Observer-based gain scheduling path following control for autonomous electric vehicles subject to time delay

This paper presents a novel observer-based gain-scheduling path following control algorithm for autonomous electric vehicles subject to time delay. Firstly, the lateral dynamic model of the autonomous electric vehicle is constructed by a polytope with four vertices, in which the issues of the time-v...

Full description

Saved in:
Bibliographic Details
Published inVehicle system dynamics Vol. 60; no. 5; pp. 1602 - 1626
Main Authors Chu, Shaoqiang, Xie, Zhengchao, Wong, Pak Kin, Li, Panshuo, Li, Wenfeng, Zhao, Jing
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 04.05.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a novel observer-based gain-scheduling path following control algorithm for autonomous electric vehicles subject to time delay. Firstly, the lateral dynamic model of the autonomous electric vehicle is constructed by a polytope with four vertices, in which the issues of the time-varying longitudinal velocity and nonlinear tyre dynamics are accurately described. Secondly, taking the time delay encountered in the process of signal transmission into consideration, the observer-based path following controller is proposed by using easily measured vehicle states. In the algorithm, the observer and controller gains are gain scheduled according to the actual longitudinal velocity. Thirdly, based on Lyapunov stability theory, an appropriate Lyapunov-Krasovskii functional is constructed to derive sufficient conditions of the controller, which is effective to ensure the asymptotical stability of the closed-loop path following error system with a guaranteed performance. Specially, for ease of computation, the sufficient conditions of controller design are developed in terms of a set of linear matrix inequalities. Finally, numerical simulations are implemented to illustrate the efficiency and superiority of the proposed method in comparison with the existing method.
AbstractList This paper presents a novel observer-based gain-scheduling path following control algorithm for autonomous electric vehicles subject to time delay. Firstly, the lateral dynamic model of the autonomous electric vehicle is constructed by a polytope with four vertices, in which the issues of the time-varying longitudinal velocity and nonlinear tyre dynamics are accurately described. Secondly, taking the time delay encountered in the process of signal transmission into consideration, the observer-based path following controller is proposed by using easily measured vehicle states. In the algorithm, the observer and controller gains are gain scheduled according to the actual longitudinal velocity. Thirdly, based on Lyapunov stability theory, an appropriate Lyapunov–Krasovskii functional is constructed to derive sufficient conditions of the controller, which is effective to ensure the asymptotical stability of the closed-loop path following error system with a guaranteed performance. Specially, for ease of computation, the sufficient conditions of controller design are developed in terms of a set of linear matrix inequalities. Finally, numerical simulations are implemented to illustrate the efficiency and superiority of the proposed method in comparison with the existing method.
This paper presents a novel observer-based gain-scheduling path following control algorithm for autonomous electric vehicles subject to time delay. Firstly, the lateral dynamic model of the autonomous electric vehicle is constructed by a polytope with four vertices, in which the issues of the time-varying longitudinal velocity and nonlinear tyre dynamics are accurately described. Secondly, taking the time delay encountered in the process of signal transmission into consideration, the observer-based path following controller is proposed by using easily measured vehicle states. In the algorithm, the observer and controller gains are gain scheduled according to the actual longitudinal velocity. Thirdly, based on Lyapunov stability theory, an appropriate Lyapunov-Krasovskii functional is constructed to derive sufficient conditions of the controller, which is effective to ensure the asymptotical stability of the closed-loop path following error system with a guaranteed performance. Specially, for ease of computation, the sufficient conditions of controller design are developed in terms of a set of linear matrix inequalities. Finally, numerical simulations are implemented to illustrate the efficiency and superiority of the proposed method in comparison with the existing method.
Author Xie, Zhengchao
Wong, Pak Kin
Li, Panshuo
Chu, Shaoqiang
Li, Wenfeng
Zhao, Jing
Author_xml – sequence: 1
  givenname: Shaoqiang
  surname: Chu
  fullname: Chu, Shaoqiang
  organization: South China University of Technology
– sequence: 2
  givenname: Zhengchao
  surname: Xie
  fullname: Xie, Zhengchao
  email: zxie@scut.edu.cn
  organization: South China University of Technology
– sequence: 3
  givenname: Pak Kin
  surname: Wong
  fullname: Wong, Pak Kin
  organization: University of Macau
– sequence: 4
  givenname: Panshuo
  orcidid: 0000-0003-3682-1698
  surname: Li
  fullname: Li, Panshuo
  organization: Guangdong University of Technology
– sequence: 5
  givenname: Wenfeng
  surname: Li
  fullname: Li, Wenfeng
  organization: South China University of Technology
– sequence: 6
  givenname: Jing
  surname: Zhao
  fullname: Zhao, Jing
  email: jzhao@um.edu.mo
  organization: University of Macau
BookMark eNqFkEtLAzEUhYNUsD5-ghBwPZpMkpkMbpTiCwrd6DpkkkybkiY1yVT6752hdeNCV5d7OOdc7ncOJj54A8A1RrcYcXSHEC0JxvS2ROUg8YpS3JyAKa4pLRhmzQRMR08xms7AeUprhBBBvJ4Ct2iTiTsTi1Ymo-FSWg-TWhndO-uXcCvzCnbBufA1rir4HIMblAhln4MPm9AnaJxROVoFd2ZllTMJpr5dDxrMAWa7MVAbJ_eX4LSTLpmr47wAH89P77PXYr54eZs9zgtFCM9FwxmW2FDetZrJihCmaqw1RXVTtYxr1DHe6QYRzZVmuG5VyTrW1oQYjCrSkAtwc-jdxvDZm5TFOvTRDydFWbGGElpzOrjuDy4VQ0rRdELZLLMdX5TWCYzEiFf84BUjXnHEO6TZr_Q22o2M-39zD4ec9QPEjfwK0WmR5d6F2EXplU2C_F3xDcCHlF0
CitedBy_id crossref_primary_10_1016_j_jorganchem_2025_123572
crossref_primary_10_1109_ACCESS_2025_3542557
crossref_primary_10_1080_00423114_2024_2351574
crossref_primary_10_1155_jom_5570638
crossref_primary_10_1109_ACCESS_2025_3536498
crossref_primary_10_3390_inorganics13030067
crossref_primary_10_1016_j_surfin_2025_105908
crossref_primary_10_3934_math_20241671
crossref_primary_10_1109_TITS_2023_3236113
crossref_primary_10_1007_s12206_025_0236_z
crossref_primary_10_1016_j_compeleceng_2024_109950
crossref_primary_10_3390_en16124561
crossref_primary_10_1002_pat_70112
crossref_primary_10_1080_00423114_2024_2437006
crossref_primary_10_1109_TIE_2022_3210544
crossref_primary_10_1109_TFUZZ_2022_3225683
crossref_primary_10_1016_j_csite_2025_105942
crossref_primary_10_1109_ACCESS_2024_3523704
crossref_primary_10_1080_23335777_2024_2313998
crossref_primary_10_1177_09544070221147327
crossref_primary_10_1109_ACCESS_2025_3538863
crossref_primary_10_1109_TVT_2024_3479416
crossref_primary_10_1177_10775463241269789
crossref_primary_10_1016_j_rineng_2024_103867
crossref_primary_10_1109_ACCESS_2025_3543979
crossref_primary_10_1109_ACCESS_2025_3532949
crossref_primary_10_1631_FITEE_2300625
crossref_primary_10_1007_s10854_025_14411_z
crossref_primary_10_1007_s40815_023_01469_2
crossref_primary_10_1016_j_inoche_2025_113897
crossref_primary_10_1016_j_trb_2024_103026
crossref_primary_10_1080_00423114_2024_2373140
Cites_doi 10.1016/j.automatica.2007.06.017
10.1016/j.mechatronics.2014.08.003
10.1016/j.arcontrol.2011.03.009
10.1016/j.ymssp.2018.09.011
10.3182/20140824-6-ZA-1003.01953
10.1109/TCST.2014.2298893
10.1002/asjc.1161
10.1016/j.automatica.2017.02.004
10.1177/0361198119855606
10.1109/TMECH.2019.2953330
10.1016/j.jfranklin.2017.07.006
10.1007/s00034-014-9860-z
10.1109/TITS.2016.2632710
10.1109/TIE.2018.2793253
10.1109/TITS.2015.2498157
10.1007/s12239-019-0028-5
10.1109/TCST.2008.924558
10.1109/TVT.2018.2850154
10.1109/TVT.2019.2945934
10.1016/j.jfranklin.2014.02.015
10.1109/TII.2018.2828125
10.1109/JAS.2017.7510811
10.1080/00423114.2016.1245424
10.1080/00207170110067116
10.1109/TIE.2019.2898599
10.1109/TVT.2013.2279843
10.1109/TVT.2019.2914027
10.1080/00207721.2013.791002
10.1080/00423114.2018.1475677
10.1016/j.ymssp.2018.05.059
10.1080/00423114.2013.879190
10.1016/j.conengprac.2018.04.007
10.1109/TVT.2019.2950219
10.1016/j.conengprac.2014.09.015
10.1016/j.mechatronics.2014.04.008
10.1016/j.jfranklin.2018.10.012
10.1109/TVT.2020.2974107
10.1016/j.ymssp.2020.106798
10.1109/TIE.2020.2970680
ContentType Journal Article
Copyright 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
2020 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
– notice: 2020 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TB
8FD
FR3
DOI 10.1080/00423114.2020.1864419
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1744-5159
EndPage 1626
ExternalDocumentID 10_1080_00423114_2020_1864419
1864419
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
123
29Q
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TAJZE
TBQAZ
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADMLS
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7TB
8FD
FR3
TASJS
ID FETCH-LOGICAL-c338t-9851a1e48fbd5a6335c71dd40796b58d0f58fd903d8cd517bc25f5b733e106393
ISSN 0042-3114
IngestDate Mon Jul 14 08:16:53 EDT 2025
Tue Jul 01 01:10:46 EDT 2025
Thu Apr 24 23:11:14 EDT 2025
Wed Dec 25 09:06:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-9851a1e48fbd5a6335c71dd40796b58d0f58fd903d8cd517bc25f5b733e106393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3682-1698
PQID 2659434784
PQPubID 2045084
PageCount 25
ParticipantIDs crossref_primary_10_1080_00423114_2020_1864419
informaworld_taylorfrancis_310_1080_00423114_2020_1864419
proquest_journals_2659434784
crossref_citationtrail_10_1080_00423114_2020_1864419
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-04
PublicationDateYYYYMMDD 2022-05-04
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-04
  day: 04
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Vehicle system dynamics
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
CIT0014
CIT0036
CIT0013
CIT0035
CIT0016
CIT0038
CIT0015
CIT0037
CIT0018
CIT0017
CIT0039
CIT0040
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
Dahmani H (CIT0019) 2016; 24
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0015
  doi: 10.1016/j.automatica.2007.06.017
– ident: CIT0014
  doi: 10.1016/j.mechatronics.2014.08.003
– ident: CIT0035
  doi: 10.1016/j.arcontrol.2011.03.009
– ident: CIT0005
  doi: 10.1016/j.ymssp.2018.09.011
– ident: CIT0006
  doi: 10.3182/20140824-6-ZA-1003.01953
– volume: 24
  start-page: 636
  year: 2016
  ident: CIT0019
  publication-title: IEEE Trans Control Syst Technol
– ident: CIT0029
  doi: 10.1109/TCST.2014.2298893
– ident: CIT0031
  doi: 10.1002/asjc.1161
– ident: CIT0034
  doi: 10.1016/j.automatica.2017.02.004
– ident: CIT0003
  doi: 10.1177/0361198119855606
– ident: CIT0018
  doi: 10.1109/TMECH.2019.2953330
– ident: CIT0027
  doi: 10.1016/j.jfranklin.2017.07.006
– ident: CIT0036
  doi: 10.1007/s00034-014-9860-z
– ident: CIT0001
  doi: 10.1109/TITS.2016.2632710
– ident: CIT0020
  doi: 10.1109/TIE.2018.2793253
– ident: CIT0023
  doi: 10.1109/TITS.2015.2498157
– ident: CIT0030
  doi: 10.1007/s12239-019-0028-5
– ident: CIT0013
  doi: 10.1109/TCST.2008.924558
– ident: CIT0022
  doi: 10.1109/TVT.2018.2850154
– ident: CIT0008
  doi: 10.1109/TVT.2019.2945934
– ident: CIT0039
  doi: 10.1016/j.jfranklin.2014.02.015
– ident: CIT0017
  doi: 10.1109/TII.2018.2828125
– ident: CIT0016
  doi: 10.1109/JAS.2017.7510811
– ident: CIT0026
  doi: 10.1080/00423114.2016.1245424
– ident: CIT0040
  doi: 10.1080/00207170110067116
– ident: CIT0004
  doi: 10.1109/TIE.2019.2898599
– ident: CIT0032
  doi: 10.1109/TVT.2013.2279843
– ident: CIT0009
  doi: 10.1109/TVT.2019.2914027
– ident: CIT0038
  doi: 10.1080/00207721.2013.791002
– ident: CIT0028
  doi: 10.1080/00423114.2018.1475677
– ident: CIT0021
  doi: 10.1016/j.ymssp.2018.05.059
– ident: CIT0024
  doi: 10.1080/00423114.2013.879190
– ident: CIT0010
  doi: 10.1016/j.conengprac.2018.04.007
– ident: CIT0011
  doi: 10.1109/TVT.2019.2950219
– ident: CIT0007
  doi: 10.1016/j.conengprac.2014.09.015
– ident: CIT0025
  doi: 10.1016/j.mechatronics.2014.04.008
– ident: CIT0033
  doi: 10.1016/j.jfranklin.2018.10.012
– ident: CIT0012
  doi: 10.1109/TVT.2020.2974107
– ident: CIT0037
  doi: 10.1016/j.ymssp.2020.106798
– ident: CIT0002
  doi: 10.1109/TIE.2020.2970680
SSID ssj0003087
Score 2.4927564
Snippet This paper presents a novel observer-based gain-scheduling path following control algorithm for autonomous electric vehicles subject to time delay. Firstly,...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1602
SubjectTerms Algorithms
Apexes
Autonomous electric vehicle
Control algorithms
Control systems design
Control theory
Controllers
Dynamic models
Electric vehicles
Gain scheduling
Linear matrix inequalities
Mathematical analysis
Nonlinear dynamics
observer
path following
Signal processing
Signal transmission
time delay
Time lag
Trajectory planning
Title Observer-based gain scheduling path following control for autonomous electric vehicles subject to time delay
URI https://www.tandfonline.com/doi/abs/10.1080/00423114.2020.1864419
https://www.proquest.com/docview/2659434784
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbK7gUOK55ilwX5wC1KFcd2HsfVAqpAwKULFZcodpy2UreFNgGJn8EvZiZ2HlVXWh4Xq5rUTuT54vnszIOQlymYAMCG9HWgS19oE_uKCe0rE-dg7hIwIhic_P5DNLkSb2dyNhr9Gngt1ZUa6583xpX8i1ZBBnrFKNm_0Gw3KAjgN-gXWtAwtH-k448Kz1TN1kdbVHhz2OV7sFsF62GDzIHdeSUoevPDhtZar_TGb7KuMJoB_V9tIZyl9r6bReMj5-1qhaczDS1dXmNg1Srf-_r7yf7TpYH2ClvVvmPnl4u6OVRd5JtvgL55K5-5byELs55ruNgZBOcWDGzWe7fsfYSWVrjeLerN8HQCNrboC9ifTk4PCoUMF2OB-RJtDOnY2PU3FsJHijVcoG3BAQdEOVhtWRSEA8vNIht8f2AVWjdKoI5wuzE8JwgTZIJpbwY750R35Q45DmHrAWvn8cXk1ZfPnX3HHIptYBOO18aFYcb2m26xx3j28uEe2P-G1EzvkxO3G6EXFloPyMisH5J7gxyVj8hqH2QUQUZ7kFEEGe1ARh3IQLKlPchoCzLagow6kNFqQxFktAHZY3L15vX0cuK7Eh2-5jypfHjVWc6MSEpVyDziXOqYFYUI4jRSMimCUiZlkQYci2RJFisdylKqmHPDkBzzJ-RovVmbp4SmjCsWAqEt0kQoBk0sc64DkadpGBf5KRHtNGba5a_HMiqrjHVpbu3sZzj7mZv9UzLuun21CVxu65AOdZRVDYRLi96M39L3vFVo5taJXRZGEpMwxok4-4-hn5G7_ft1To6qbW2eAx-u1AsH0N9V-rBK
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swELZG9zD2AGMwDSibH_aaEsd2HD8iBCoMyksr9c2KHQcqUDu1CWj767nLj6oMoT7wEimWzkrs832-0913hPzSAAGgGzJwocsD4bwKLBMusF6lAHcJgAgWJ18P4v5IXI7leKUWBtMq0YfOa6KIylbj4cZgdJsSd1wlc8BFHty7CIYSxHS9QT5KHSvUdR4OltYYGe_aMhSUaat43prmBT69YC99Za0rCDrfJq79-Drz5L5XFrbn_v3H6_i-v_tCtpobKj2pVWqHfPDTr-TzCm_hLnm4sRjM9fMAQTCjt-lkSsFNBtjC6naKbY5pDho2e8LXJh0eRuY0LQsso5iVC1p34Jk4-ujvquQ8uigthoVoMaPY854ig-XfPTI6Pxue9oOmbUPgwN8tAth-ljIvktxmMo05l06xLAPPUcdWJlmYyyTPdMixcZJkyrpI5tIqzj3DCxP_RjrT2dR_J1Qzbhn4zTzTibAMHkqm3IUi1TpSWbpPRLtZxjWc5tha48GwJfVpvZgGF9M0i7lPekuxPzWpxzoBvaoJpqiiKXnd-sTwNbLdVm1MYx8WJoolEvOpRBy8Y-qf5FN_eH1lri4Gvw_JZoSVGZiLKbqkU8xLfwT3pcL-qA7EM_1rBXA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoSFV7aOkDlfKoD71mG8d2Eh8RsFqg3fbQlXqz4leLQAnaJKD21zOTxwpaVRy4RIqlsRJ7PA9rvm8I-ajABYBuyMjGNkTC-iwyTNjI-KwAd5eDE0Fw8pd5OluI0x9yrCash7JKzKFDTxTR2Wo83FcujBVxn7paDojjIbtLYChHl66ekI0UgZaI4ojnK2OMhHcjCgVlRhDP_6a5557ukZf-Y6w7DzR9Scz47X3hycWkbczE_vmL1vFRP7dJXgzxKT3oFeoVWfPla_L8DmvhG3L51eBVrl9G6AId_VmclxSSZHBaiG2n2OSYBtCv6gZfh2J4GFnSom0QRFG1Ne3775xbeu1_daV5tG4NXgrRpqLY8Z4if-Xvt2QxPf5-OIuGpg2RhWy3iWDzWcG8yINxskg5lzZjzkHeqFIjcxcHmQenYo5tkyTLjE1kkCbj3DMMl_gWWS-r0r8jVDFuGGTN3KlcGAaPTBbcxqJQKslcsU3EuFfaDozm2FjjUrMV8Wm_mBoXUw-LuU0mK7GrntLjIQF1VxF0092lhL7xieYPyO6OWqMH61DrJJVIy5fl4v0jpv5Ann47murPJ_OzHfIsQVgGFmKKXbLeLFu_B8FSY_a743ALs9QEFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observer-based+gain+scheduling+path+following+control+for+autonomous+electric+vehicles+subject+to+time+delay&rft.jtitle=Vehicle+system+dynamics&rft.au=Chu%2C+Shaoqiang&rft.au=Xie%2C+Zhengchao&rft.au=Wong%2C+Pak+Kin&rft.au=Li%2C+Panshuo&rft.date=2022-05-04&rft.pub=Taylor+%26+Francis&rft.issn=0042-3114&rft.eissn=1744-5159&rft.volume=60&rft.issue=5&rft.spage=1602&rft.epage=1626&rft_id=info:doi/10.1080%2F00423114.2020.1864419&rft.externalDocID=1864419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0042-3114&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0042-3114&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0042-3114&client=summon