075-8_BIB31
10.1016/S0013-7944(00)00075-8_BIB2
10.1016/S0013-7944(00)00075-8_BIB3
10.1016/S0013-7944(00)00075-8_BIB4
10.1016/S0013-7944(00)00075-8_BIB5
Mok (10.1016/S0013-7944(00)00075-8_BIB24) 1990; 204
10.1016/S0013-7944(00)00075-8_BIB1
Fidler (10.1016/S0013-7944(00)00075-8_BIB16) 1983; 14
10.1016/S0013-7944(00)00075-8_BIB27
10.1016/S0013-7944(00)00075-8_BIB26
10.1016/S0013-7944(00)00075-8_BIB25
10.1016/S0013-7944(00)00075-8_BIB47
10.1016/S0013-7944(00)00075-8_BIB46
Ueda (10.1016/S0013-7944(00)00075-8_BIB12) 1983; 12
10.1016/S0013-7944(00)00075-8_BIB29
References_xml – reference: , Instruction Manual, Version 231. Framasoft and CSI, 1991
– reference: Unfired fusion welded pressure vessels. London: British Standards Institution; 1988. BS 5500:1988
– reference: Bate SK, Green D, Buttle K. Review of residual stress distributions for the defect assessment of offshore structures. AEA Technology report, 1995
– reference: Leggatt RH. Residual stresses at girth welds in pipes. Welding in energy-related projects, Welding Institute of Canada. New York: Pergamon Press; 1984. p. 429–40
– reference: Leggatt RH. Recommendations for revised surface residual stress profiles. The Welding Institute report SINTAP/TWI/4-3, 1998
– reference: Ueda Y, Nakacho K. Distributions of welding residual stress in various joints in thick plates. Trans JWRI 1986;15(1)
– reference: Holden TM, Root JH, Holt RA, Roy G. Neutron diffraction measurements of the residual strain state of a tubular T-joint. Proceedings of the 7th International Conference on Offshore Mechanics and Arctic Engineering ASME 1988:127–31
– volume: 17
  start-page: 197
  year: 1984
  end-page: 328
  ident: BIB35
  article-title: The significance of residual stresses in relation to the integrity of LWR pressure vessels
  publication-title: Int J Pressure Vessels Piping
– reference: Guide on methods for assessing the acceptability of flaws in fusion welded structures. London: British Standards Institution; 1999. BS 7910:1999
– reference: Mitchell D. R6 validation exercise – through thickness residual stress measurements on an experimental test vessel rig. CEGB report RD/B/6088/R88, 1988
– reference: Zhou RJ, Pense AW, Basehore ML, Lyons DH. A study of residual stress in pressure vessel steels. Welding Res Council Bull 1985;302
– reference: Sanderson DJ. Recommendations for revised compendium of residual stress profiles for R6. AEA Technology report AEA-TSD-0554, 1996
– reference: Scaramangas A, Porter Goff RFD. Residual stresses in cylinder girth butt welds. Paper OTC 5024. 17th Offshore Technology Conference, May 1985. p. 25–30
– volume: 24
  start-page: 65
  year: 1986
  end-page: 76
  ident: BIB45
  article-title: The treatment of thermal and residual stresses in fracture assessments
  publication-title: Engng Fract Mech
– reference: Leggatt RH. Residual stresses at repair welds without PWHT. TWI seminar on repair welding without post weld heat treatment- problems and solutions. London: Institute of Materials; 1993
– volume: 204
  start-page: 127
  year: 1990
  end-page: 134
  ident: BIB24
  article-title: Finite element study of residual stresses in a plate T-joint fatigue specimen
  publication-title: Proc Inst Mech Engrs
– volume: 12
  start-page: 117
  year: 1983
  end-page: 126
  ident: BIB12
  article-title: Three-dimensional cold bending and welding residual stresses in penstock of 80 kgf/mm
  publication-title: Trans JWRI
– reference: Leggatt RH. Residual stress measurements at repair welds in pressure vessel steels in the as-welded condition. The Welding Institute report 315/1986, 1986
– reference: Leggatt RH. Measurement of residual stresses in complex welded components. Report 5585/12A/91. The Welding Institute, 1991
– reference: Smith SD. Comparison of the PD6493:1991 rho (
– reference: Allen AJ, Hutchings MT, Rainey V. Measurement of through-thickness residual stress in offshore steels using the neutron diffraction technique. AEA Technology report AERE R 12178, 1986
– reference: Guidance on methods for assessing the acceptability of flaws in fusion welded structures. London: British Standards Institution; 1991. BS PD6493:1991
– reference: Tada H, Paris PC, Irwin GR. The stress analysis of cracks handbook. 2nd ed. Hellertown, Pennsylvania: Del Research Corporation; 1985
– reference: Porter Goff RFD, Free JA, Tsiagbe W. Residual stresses in Y-nodes and PWHT joints. Health and Safety Executive report OTH 89 315. London: Her Majesty's Stationery Office; 1990
– reference: Leggatt RH. Computer modelling of transverse residual stresses in repair welds. IIW document X-1176-88, 1988
– reference: Barthelemy JY. Compendium of residual stress profiles. Insitut de Soudure, 1998
– reference: Stout RD. Postweld heat treatment of pressure vessel steels. Welding Res Council Bull 1985;302
– reference: France CC, Sharples JK, Wignall C. Experimental programme to assess the influence of residual stresses on fracture behaviour- summary report. AEA Technology report AEAT-4236, 1998
– reference: ) factor with FEA results. TWI report SINTAP/TWI/1-2, 1997
– reference: Barthelemy JY. Post weld heat treatment of a pipeline butt weld. Insitut de Soudure, 1998
– reference: Bryan RH, Merkle JG, Iskander SK, Whitman GD, Holz PP. Test of a thick vessel with a flaw in a residual stress field. Proceedings of ASME Pressure Vessels and Piping conference, 1979
– volume: 14
  start-page: 35
  year: 1983
  end-page: 62
  ident: BIB16
  article-title: Residual stresses in a 1/2Cr1/2Mo1/4V-2CrMo pipe weld: Part 1. The as-welded condition
  publication-title: Int J Pressure Vessels Piping
– volume: 41
  start-page: 721
  year: 1992
  end-page: 735
  ident: BIB28
  article-title: Effects of welding residual stresses on significance of defects in various types of welded joint
  publication-title: Engng Fract Mech
– reference: Morgan H, Gardner L. The influence of post weld heat treatment on the fatigue performance of T-butt welded joints tested at low stress levels, vol. 1. Health and Safety Executive report OTN 92 161, 1991
– reference: Leggatt RH, Sanderson RM. Stress intensity due to residual stresses. TWI report SINTAP/TWI/4-6 88269/46/99, 1999
– reference: Leggatt RH. Residual stresses at circumferential welds in pipes. The Welding Inst Res Bull 1982;181–8
– reference: UEG Tubular joints Group. Newsletter Supplement 12, 1989. Appendix A, p. 24–35
– reference: Bonner N, Smith D. Measurement of residual stresses in a thick section steel weld. Second International Conference on Engineering Assessment, Glasgow, 1994
– reference: Ritchie D, Leggatt RH. The measurement of the distortion of residual stresses through the thickness of a welded joint. Strain 1987;61–70
– start-page: 115
  year: 1996
  ident: BIB7
  publication-title: SINTAP offshore research focus
– reference: Porter Goff RFD, Free JA, Tsiagbe W. Residual stresses in welded tubular nodes. In: Dover WD, Glinka G, editors. Fatigue of Offshore Structures. EMAS, 1988. p. 285–95
– reference: Recommended practice for fitness-for-service, Issue 12. 1999. API 579 (special release)
– reference: Newman JC, Raju IS. Analysis of surface cracks in finite plates under tension or bending loads. NASA Technical Paper 1578, 1979
– reference: R6-CODE. Barnwood, Gloucester: British Energy Generation Ltd; 1999
– reference: Assessment of the integrity of structures containing defects. Barnwood, Gloucester: British Energy Generation Ltd; 1999. R/H/R6 – Revision 3
– reference: Al Laham S. Stress intensity factor and limit load handbook. Nuclear Electric Ltd. report EPD/GEN/REP/0316/98, Issue 2, 1998
– reference: Holden T, Powell B, MacEwen S, Lazor R. Axial strains at a girth weld in a 914 mm linepipe. Second International Symposium on Non-Destructive Characterisation of Materials. 1986. p. 625–31
– reference: Payne J, Porter Goff RFD. Experimental residual stress distributions in welded tubular T-nodes. Paper C134/86. Proceedings of Fatigue and Crack Growth in Offshore Structures conference, Institution of Mechanical Engineers, 1986. p. 109–16
– ident: 10.1016/S0013-7944(00)00075-8_BIB33
  doi: 10.1520/STP26359S
– ident: 10.1016/S0013-7944(00)00075-8_BIB37
– ident: 10.1016/S0013-7944(00)00075-8_BIB39
– volume: 204
  start-page: 127
  year: 1990
  ident: 10.1016/S0013-7944(00)00075-8_BIB24
  article-title: Finite element study of residual stresses in a plate T-joint fatigue specimen
  publication-title: Proc Inst Mech Engrs
  doi: 10.1243/PIME_PROC_1990_204_086_02
– ident: 10.1016/S0013-7944(00)00075-8_BIB31
– ident: 10.1016/S0013-7944(00)00075-8_BIB14
– volume: 17
  start-page: 197
  issue: 4
  year: 1984
  ident: 10.1016/S0013-7944(00)00075-8_BIB35
  article-title: The significance of residual stresses in relation to the integrity of LWR pressure vessels
  publication-title: Int J Pressure Vessels Piping
  doi: 10.1016/0308-0161(84)90028-0
– ident: 10.1016/S0013-7944(00)00075-8_BIB10
– ident: 10.1016/S0013-7944(00)00075-8_BIB23
– volume: 14
  start-page: 35
  year: 1983
  ident: 10.1016/S0013-7944(00)00075-8_BIB16
  article-title: Residual stresses in a 1/2Cr1/2Mo1/4V-2CrMo pipe weld: Part 1. The as-welded condition
  publication-title: Int J Pressure Vessels Piping
  doi: 10.1016/0308-0161(83)90021-2
– ident: 10.1016/S0013-7944(00)00075-8_BIB2
– volume: 12
  start-page: 117
  issue: 2
  year: 1983
  ident: 10.1016/S0013-7944(00)00075-8_BIB12
  article-title: Three-dimensional cold bending and welding residual stresses in penstock of 80 kgf/mm2 class high strength steel plate
  publication-title: Trans JWRI
– ident: 10.1016/S0013-7944(00)00075-8_BIB15
  doi: 10.1111/j.1475-1305.1987.tb00618.x
– ident: 10.1016/S0013-7944(00)00075-8_BIB19
  doi: 10.1016/B978-0-08-025412-8.50045-0
– ident: 10.1016/S0013-7944(00)00075-8_BIB25
– ident: 10.1016/S0013-7944(00)00075-8_BIB44
– volume: 24
  start-page: 65
  year: 1986
  ident: 10.1016/S0013-7944(00)00075-8_BIB45
  article-title: The treatment of thermal and residual stresses in fracture assessments
  publication-title: Engng Fract Mech
  doi: 10.1016/0013-7944(86)90008-1
– ident: 10.1016/S0013-7944(00)00075-8_BIB46
– ident: 10.1016/S0013-7944(00)00075-8_BIB6
– ident: 10.1016/S0013-7944(00)00075-8_BIB29
– ident: 10.1016/S0013-7944(00)00075-8_BIB27
– ident: 10.1016/S0013-7944(00)00075-8_BIB40
– ident: 10.1016/S0013-7944(00)00075-8_BIB4
– ident: 10.1016/S0013-7944(00)00075-8_BIB42
– ident: 10.1016/S0013-7944(00)00075-8_BIB8
– ident: 10.1016/S0013-7944(00)00075-8_BIB21
– ident: 10.1016/S0013-7944(00)00075-8_BIB11
– ident: 10.1016/S0013-7944(00)00075-8_BIB36
– ident: 10.1016/S0013-7944(00)00075-8_BIB34
– ident: 10.1016/S0013-7944(00)00075-8_BIB38
– ident: 10.1016/S0013-7944(00)00075-8_BIB30
– ident: 10.1016/S0013-7944(00)00075-8_BIB17
– ident: 10.1016/S0013-7944(00)00075-8_BIB18
  doi: 10.1007/978-1-4684-5338-6_64
– ident: 10.1016/S0013-7944(00)00075-8_BIB32
– ident: 10.1016/S0013-7944(00)00075-8_BIB13
– ident: 10.1016/S0013-7944(00)00075-8_BIB1
– ident: 10.1016/S0013-7944(00)00075-8_BIB47
– ident: 10.1016/S0013-7944(00)00075-8_BIB22
– ident: 10.1016/S0013-7944(00)00075-8_BIB3
– start-page: 115
  year: 1996
  ident: 10.1016/S0013-7944(00)00075-8_BIB7
– ident: 10.1016/S0013-7944(00)00075-8_BIB26
– ident: 10.1016/S0013-7944(00)00075-8_BIB20
  doi: 10.4043/5024-MS
– volume: 41
  start-page: 721
  issue: 5
  year: 1992
  ident: 10.1016/S0013-7944(00)00075-8_BIB28
  article-title: Effects of welding residual stresses on significance of defects in various types of welded joint
  publication-title: Engng Fract Mech
  doi: 10.1016/0013-7944(92)90156-9
– ident: 10.1016/S0013-7944(00)00075-8_BIB5
– ident: 10.1016/S0013-7944(00)00075-8_BIB43
– ident: 10.1016/S0013-7944(00)00075-8_BIB41
– ident: 10.1016/S0013-7944(00)00075-8_BIB9
SSID ssj0007680
Score 1.8753129
Snippet Residual stresses are an important consideration in the structural integrity assessment of welded joints and reliable predictions of structural integrity...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 573
SubjectTerms Defect assessment
Residual stresses
Stress intensity factors
Welded joints
Title Incorporation of residual stresses into the SINTAP defect assessment procedure
URI https://dx.doi.org/10.1016/S0013-7944(00)00075-8
https://www.proquest.com/docview/27606332
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB76uOhBfGJ91Bw86GHb7WZ3u3ssxdIqFsEWegt5LRRkt_Rx9bc7ye62KkjBa2BCmCTfzEfmmwDcYxIihBfjRdI8cPxEKkdQ3nUCKl1BJZd-14iTX8fhcOo_z4JZBfqlFsaUVRbYn2O6RetipF14s72Yz43Gt0PxNPlu_hwXVaHu0TgMalDvjV6G4y0gY0btlh8ZGIOdkCefxA4-uO6jnceJ_gpRv8DaRqDBMRwVqSPp5as7gYpOT-HwW0PBMxiPTFvKRbGtJEsIsmkrtyK5KESvyDxdZwTTPvI-Gk96b0RpU9FB-LZFJ7FBTW2W-hymg6dJf-gUPyY4Eqnm2okFdTF-4z0UsYoDrrp-EmhNaYisKkpkyJHeeALxOfEFRmvFuSVQOIzMhsf0AmpplupLIFxh4NJUdUyK4qOlq5BwhjTkshNIxRvgl05ismgnbn61-GC7ujH0LTO-Za7pQYq-ZVEDWluzRd5PY59BVO4A-3EwGGL-PtO7cscYXhrzEsJTnW1WzOsib6PUu_r_5NdwYFX5trLlBmrr5UbfYn6yFk2otj47zeIUfgFyEd3-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qPagH8Yn1mYMHPaxum-x291iKpat2EWyht5DXQkF2i7b_30l2t1VBBK-BCWGSfDMfmW8CcI1JiJSdGC-SEYHHMqU9SUXXC6jyJVVCsa4VJ4_ScDhhj9Ng2oB-rYWxZZUV9peY7tC6GrmvvHk_n82sxrdN8TQxv3yOizZgkwXI9pqw2UuehukKkDGj9uuPDKzBWshTTuIGb3z_1s3jRb-FqB9g7SLQYA92q9SR9MrV7UPD5Aew86Wh4CGkiW1LOa-2lRQZQTbt5FakFIWYDzLLFwXBtI-8Jum490K0sRUdRKxadBIX1PTy3RzBZPAw7g-96scETyHVXHixpD7Gb7yHMtZxIHSXZYExlIbIqqJMhQLpTUciPmdMYrTWQjgChcPIbERMj6GZF7k5ASI0Bi5DddumKAwtfY2EM6ShUO1AadECVjuJq6qduP3V4o2v68bQt9z6lvu2Byn6lkctuFuZzct-Gn8ZRPUO8G8HgyPm_2V6Ve8Yx0tjX0JEborlB-90kbdR2jn9_-RXsDUcj575c5I-ncG2U-i7KpdzaC7el-YCc5WFvKzO4ifHXt_t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporation+of+residual+stresses+into+the+SINTAP+defect+assessment+procedure&rft.jtitle=Engineering+fracture+mechanics&rft.au=Stacey%2C+A.%2C-&rft.au=Barthelemy%2C+J+Y&rft.au=Leggatt%2C+R.+H.%2C-&rft.au=Ainsworth%2C+R+A&rft.date=2000-12-01&rft.issn=0013-7944&rft.volume=67&rft.issue=6&rft.spage=573&rft.epage=611&rft_id=info:doi/10.1016%2FS0013-7944%2800%2900075-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7944&client=summon