Locally efficient semiparametric estimator for zero-inflated Poisson model with error-prone covariates

Overdispersion is a common phenomenon in count or frequency responses in Poisson models. For example, number of car accidents on a highway during a year period. A similar phenomenon is observed in electric power systems, where cascading failures often follows some distribution with inflated zero. Wh...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical computation and simulation Vol. 91; no. 6; pp. 1092 - 1107
Main Authors Liu, Jianxuan, Eftekharnejad, Sara
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 13.04.2021
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0094-9655
1563-5163
DOI10.1080/00949655.2020.1840569

Cover

Abstract Overdispersion is a common phenomenon in count or frequency responses in Poisson models. For example, number of car accidents on a highway during a year period. A similar phenomenon is observed in electric power systems, where cascading failures often follows some distribution with inflated zero. When the response contains an excess amount of zeros, zero-inflated Poisson (ZIP) is the most favourable model. However, during the data collection process, some of the covariates cannot be accessed directly or are measured with error among numerous disciplines. To the best of our knowledge, little existing work is available in the literature that tackles the population heterogeneity in the count response while some of the covariates are measured with error. With the increasing popularity of such outcomes in modern studies, it is interesting and timely to study zero-inflated Poisson models in which some of the covariates are subject to measurement error while some are not. We propose a flexible partial linear single index model for the log Poisson mean to correct bias potentially due to the error in covariates or the population heterogeneity. We derive consistent and locally efficient semiparametric estimators and study the large sample properties. We further assess the finite sample performance through simulation studies. Finally, we apply the proposed method to a real data application and compare with existing methods that handle measurement error in covariates.
AbstractList Overdispersion is a common phenomenon in count or frequency responses in Poisson models. For example, number of car accidents on a highway during a year period. A similar phenomenon is observed in electric power systems, where cascading failures often follows some distribution with inflated zero. When the response contains an excess amount of zeros, zero-inflated Poisson (ZIP) is the most favourable model. However, during the data collection process, some of the covariates cannot be accessed directly or are measured with error among numerous disciplines. To the best of our knowledge, little existing work is available in the literature that tackles the population heterogeneity in the count response while some of the covariates are measured with error. With the increasing popularity of such outcomes in modern studies, it is interesting and timely to study zero-inflated Poisson models in which some of the covariates are subject to measurement error while some are not. We propose a flexible partial linear single index model for the log Poisson mean to correct bias potentially due to the error in covariates or the population heterogeneity. We derive consistent and locally efficient semiparametric estimators and study the large sample properties. We further assess the finite sample performance through simulation studies. Finally, we apply the proposed method to a real data application and compare with existing methods that handle measurement error in covariates.
Author Eftekharnejad, Sara
Liu, Jianxuan
Author_xml – sequence: 1
  givenname: Jianxuan
  orcidid: 0000-0002-6461-9895
  surname: Liu
  fullname: Liu, Jianxuan
  email: jliu193@syr.edu
  organization: Syracuse University
– sequence: 2
  givenname: Sara
  surname: Eftekharnejad
  fullname: Eftekharnejad, Sara
  organization: Syracuse University
BookMark eNqFkMtKAzEUhoMo2FYfQQi4nppLM53BjVK8QUEXug6ZXDBlZlJPUkt9ejO0blzoIgTC95_85xuj4z70FqELSqaUVOSKkHpWl0JMGWH5qZoRUdZHaERFyQtBS36MRgNTDNApGse4IoRQKtgIuWXQqm132Drntbd9wtF2fq1AdTaB19jG5DuVAmCXz5eFUPjetSpZg1-CjzH0uAvGtnjr0zu2AAGKNeSKWIdPBT6T8QydONVGe364J-jt_u518Vgsnx-eFrfLQnNepaJilZkrZVxjmZoLozTh1BDRWDpzldXWMEGZ0HNdlqWYN41mnDjDKqdL2tQVn6DL_dxc4GOTq8tV2ECfv5RMkDrvXPOBut5TGkKMYJ3UPqnkQ59A-VZSIgex8kesHMTKg9icFr_Sa8iGYPdv7mafy_oCdGoboDUyqV0bwIHqtY-S_z3iG6bYlAw
CitedBy_id crossref_primary_10_1002_bimj_202000069
crossref_primary_10_1002_env_2853
Cites_doi 10.1109/WSC.2014.7020005
10.1002/cjs.11483
10.1007/s00184-017-0631-2
10.1007/978-1-4899-3242-6
10.1016/0304-4076(90)90014-K
10.1093/biomet/asr076
10.2307/1269547
10.1080/01621459.1988.10478718
10.1214/009053607000000361
10.1214/aos/1176348248
10.1007/978-1-4612-0789-4_10
10.1198/016214506000000519
ContentType Journal Article
Copyright 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
2020 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
– notice: 2020 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00949655.2020.1840569
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1563-5163
EndPage 1107
ExternalDocumentID 10_1080_00949655_2020_1840569
1840569
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
YQT
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
AFRVT
AIYEW
CITATION
TASJS
7SC
8FD
ADYSH
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-828d7aadfbe2a75dac031d05be14f8eced25125c7c66657bbc230fd28fc61b983
ISSN 0094-9655
IngestDate Mon Jul 14 10:04:25 EDT 2025
Sun Aug 03 02:37:23 EDT 2025
Thu Apr 24 22:59:59 EDT 2025
Wed Dec 25 09:08:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-828d7aadfbe2a75dac031d05be14f8eced25125c7c66657bbc230fd28fc61b983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6461-9895
PQID 2509115938
PQPubID 53118
PageCount 16
ParticipantIDs crossref_citationtrail_10_1080_00949655_2020_1840569
crossref_primary_10_1080_00949655_2020_1840569
informaworld_taylorfrancis_310_1080_00949655_2020_1840569
proquest_journals_2509115938
PublicationCentury 2000
PublicationDate 2021-04-13
PublicationDateYYYYMMDD 2021-04-13
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-13
  day: 13
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of statistical computation and simulation
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Ma Y (CIT0011) 2006; 16
Stefanski LA (CIT0010) 1987; 74
CIT0001
CIT0012
Bickel PJ (CIT0017) 1993
Tsiatis AA. (CIT0018) 2006
CIT0003
CIT0014
CIT0002
Ostir G (CIT0006) 2016
CIT0013
CIT0005
CIT0016
CIT0004
CIT0015
CIT0007
CIT0009
CIT0008
References_xml – ident: CIT0003
  doi: 10.1109/WSC.2014.7020005
– ident: CIT0007
  doi: 10.1002/cjs.11483
– ident: CIT0009
  doi: 10.1007/s00184-017-0631-2
– ident: CIT0001
  doi: 10.1007/978-1-4899-3242-6
– ident: CIT0008
  doi: 10.1016/0304-4076(90)90014-K
– volume: 16
  start-page: 183
  year: 2006
  ident: CIT0011
  publication-title: Stat Sin
– ident: CIT0016
  doi: 10.1093/biomet/asr076
– volume-title: Stroke recovery in underserved populations 2005–2006 [United States]
  year: 2016
  ident: CIT0006
– ident: CIT0004
  doi: 10.2307/1269547
– volume: 74
  start-page: 703
  year: 1987
  ident: CIT0010
  publication-title: Biometrika
– ident: CIT0012
  doi: 10.1080/01621459.1988.10478718
– ident: CIT0014
  doi: 10.1214/009053607000000361
– ident: CIT0002
– ident: CIT0013
  doi: 10.1214/aos/1176348248
– ident: CIT0005
  doi: 10.1007/978-1-4612-0789-4_10
– volume-title: Efficient and adaptive estimation for semiparametric models
  year: 1993
  ident: CIT0017
– volume-title: Semiparametric theory and missing data
  year: 2006
  ident: CIT0018
– ident: CIT0015
  doi: 10.1198/016214506000000519
SSID ssj0001152
Score 2.2423763
Snippet Overdispersion is a common phenomenon in count or frequency responses in Poisson models. For example, number of car accidents on a highway during a year...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1092
SubjectTerms Data collection
Electric power distribution
Electric power systems
Error analysis
Error correction
Error-prone covariates
Heterogeneity
local efficiency
regression calibration
semiparametric methods
zero-inflated Poisson model
Title Locally efficient semiparametric estimator for zero-inflated Poisson model with error-prone covariates
URI https://www.tandfonline.com/doi/abs/10.1080/00949655.2020.1840569
https://www.proquest.com/docview/2509115938
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaW9lIOFBYQpQX5wK3Kap04r2NFi1YIEBJbUXGJbMcRW_aBslkEPfDbO2M73ixbVB6XaOWVEyvfl5nxY74h5EWWg1uXPA9SViYBLyP45hII5KKSay4qmI4po_b5Lhmd89cX8UWv97ObXdLIgbq6Ma_kX1CFNsAVs2T_All_U2iA34AvXAFhuP4Rxm_QEU1_4KGMiUlsPF7q2QTVvGdYKEsdo4TGDKfV5jThla4XATx3KjDMfL-Adw7Ym1o4dj1W1_WiDsCmzvEM-zeYRmMk-pv4FVORjMqzURjB2hCWS2YlfjJzZcH8gZ_JyhAG2Ph9tWbkWdXoL59FPdeXwq9Qd1ciQoabKjaR1HBnvFUUpGt4cx7kiVXkHWhna5MoiJmzb84Y29JdjnRdy8qGtmae89LMFcvd8gDtkckchfDjAYwTGmEWG9uKML-Ia7t_7pDdME1xm3_3ZHT66aP35czWbPLDb3PAUJ39pkdsRDcb2rdbvt4EMOP75J5Djp5YGj0gPT3vk_22qgd1Rr5P7r71Sr7LPtn70MK8fEgqRzjqCUc3CUc94SiMiW4QjjrCUUM4ioSjHcLRNeEekfNXZ-OXo8AV6ghUFGUNShGUqRBlJXUo0rgUClxFOYylZrzKtNIlRtGxgu8eN_qkVDDxrcowq1TCJFiLx2RnDk96QqjIhATfLbNqqFBXKeMKDAaK_gnFoPmA8PYFF8qp2GMxlWnBvNitxaVAXAqHywEZ-G5frYzLbR3yLnpFY8hdWV4X0S19j1qoC2ctlkWIkTnMHaLs6X_c-pDsrb-8I7LT1Cv9DKLiRj531L0Gyt62Qg
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oHsSDKGp8oO7Ba5E-aY_GaFCReNCE26b7SoxATSkm-uud6YOAxnDwuslsu9PZmW-2s98AXIQRhnXhRVbXVoHlKRf3XIBAzlWe9mKD6ZjM2T4HQe_Fux_6w4W7MFRWSTm0KYgicl9Nm5sOo6uSuEsqh4sC38f0zsEhzFH8IFqHDR-xO1m52xnMvbFddN0hEYtkqls8f02zFJ-W2Et_ees8BN02QFYvX1SevLVnmWjLrx-8jv9b3Q5slwiVXRUmtQtretKERtX9gZXOoAlbj3PG12kT6oRaC9LnPTB9ipCjT6ZzggqMa2yqx69EMz6mDl6SEbfHmPJ9hitnXzpNLFTCCIGvYk8JGkMyYXmTHkYHxUynaZJauPCJZjL5wPyeIPI-vNzePF_3rLKhgyUxE87oyrrqxrEyQjtx11exRJeiOr7QtmdCLbUitOVLtA_6ISSExATJKCc0MrAFWtUB1Cb4pENgcRgL9PEiNB1J_DuhJ9GwiBwuljYOH4FXfUYuS7Zzarox4vacFLVQMyc181LNR9Cei70XdB-rBKJFG-FZfs5iiqYo3F0h26oMipeeY8odQnCIMd3w-B9Tn8Nm7_mxz_t3g4cTqDtUiEMElW4Lalk606eIpDJxlm-VbweDECE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60gtSD1ar4dg9eU5tnk6Oopb6KBwVvS_YFYtuUJAr21zuTR_GB9OB1YTbZyezMN5vZbwBOwwjDuvAiq2erwPKUi3suQCDnKk97scF0TBZsn8Ng8OTdPPt1NWFWlVVSDm1KoojCV9PmnipTV8SdUTVcFPg-ZncODmGK4gfRMqwECE-oqs_tDufO2C6b7pCIRTL1JZ6_pvkWnr6Rl_5y1kUE6rdA1O9eFp68dt5y0ZGzH7SO_1rcBqxX-JSdlwa1CUt60oZW3fuBVa6gDWv3c77XrA1Nwqwl5fMWmDuKj6MPpgt6CoxqLNPjFyIZH1P_LsmI2WNM2T7DhbOZThMLdTBC2KvYQ4KmkExY0aKH0TEx02mapBaue6KZTN4xuyeAvA1P_avHi4FVtXOwJObBOV1YV704VkZoJ-75KpboUFTXF9r2TKilVoS1fInWQb-DhJCYHhnlhEYGtkCb2oHGBJ-0CywOY4EeXoSmK4l9J_QkmhVRw8XSxuE98OqvyGXFdU4tN0bcnlOilmrmpGZeqXkPOnOxaUn2sUgg-moiPC9OWUzZEoW7C2QPa3vild_IuEP4DRGmG-7_Y-oTWH247PO76-HtATQdqsIhdkr3EBp5-qaPEEbl4rjYKJ-Z0A7F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Locally+efficient+semiparametric+estimator+for+zero-inflated+Poisson+model+with+error-prone+covariates&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Liu%2C+Jianxuan&rft.au=Eftekharnejad%2C+Sara&rft.date=2021-04-13&rft.pub=Taylor+%26+Francis&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=91&rft.issue=6&rft.spage=1092&rft.epage=1107&rft_id=info:doi/10.1080%2F00949655.2020.1840569&rft.externalDocID=1840569
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon