Interaction characteristics of the Riemann wave propagation in the (2+1)-dimensional generalized breaking soliton system

In this study, the nonlinear (2+1)-dimensional generalized breaking soliton system has been studied by introducing an appropriate travelling wave transformation. The model under consideration is integrable with constant coefficients and demonstrates Riemann wave propagation characteristics, it princ...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer mathematics Vol. 100; no. 6; pp. 1340 - 1355
Main Authors Muhamad, Kalsum Abdulrahman, Tanriverdi, Tanfer, Mahmud, Adnan Ahmad, Baskonus, Haci Mehmet
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 03.06.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0020-7160
1029-0265
DOI10.1080/00207160.2023.2186775

Cover

Abstract In this study, the nonlinear (2+1)-dimensional generalized breaking soliton system has been studied by introducing an appropriate travelling wave transformation. The model under consideration is integrable with constant coefficients and demonstrates Riemann wave propagation characteristics, it principally transformed into a third-order nonlinear ODE. The reliable and robust method, namely the modified exponential function method, is applied to the nonlinear system for the first time. The main goal is to investigate and obtain some explicitly exact travelling waves, periodic waves, and soliton solutions. The obtained solutions are in the form of exponential functions, trigonometric hyperbolic functions, and combined structures of the trigonometric hyperbolic with logarithmic functions. Furthermore, the obtained solutions are new and significant in revealing the pertinent features of the physical phenomenon. The results have been expressed in several graphs, including two- and three-dimensional plots, for the best visual assessment of the physical significance and dynamic characteristics. The most potent and efficacious tools are the computer software packages we utilize to derive solutions and graphs.
AbstractList In this study, the nonlinear (2+1)-dimensional generalized breaking soliton system has been studied by introducing an appropriate travelling wave transformation. The model under consideration is integrable with constant coefficients and demonstrates Riemann wave propagation characteristics, it principally transformed into a third-order nonlinear ODE. The reliable and robust method, namely the modified exponential function method, is applied to the nonlinear system for the first time. The main goal is to investigate and obtain some explicitly exact travelling waves, periodic waves, and soliton solutions. The obtained solutions are in the form of exponential functions, trigonometric hyperbolic functions, and combined structures of the trigonometric hyperbolic with logarithmic functions. Furthermore, the obtained solutions are new and significant in revealing the pertinent features of the physical phenomenon. The results have been expressed in several graphs, including two- and three-dimensional plots, for the best visual assessment of the physical significance and dynamic characteristics. The most potent and efficacious tools are the computer software packages we utilize to derive solutions and graphs.
Author Tanriverdi, Tanfer
Muhamad, Kalsum Abdulrahman
Baskonus, Haci Mehmet
Mahmud, Adnan Ahmad
Author_xml – sequence: 1
  givenname: Kalsum Abdulrahman
  orcidid: 0000-0002-9328-8941
  surname: Muhamad
  fullname: Muhamad, Kalsum Abdulrahman
  organization: Harran University
– sequence: 2
  givenname: Tanfer
  orcidid: 0000-0003-4686-1263
  surname: Tanriverdi
  fullname: Tanriverdi, Tanfer
  organization: Harran University
– sequence: 3
  givenname: Adnan Ahmad
  orcidid: 0000-0001-7499-1896
  surname: Mahmud
  fullname: Mahmud, Adnan Ahmad
  email: mathematic79@yahoo.com
  organization: Harran University
– sequence: 4
  givenname: Haci Mehmet
  orcidid: 0000-0003-4085-3625
  surname: Baskonus
  fullname: Baskonus, Haci Mehmet
  organization: Harran University
BookMark eNqFkF1rFDEYhYNUcFv7E4SAN4rMmo-dmSzeKKVfUBDEXod3kzfb1JlkTVLr9tc3s9veeFGvEpLzHA7PITkIMSAh7zibc6bYZ8YE63nH5oIJORdcdX3fviIzzsSyYaJrD8hsyjRT6A05zPmWMaaWfTcjfy9DwQSm-BiouYHpisnn4k2m0dFyg_SHxxFCoPfwB-kmxQ2sYZf3Yff_QXziHxvrRwy5PsNA1xhq6eAf0NJVQvjlw5rmOPhSqbzNBce35LWDIePx03lErs9Of55cNFffzy9Pvl01RkpVGsXBWIEIK2VBLNgK6u5FZ1fowLZLxSRvJedCWq5Maxcdmk6ik4452bUW5RF5v--tw3_fYS76Nt6lOjJroao-0avFsqbafcqkmHNCpzfJj5C2mjM9SdbPkvUkWT9JrtyXfzjjy05OSeCH_9Jf97QPLqYR7mMarC6wHWJyCYLxWcuXKx4B34SZKA
CitedBy_id crossref_primary_10_1088_1402_4896_ad999d
crossref_primary_10_1007_s11071_024_10010_5
crossref_primary_10_1007_s11082_023_05578_y
crossref_primary_10_2478_ijmce_2024_0006
crossref_primary_10_1016_j_padiff_2024_100701
crossref_primary_10_1007_s12346_024_00990_5
crossref_primary_10_2478_ijmce_2025_0003
crossref_primary_10_1016_j_ijcce_2025_01_004
crossref_primary_10_1088_1402_4896_ad9786
crossref_primary_10_2478_ijmce_2023_0012
crossref_primary_10_1016_j_rinp_2023_106774
crossref_primary_10_1038_s41598_024_64985_7
crossref_primary_10_1080_10407790_2023_2237186
crossref_primary_10_2478_ijmce_2023_0006
crossref_primary_10_1016_j_aej_2023_11_067
crossref_primary_10_3390_fractalfract7110773
crossref_primary_10_3390_axioms13020074
crossref_primary_10_1016_j_padiff_2024_100815
crossref_primary_10_1007_s40435_023_01267_6
crossref_primary_10_1007_s11082_024_06388_6
crossref_primary_10_1007_s40819_024_01769_7
crossref_primary_10_1007_s11082_023_05824_3
crossref_primary_10_2478_ijmce_2025_0015
crossref_primary_10_2478_ama_2024_0064
crossref_primary_10_2478_ijmce_2023_0002
Cites_doi 10.1016/j.amc.2019.03.016
10.1016/j.physa.2020.125114
10.1088/0031-8949/81/03/035005
10.1007/978-1-4757-4307-4
10.1016/j.chaos.2004.02.025
10.31801/cfsuasmas.451619
10.1088/0253-6102/40/2/137
10.1016/j.camwa.2013.11.001
10.1016/j.chaos.2006.03.020
10.1016/j.physleta.2007.05.039
10.1016/S0898-1221(02)00268-7
10.1007/BF02727634
10.1007/978-3-662-00922-2
10.1142/S0217979220502835
10.1016/j.amc.2007.01.042
10.1016/S0377-0427(03)00645-9
10.1080/17455030.2015.1062577
10.4236/am.2014.58112
10.1080/17455030.2019.1574410
10.17654/DE019030213
10.1088/0253-6102/66/4/385
10.1140/epjp/i2019-12375-x
10.1016/j.rinp.2021.105030
10.1016/j.rinp.2020.103661
10.1016/j.camwa.2019.03.002
10.1016/j.aml.2015.05.015
10.1063/1.5043848
10.1016/j.cnsns.2020.105447
10.1002/mma.8259
10.1088/0253-6102/48/4/019
10.2298/TSCI200331247B
10.1016/j.camwa.2006.12.041
10.1007/s11071-021-06672-0
10.1088/0031-8949/54/6/003
10.1016/j.chaos.2007.01.063
10.1137/1.9781611970883
10.1016/j.asej.2013.07.007
10.1088/1402-4896/aaded5
10.1016/j.physleta.2003.12.014
10.1016/j.ijleo.2022.169617
10.11121/ijocta.01.2021.00786
10.1016/0375-9601(94)00926-G
10.20852/ntmsci.2018.274
10.1016/j.jksus.2014.09.001
10.1016/j.chaos.2021.111692
10.1016/j.cjph.2021.07.025
10.1119/1.17120
10.1016/j.ecocom.2021.100966
10.1080/16583655.2022.2160290
10.1088/1009-1963/12/10/301
10.1017/CBO9780511623998
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00207160.2023.2186775
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1029-0265
EndPage 1355
ExternalDocumentID 10_1080_00207160_2023_2186775
2186775
Genre Research Article
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACNCT
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AI.
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MK~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
TWF
UPT
UT5
UU3
VH1
WH7
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-81acd2eeab8da240ba89746dbefad598031531123d18c5d46ec63ef3f0f365de3
ISSN 0020-7160
IngestDate Wed Aug 13 03:54:16 EDT 2025
Thu Apr 24 22:53:51 EDT 2025
Tue Jul 01 01:04:50 EDT 2025
Wed Dec 25 09:04:02 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-81acd2eeab8da240ba89746dbefad598031531123d18c5d46ec63ef3f0f365de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4686-1263
0000-0003-4085-3625
0000-0001-7499-1896
0000-0002-9328-8941
PQID 2810827849
PQPubID 52924
PageCount 16
ParticipantIDs informaworld_taylorfrancis_310_1080_00207160_2023_2186775
crossref_primary_10_1080_00207160_2023_2186775
proquest_journals_2810827849
crossref_citationtrail_10_1080_00207160_2023_2186775
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-03
PublicationDateYYYYMMDD 2023-06-03
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-03
  day: 03
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of computer mathematics
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
Darvishi M.T. (CIT0012) 2012; 6
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
CIT0003
CIT0047
CIT0002
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0052
CIT0051
CIT0010
Uddin S. (CIT0046) 2014; 1
CIT0054
CIT0053
CIT0056
CIT0011
CIT0055
Zhang S. (CIT0057) 2007; 190
Kaur L. (CIT0021) 2022; 74
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0020
CIT0023
CIT0022
Li Y.-S. (CIT0025) 1993; 26
Wei L. (CIT0050) 2021; 11
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0030
  doi: 10.1016/j.amc.2019.03.016
– ident: CIT0040
  doi: 10.1016/j.physa.2020.125114
– ident: CIT0047
  doi: 10.1088/0031-8949/81/03/035005
– ident: CIT0009
  doi: 10.1007/978-1-4757-4307-4
– ident: CIT0014
  doi: 10.1016/j.chaos.2004.02.025
– ident: CIT0043
  doi: 10.31801/cfsuasmas.451619
– ident: CIT0054
  doi: 10.1088/0253-6102/40/2/137
– ident: CIT0039
  doi: 10.1016/j.camwa.2013.11.001
– ident: CIT0016
  doi: 10.1016/j.chaos.2006.03.020
– ident: CIT0001
  doi: 10.1016/j.physleta.2007.05.039
– ident: CIT0053
  doi: 10.1016/S0898-1221(02)00268-7
– ident: CIT0010
  doi: 10.1007/BF02727634
– ident: CIT0032
  doi: 10.1007/978-3-662-00922-2
– ident: CIT0004
  doi: 10.1142/S0217979220502835
– volume: 190
  start-page: 510
  year: 2007
  ident: CIT0057
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2007.01.042
– ident: CIT0028
  doi: 10.1016/S0377-0427(03)00645-9
– ident: CIT0006
  doi: 10.1080/17455030.2015.1062577
– volume: 11
  start-page: 2151
  year: 2021
  ident: CIT0050
  publication-title: J. Appl. Anal. Comput.
– ident: CIT0037
– volume: 6
  start-page: 13
  year: 2012
  ident: CIT0012
  publication-title: Int. J. Comput. Math. Sci.
– ident: CIT0033
  doi: 10.4236/am.2014.58112
– ident: CIT0020
  doi: 10.1080/17455030.2019.1574410
– ident: CIT0044
  doi: 10.17654/DE019030213
– ident: CIT0048
  doi: 10.1088/0253-6102/66/4/385
– ident: CIT0038
  doi: 10.1140/epjp/i2019-12375-x
– ident: CIT0018
  doi: 10.1016/j.rinp.2021.105030
– ident: CIT0036
  doi: 10.1016/j.rinp.2020.103661
– ident: CIT0026
  doi: 10.1016/j.camwa.2019.03.002
– ident: CIT0052
  doi: 10.1016/j.aml.2015.05.015
– volume: 74
  start-page: 108
  year: 2022
  ident: CIT0021
  publication-title: Rom. Rep. Phys.
– volume: 26
  start-page: 7487
  year: 1993
  ident: CIT0025
  publication-title: J. Phys. A Math. Theor.
– volume: 1
  start-page: 1
  year: 2014
  ident: CIT0046
  publication-title: Front. Math. Its Appl.
