Locally efficient semiparametric estimator for zero-inflated Poisson model with error-prone covariates
Overdispersion is a common phenomenon in count or frequency responses in Poisson models. For example, number of car accidents on a highway during a year period. A similar phenomenon is observed in electric power systems, where cascading failures often follows some distribution with inflated zero. Wh...
Saved in:
Published in | Journal of statistical computation and simulation Vol. 91; no. 6; pp. 1092 - 1107 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
13.04.2021
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0094-9655 1563-5163 |
DOI | 10.1080/00949655.2020.1840569 |
Cover
Abstract | Overdispersion is a common phenomenon in count or frequency responses in Poisson models. For example, number of car accidents on a highway during a year period. A similar phenomenon is observed in electric power systems, where cascading failures often follows some distribution with inflated zero. When the response contains an excess amount of zeros, zero-inflated Poisson (ZIP) is the most favourable model. However, during the data collection process, some of the covariates cannot be accessed directly or are measured with error among numerous disciplines. To the best of our knowledge, little existing work is available in the literature that tackles the population heterogeneity in the count response while some of the covariates are measured with error. With the increasing popularity of such outcomes in modern studies, it is interesting and timely to study zero-inflated Poisson models in which some of the covariates are subject to measurement error while some are not. We propose a flexible partial linear single index model for the log Poisson mean to correct bias potentially due to the error in covariates or the population heterogeneity. We derive consistent and locally efficient semiparametric estimators and study the large sample properties. We further assess the finite sample performance through simulation studies. Finally, we apply the proposed method to a real data application and compare with existing methods that handle measurement error in covariates. |
---|---|
AbstractList | Overdispersion is a common phenomenon in count or frequency responses in Poisson models. For example, number of car accidents on a highway during a year period. A similar phenomenon is observed in electric power systems, where cascading failures often follows some distribution with inflated zero. When the response contains an excess amount of zeros, zero-inflated Poisson (ZIP) is the most favourable model. However, during the data collection process, some of the covariates cannot be accessed directly or are measured with error among numerous disciplines. To the best of our knowledge, little existing work is available in the literature that tackles the population heterogeneity in the count response while some of the covariates are measured with error. With the increasing popularity of such outcomes in modern studies, it is interesting and timely to study zero-inflated Poisson models in which some of the covariates are subject to measurement error while some are not. We propose a flexible partial linear single index model for the log Poisson mean to correct bias potentially due to the error in covariates or the population heterogeneity. We derive consistent and locally efficient semiparametric estimators and study the large sample properties. We further assess the finite sample performance through simulation studies. Finally, we apply the proposed method to a real data application and compare with existing methods that handle measurement error in covariates. |
Author | Eftekharnejad, Sara Liu, Jianxuan |
Author_xml | – sequence: 1 givenname: Jianxuan orcidid: 0000-0002-6461-9895 surname: Liu fullname: Liu, Jianxuan email: jliu193@syr.edu organization: Syracuse University – sequence: 2 givenname: Sara surname: Eftekharnejad fullname: Eftekharnejad, Sara organization: Syracuse University |
BookMark | eNqFkMtKAzEUhoMo2FYfQQi4nppLM53BjVK8QUEXug6ZXDBlZlJPUkt9ejO0blzoIgTC95_85xuj4z70FqELSqaUVOSKkHpWl0JMGWH5qZoRUdZHaERFyQtBS36MRgNTDNApGse4IoRQKtgIuWXQqm132Drntbd9wtF2fq1AdTaB19jG5DuVAmCXz5eFUPjetSpZg1-CjzH0uAvGtnjr0zu2AAGKNeSKWIdPBT6T8QydONVGe364J-jt_u518Vgsnx-eFrfLQnNepaJilZkrZVxjmZoLozTh1BDRWDpzldXWMEGZ0HNdlqWYN41mnDjDKqdL2tQVn6DL_dxc4GOTq8tV2ECfv5RMkDrvXPOBut5TGkKMYJ3UPqnkQ59A-VZSIgex8kesHMTKg9icFr_Sa8iGYPdv7mafy_oCdGoboDUyqV0bwIHqtY-S_z3iG6bYlAw |
CitedBy_id | crossref_primary_10_1002_bimj_202000069 crossref_primary_10_1002_env_2853 |
Cites_doi | 10.1109/WSC.2014.7020005 10.1002/cjs.11483 10.1007/s00184-017-0631-2 10.1007/978-1-4899-3242-6 10.1016/0304-4076(90)90014-K 10.1093/biomet/asr076 10.2307/1269547 10.1080/01621459.1988.10478718 10.1214/009053607000000361 10.1214/aos/1176348248 10.1007/978-1-4612-0789-4_10 10.1198/016214506000000519 |
ContentType | Journal Article |
Copyright | 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 2020 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1080/00949655.2020.1840569 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1563-5163 |
EndPage | 1107 |
ExternalDocumentID | 10_1080_00949655_2020_1840569 1840569 |
Genre | Research Article |
GroupedDBID | .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 YQT ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX AFRVT AIYEW CITATION TASJS 7SC 8FD ADYSH JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c338t-828d7aadfbe2a75dac031d05be14f8eced25125c7c66657bbc230fd28fc61b983 |
ISSN | 0094-9655 |
IngestDate | Mon Jul 14 10:04:25 EDT 2025 Sun Aug 03 02:37:23 EDT 2025 Thu Apr 24 22:59:59 EDT 2025 Wed Dec 25 09:08:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-828d7aadfbe2a75dac031d05be14f8eced25125c7c66657bbc230fd28fc61b983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6461-9895 |
PQID | 2509115938 |
PQPubID | 53118 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1080_00949655_2020_1840569 crossref_primary_10_1080_00949655_2020_1840569 informaworld_taylorfrancis_310_1080_00949655_2020_1840569 proquest_journals_2509115938 |
PublicationCentury | 2000 |
PublicationDate | 2021-04-13 |
PublicationDateYYYYMMDD | 2021-04-13 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Journal of statistical computation and simulation |
PublicationYear | 2021 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Ma Y (CIT0011) 2006; 16 Stefanski LA (CIT0010) 1987; 74 CIT0001 CIT0012 Bickel PJ (CIT0017) 1993 Tsiatis AA. (CIT0018) 2006 CIT0003 CIT0014 CIT0002 Ostir G (CIT0006) 2016 CIT0013 CIT0005 CIT0016 CIT0004 CIT0015 CIT0007 CIT0009 CIT0008 |
References_xml | – ident: CIT0003 doi: 10.1109/WSC.2014.7020005 – ident: CIT0007 doi: 10.1002/cjs.11483 – ident: CIT0009 doi: 10.1007/s00184-017-0631-2 – ident: CIT0001 doi: 10.1007/978-1-4899-3242-6 – ident: CIT0008 doi: 10.1016/0304-4076(90)90014-K – volume: 16 start-page: 183 year: 2006 ident: CIT0011 publication-title: Stat Sin – ident: CIT0016 doi: 10.1093/biomet/asr076 – volume-title: Stroke recovery in underserved populations 2005–2006 [United States] year: 2016 ident: CIT0006 – ident: CIT0004 doi: 10.2307/1269547 – volume: 74 start-page: 703 year: 1987 ident: CIT0010 publication-title: Biometrika – ident: CIT0012 doi: 10.1080/01621459.1988.10478718 – ident: CIT0014 doi: 10.1214/009053607000000361 – ident: CIT0002 – ident: CIT0013 doi: 10.1214/aos/1176348248 – ident: CIT0005 doi: 10.1007/978-1-4612-0789-4_10 – volume-title: Efficient and adaptive estimation for semiparametric models year: 1993 ident: CIT0017 – volume-title: Semiparametric theory and missing data year: 2006 ident: CIT0018 – ident: CIT0015 doi: 10.1198/016214506000000519 |
SSID | ssj0001152 |
Score | 2.2423763 |
Snippet | Overdispersion is a common phenomenon in count or frequency responses in Poisson models. For example, number of car accidents on a highway during a year... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1092 |
SubjectTerms | Data collection Electric power distribution Electric power systems Error analysis Error correction Error-prone covariates Heterogeneity local efficiency regression calibration semiparametric methods zero-inflated Poisson model |
Title | Locally efficient semiparametric estimator for zero-inflated Poisson model with error-prone covariates |
URI | https://www.tandfonline.com/doi/abs/10.1080/00949655.2020.1840569 https://www.proquest.com/docview/2509115938 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaW9lIOFBYQpQX5wK3Kap04r2NFi1YIEBJbUXGJbMcRW_aBslkEPfDbO2M73ixbVB6XaOWVEyvfl5nxY74h5EWWg1uXPA9SViYBLyP45hII5KKSay4qmI4po_b5Lhmd89cX8UWv97ObXdLIgbq6Ma_kX1CFNsAVs2T_All_U2iA34AvXAFhuP4Rxm_QEU1_4KGMiUlsPF7q2QTVvGdYKEsdo4TGDKfV5jThla4XATx3KjDMfL-Adw7Ym1o4dj1W1_WiDsCmzvEM-zeYRmMk-pv4FVORjMqzURjB2hCWS2YlfjJzZcH8gZ_JyhAG2Ph9tWbkWdXoL59FPdeXwq9Qd1ciQoabKjaR1HBnvFUUpGt4cx7kiVXkHWhna5MoiJmzb84Y29JdjnRdy8qGtmae89LMFcvd8gDtkckchfDjAYwTGmEWG9uKML-Ia7t_7pDdME1xm3_3ZHT66aP35czWbPLDb3PAUJ39pkdsRDcb2rdbvt4EMOP75J5Djp5YGj0gPT3vk_22qgd1Rr5P7r71Sr7LPtn70MK8fEgqRzjqCUc3CUc94SiMiW4QjjrCUUM4ioSjHcLRNeEekfNXZ-OXo8AV6ghUFGUNShGUqRBlJXUo0rgUClxFOYylZrzKtNIlRtGxgu8eN_qkVDDxrcowq1TCJFiLx2RnDk96QqjIhATfLbNqqFBXKeMKDAaK_gnFoPmA8PYFF8qp2GMxlWnBvNitxaVAXAqHywEZ-G5frYzLbR3yLnpFY8hdWV4X0S19j1qoC2ctlkWIkTnMHaLs6X_c-pDsrb-8I7LT1Cv9DKLiRj531L0Gyt62Qg |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oHsSDKGp8oO7Ba5E-aY_GaFCReNCE26b7SoxATSkm-uud6YOAxnDwuslsu9PZmW-2s98AXIQRhnXhRVbXVoHlKRf3XIBAzlWe9mKD6ZjM2T4HQe_Fux_6w4W7MFRWSTm0KYgicl9Nm5sOo6uSuEsqh4sC38f0zsEhzFH8IFqHDR-xO1m52xnMvbFddN0hEYtkqls8f02zFJ-W2Et_ees8BN02QFYvX1SevLVnmWjLrx-8jv9b3Q5slwiVXRUmtQtretKERtX9gZXOoAlbj3PG12kT6oRaC9LnPTB9ipCjT6ZzggqMa2yqx69EMz6mDl6SEbfHmPJ9hitnXzpNLFTCCIGvYk8JGkMyYXmTHkYHxUynaZJauPCJZjL5wPyeIPI-vNzePF_3rLKhgyUxE87oyrrqxrEyQjtx11exRJeiOr7QtmdCLbUitOVLtA_6ISSExATJKCc0MrAFWtUB1Cb4pENgcRgL9PEiNB1J_DuhJ9GwiBwuljYOH4FXfUYuS7Zzarox4vacFLVQMyc181LNR9Cei70XdB-rBKJFG-FZfs5iiqYo3F0h26oMipeeY8odQnCIMd3w-B9Tn8Nm7_mxz_t3g4cTqDtUiEMElW4Lalk606eIpDJxlm-VbweDECE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60gtSD1ar4dg9eU5tnk6Oopb6KBwVvS_YFYtuUJAr21zuTR_GB9OB1YTbZyezMN5vZbwBOwwjDuvAiq2erwPKUi3suQCDnKk97scF0TBZsn8Ng8OTdPPt1NWFWlVVSDm1KoojCV9PmnipTV8SdUTVcFPg-ZncODmGK4gfRMqwECE-oqs_tDufO2C6b7pCIRTL1JZ6_pvkWnr6Rl_5y1kUE6rdA1O9eFp68dt5y0ZGzH7SO_1rcBqxX-JSdlwa1CUt60oZW3fuBVa6gDWv3c77XrA1Nwqwl5fMWmDuKj6MPpgt6CoxqLNPjFyIZH1P_LsmI2WNM2T7DhbOZThMLdTBC2KvYQ4KmkExY0aKH0TEx02mapBaue6KZTN4xuyeAvA1P_avHi4FVtXOwJObBOV1YV704VkZoJ-75KpboUFTXF9r2TKilVoS1fInWQb-DhJCYHhnlhEYGtkCb2oHGBJ-0CywOY4EeXoSmK4l9J_QkmhVRw8XSxuE98OqvyGXFdU4tN0bcnlOilmrmpGZeqXkPOnOxaUn2sUgg-moiPC9OWUzZEoW7C2QPa3vild_IuEP4DRGmG-7_Y-oTWH247PO76-HtATQdqsIhdkr3EBp5-qaPEEbl4rjYKJ-Z0A7F |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Locally+efficient+semiparametric+estimator+for+zero-inflated+Poisson+model+with+error-prone+covariates&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Liu%2C+Jianxuan&rft.au=Eftekharnejad%2C+Sara&rft.date=2021-04-13&rft.pub=Taylor+%26+Francis&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=91&rft.issue=6&rft.spage=1092&rft.epage=1107&rft_id=info:doi/10.1080%2F00949655.2020.1840569&rft.externalDocID=1840569 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon |