A novel carbon reduction engineering method-based deep Q-learning algorithm for energy-efficient scheduling on a single batch-processing machine in semiconductor manufacturing
The semiconductor industry is a resource-intensive sector that heavily relies on energy, water, chemicals, and raw materials. Within the semiconductor manufacturing process, the diffusion furnace, ion implantation machine, and plasma etching machine exhibit high energy demands or operate at extremel...
Saved in:
Published in | International journal of production research Vol. 62; no. 18; pp. 6449 - 6472 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Taylor & Francis
16.09.2024
Taylor & Francis LLC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The semiconductor industry is a resource-intensive sector that heavily relies on energy, water, chemicals, and raw materials. Within the semiconductor manufacturing process, the diffusion furnace, ion implantation machine, and plasma etching machine exhibit high energy demands or operate at extremely high temperatures, resulting in significant electricity consumption, which is usually carbon-intensive. To address energy conservation concerns, the industry adopts batch production technology, which allows for the simultaneous processing of multiple products. The energy-efficient parallel batch scheduling problem arises from the need to optimise product grouping and sequencing. In contrast to existing heuristics, meta-heuristics, and exact algorithms, this paper introduces the Deep Q-Network (DQN) algorithm as a novel approach to address the proposed problem. The DQN algorithm is built upon the agent's systematic learning of scheduling rules, thereby enabling it to offer guidance for online decision-making regarding the grouping and sequencing of products. The efficacy of the algorithm is substantiated through extensive computational experiments. |
---|---|
ISSN: | 0020-7543 1366-588X |
DOI: | 10.1080/00207543.2023.2252932 |