– ident: CIT0023
  doi: 10.1063/1.5043848
– ident: CIT0017
  doi: 10.1016/j.cnsns.2020.105447
– ident: CIT0007
  doi: 10.1002/mma.8259
– ident: CIT0041
  doi: 10.1088/0253-6102/48/4/019
– ident: CIT0008
  doi: 10.2298/TSCI200331247B
– ident: CIT0051
  doi: 10.1016/j.camwa.2006.12.041
– ident: CIT0013
  doi: 10.1007/s11071-021-06672-0
– ident: CIT0029
  doi: 10.1088/0031-8949/54/6/003
– ident: CIT0011
  doi: 10.1016/j.chaos.2007.01.063
– ident: CIT0003
  doi: 10.1137/1.9781611970883
– ident: CIT0024
  doi: 10.1016/j.asej.2013.07.007
– ident: CIT0049
  doi: 10.1088/1402-4896/aaded5
– ident: CIT0055
  doi: 10.1016/j.physleta.2003.12.014
– ident: CIT0022
  doi: 10.1016/j.ijleo.2022.169617
– ident: CIT0005
  doi: 10.11121/ijocta.01.2021.00786
– ident: CIT0034
  doi: 10.1016/0375-9601(94)00926-G
– ident: CIT0042
  doi: 10.20852/ntmsci.2018.274
– ident: CIT0015
  doi: 10.1016/j.jksus.2014.09.001
– ident: CIT0056
  doi: 10.1016/j.chaos.2021.111692
– ident: CIT0035
  doi: 10.1016/j.cjph.2021.07.025
– ident: CIT0027
  doi: 10.1119/1.17120
– ident: CIT0045
  doi: 10.1016/j.ecocom.2021.100966
– ident: CIT0031
  doi: 10.1080/16583655.2022.2160290
– ident: CIT0019
  doi: 10.1088/1009-1963/12/10/301
– ident: CIT0002
  doi: 10.1017/CBO9780511623998
SSID ssj0008976
Score 2.3966393
Snippet In this study, the nonlinear (2+1)-dimensional generalized breaking soliton system has been studied by introducing an appropriate travelling wave...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1340
SubjectTerms 34-04
65-04
65-06
Dynamic characteristics
Exponential functions
Generalized breaking soliton system
Graphs
Hyperbolic functions
modified exponential function method
Nonlinear systems
Propagation
Riemann wave propagation
Riemann waves
Software
Solitary waves
soliton solutions
Traveling waves
travelling wave transformation
Wave propagation
Title Interaction characteristics of the Riemann wave propagation in the (2+1)-dimensional generalized breaking soliton system
URI https://www.tandfonline.com/doi/abs/10.1080/00207160.2023.2186775
https://www.proquest.com/docview/2810827849
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9sILd8RgID-ABKpSJXauj-WmClQeUCcmXiLHdrRqS4bWRpv2o_kNnBM7idtNjPEStWntpjlfjo-PP3-HkNc8gyi9ZNKToUxhgiJir2BSeIWM40SWOkkj3Cg8_xbPDsIvh9HhaPTbYS0162IiL6_dV_I_VoVzYFfcJXsLy_adwgl4DfaFI1gYjv9k4zadZ4t9yy3lZbv2_32pK1HX43OsMgTeEvyHcPmNEGCyN-w9-LPMU6j0b1Q6sLIyZquWlxihQmB53OYdkCwHbY38sxvXbiYWHTkKaatGjKteH3Y1GPlIVAZiX-Fe4VJBoZoTcH_VgNmFqM-QO6Ja2gG8Kwc-8Ry-2ZjEuKrBUU2hoRpysysIfpsWpzMhl-O5Pqrsdm-b5mC8pWNx13XDPBcmd2YRRxtvjdwdmERGG-7c9x3cus454KHvDPQBNwLBVwaRjnXJfPy9CV7NhLXCf9EwanZMga3BtKc4Br32qukmx25y280dssuSBGkFu9PZx58_-tghzdpyiP2f7facoRr8ddezEU1taO1eiS3agGnxgNyzMx06NbB9SEa6fkTud1VEqB1UHpMLB8V0C8X0tKQAG2pRTBHF1EExXdbt52_ZOHjn4pc6-KUdfqnFLzX4fUIOPn9afJh5th6IJzlP114aCKmY1qJIlYBItBBwu8JYFboUKspSLFjCYf7AVZDKSIWxljHXJS_9kseR0vwp2alPa_2M0ACMzwrOJYyxYeJLodNSZkwn2HURsz0Sdvc1l1YsH2u2nOR_tesemfTNfhm1mJsaZK7R8nWbpitNTZ2c39B2v7Nwbp_rVc5SaIBkguz5ba_lBbk7PHj7ZGd91uiXEHGvi1cWpn8A_ejSEA
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BTxUxEG4UD3oRRAgIaA8cMGQ3b7e7fd0jMZKnwjsQSLg17bQlL8piZFHCr2em3X3haQwHzs003XY6_dqd-T7GdkWDKD2UkEEFCi8oRma2BJNZkHIMwY9VTYXCx1M5Oau-ntfnD2phKK2S7tAhEUXEWE2bmx6jh5Q4KuHGk1GOctL-zsvIyVY_Zy9qxO7k5WI0nUdj1USBOTLJyGao4vlfNwvn0wJ76T_ROh5Bh8sMhsGnzJPv-U1nc7j7i9fxaV-3wl73CJUfJJd6w575dpUtD-oPvA8Gb9ltfExMdREcFnmf-VXgiCz5ycxfmrblf8xvz3HcGL2iJ_BZG9v3yv3iY-ZIYSCxg_CLRIM9u_OO4209amXxa0rSQ6tEO73Gzg4_n36aZL2OQwZ4Ae4yVRhwpffGKmcQQViDi1JJZ30wrm4UCU0IxH3CFQpqV0kPUvggwigIWTsv1tlSe9X6DcaLAgGjFQIwNlbjERivAjSlH1PXVpabrBpWT0NPck5aGz90MedCTbOraXZ1P7ubLJ-b_UwsH48ZNA9dQ3fxeSUkLRQtHrHdHvxI9wHjWpcKDegncPPuCV1_YC8np8dH-ujL9NsWe0VNMa1NbLOl7teN30EA1dn3cYfcA3UIDXI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA4uIF7cxd0cPCjSMm3aTHoUdXAdRBS8hawyqFWcuuCv9yVpB0cRD57DC2ny8vIlfe_7ENoiBaB0m6pIZYrBBUXQSKZKRFJR2lbWtFnuCoXPu_ToOju5yZtswn6dVunu0DYQRfhY7Tb3k7ZNRpyr4IaDkbZiJ_0dp56SLR9F4xTgicvqI63uIBizwuvLOZPI2TRFPL91M3Q8DZGX_gjW_gTqTCPZjD0kntzFL5WM1cc3Wsd_fdwMmqrxKd4LDjWLRkw5h6Yb7Qdch4J59O6fEkNVBFbDrM_40WLAlfiyZx5EWeI38WowDBtil_cD3Ct9-3a6m-xE2ukLBG4QfBtIsHsfRmO4q3ulLNx3KXpgFUinF9B15_Bq_yiqVRwiBdffKmKJUDo1RkimBeAHKWBNMqqlsULnBXMyEwRQH9EJU7nOqFGUGEtsyxKaa0MW0Vj5WJolhJME4KIkREFkzNotJQyzqkhN23UtabqMsmbxuKopzp3Sxj1PBkyoYXa5m11ez-4yigdmT4Hj4y-D4qtn8Mo_rtighMLJH7ZrjRvxOlz0ecrAwP0CLlb-0fUmmrg46PCz4-7pKpp0LT6njayhser5xawDeqrkht8fnxElDBY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction+characteristics+of+the+Riemann+wave+propagation+in+the+%282%2B1%29-dimensional+generalized+breaking+soliton+system&rft.jtitle=International+journal+of+computer+mathematics&rft.au=Muhamad%2C+Kalsum+Abdulrahman&rft.au=Tanriverdi%2C+Tanfer&rft.au=Mahmud%2C+Adnan+Ahmad&rft.au=Baskonus%2C+Haci+Mehmet&rft.date=2023-06-03&rft.issn=0020-7160&rft.eissn=1029-0265&rft.volume=100&rft.issue=6&rft.spage=1340&rft.epage=1355&rft_id=info:doi/10.1080%2F00207160.2023.2186775&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00207160_2023_2186775
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon