Interaction characteristics of the Riemann wave propagation in the (2+1)-dimensional generalized breaking soliton system
In this study, the nonlinear (2+1)-dimensional generalized breaking soliton system has been studied by introducing an appropriate travelling wave transformation. The model under consideration is integrable with constant coefficients and demonstrates Riemann wave propagation characteristics, it princ...
Saved in:
Published in | International journal of computer mathematics Vol. 100; no. 6; pp. 1340 - 1355 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
03.06.2023
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0020-7160 1029-0265 |
DOI | 10.1080/00207160.2023.2186775 |
Cover
Abstract | In this study, the nonlinear (2+1)-dimensional generalized breaking soliton system has been studied by introducing an appropriate travelling wave transformation. The model under consideration is integrable with constant coefficients and demonstrates Riemann wave propagation characteristics, it principally transformed into a third-order nonlinear ODE. The reliable and robust method, namely the modified exponential function method, is applied to the nonlinear system for the first time. The main goal is to investigate and obtain some explicitly exact travelling waves, periodic waves, and soliton solutions. The obtained solutions are in the form of exponential functions, trigonometric hyperbolic functions, and combined structures of the trigonometric hyperbolic with logarithmic functions. Furthermore, the obtained solutions are new and significant in revealing the pertinent features of the physical phenomenon. The results have been expressed in several graphs, including two- and three-dimensional plots, for the best visual assessment of the physical significance and dynamic characteristics. The most potent and efficacious tools are the computer software packages we utilize to derive solutions and graphs. |
---|---|
AbstractList | In this study, the nonlinear (2+1)-dimensional generalized breaking soliton system has been studied by introducing an appropriate travelling wave transformation. The model under consideration is integrable with constant coefficients and demonstrates Riemann wave propagation characteristics, it principally transformed into a third-order nonlinear ODE. The reliable and robust method, namely the modified exponential function method, is applied to the nonlinear system for the first time. The main goal is to investigate and obtain some explicitly exact travelling waves, periodic waves, and soliton solutions. The obtained solutions are in the form of exponential functions, trigonometric hyperbolic functions, and combined structures of the trigonometric hyperbolic with logarithmic functions. Furthermore, the obtained solutions are new and significant in revealing the pertinent features of the physical phenomenon. The results have been expressed in several graphs, including two- and three-dimensional plots, for the best visual assessment of the physical significance and dynamic characteristics. The most potent and efficacious tools are the computer software packages we utilize to derive solutions and graphs. |
Author | Tanriverdi, Tanfer Muhamad, Kalsum Abdulrahman Baskonus, Haci Mehmet Mahmud, Adnan Ahmad |
Author_xml | – sequence: 1 givenname: Kalsum Abdulrahman orcidid: 0000-0002-9328-8941 surname: Muhamad fullname: Muhamad, Kalsum Abdulrahman organization: Harran University – sequence: 2 givenname: Tanfer orcidid: 0000-0003-4686-1263 surname: Tanriverdi fullname: Tanriverdi, Tanfer organization: Harran University – sequence: 3 givenname: Adnan Ahmad orcidid: 0000-0001-7499-1896 surname: Mahmud fullname: Mahmud, Adnan Ahmad email: mathematic79@yahoo.com organization: Harran University – sequence: 4 givenname: Haci Mehmet orcidid: 0000-0003-4085-3625 surname: Baskonus fullname: Baskonus, Haci Mehmet organization: Harran University |
BookMark | eNqFkF1rFDEYhYNUcFv7E4SAN4rMmo-dmSzeKKVfUBDEXod3kzfb1JlkTVLr9tc3s9veeFGvEpLzHA7PITkIMSAh7zibc6bYZ8YE63nH5oIJORdcdX3fviIzzsSyYaJrD8hsyjRT6A05zPmWMaaWfTcjfy9DwQSm-BiouYHpisnn4k2m0dFyg_SHxxFCoPfwB-kmxQ2sYZf3Yff_QXziHxvrRwy5PsNA1xhq6eAf0NJVQvjlw5rmOPhSqbzNBce35LWDIePx03lErs9Of55cNFffzy9Pvl01RkpVGsXBWIEIK2VBLNgK6u5FZ1fowLZLxSRvJedCWq5Maxcdmk6ik4452bUW5RF5v--tw3_fYS76Nt6lOjJroao-0avFsqbafcqkmHNCpzfJj5C2mjM9SdbPkvUkWT9JrtyXfzjjy05OSeCH_9Jf97QPLqYR7mMarC6wHWJyCYLxWcuXKx4B34SZKA |
CitedBy_id | crossref_primary_10_1088_1402_4896_ad999d crossref_primary_10_1007_s11071_024_10010_5 crossref_primary_10_1007_s11082_023_05578_y crossref_primary_10_2478_ijmce_2024_0006 crossref_primary_10_1016_j_padiff_2024_100701 crossref_primary_10_1007_s12346_024_00990_5 crossref_primary_10_2478_ijmce_2025_0003 crossref_primary_10_1016_j_ijcce_2025_01_004 crossref_primary_10_1088_1402_4896_ad9786 crossref_primary_10_2478_ijmce_2023_0012 crossref_primary_10_1016_j_rinp_2023_106774 crossref_primary_10_1038_s41598_024_64985_7 crossref_primary_10_1080_10407790_2023_2237186 crossref_primary_10_2478_ijmce_2023_0006 crossref_primary_10_1016_j_aej_2023_11_067 crossref_primary_10_3390_fractalfract7110773 crossref_primary_10_3390_axioms13020074 crossref_primary_10_1016_j_padiff_2024_100815 crossref_primary_10_1007_s40435_023_01267_6 crossref_primary_10_1007_s11082_024_06388_6 crossref_primary_10_1007_s40819_024_01769_7 crossref_primary_10_1007_s11082_023_05824_3 crossref_primary_10_2478_ijmce_2025_0015 crossref_primary_10_2478_ama_2024_0064 crossref_primary_10_2478_ijmce_2023_0002 |
Cites_doi | 10.1016/j.amc.2019.03.016 10.1016/j.physa.2020.125114 10.1088/0031-8949/81/03/035005 10.1007/978-1-4757-4307-4 10.1016/j.chaos.2004.02.025 10.31801/cfsuasmas.451619 10.1088/0253-6102/40/2/137 10.1016/j.camwa.2013.11.001 10.1016/j.chaos.2006.03.020 10.1016/j.physleta.2007.05.039 10.1016/S0898-1221(02)00268-7 10.1007/BF02727634 10.1007/978-3-662-00922-2 10.1142/S0217979220502835 10.1016/j.amc.2007.01.042 10.1016/S0377-0427(03)00645-9 10.1080/17455030.2015.1062577 10.4236/am.2014.58112 10.1080/17455030.2019.1574410 10.17654/DE019030213 10.1088/0253-6102/66/4/385 10.1140/epjp/i2019-12375-x 10.1016/j.rinp.2021.105030 10.1016/j.rinp.2020.103661 10.1016/j.camwa.2019.03.002 10.1016/j.aml.2015.05.015 10.1063/1.5043848 10.1016/j.cnsns.2020.105447 10.1002/mma.8259 10.1088/0253-6102/48/4/019 10.2298/TSCI200331247B 10.1016/j.camwa.2006.12.041 10.1007/s11071-021-06672-0 10.1088/0031-8949/54/6/003 10.1016/j.chaos.2007.01.063 10.1137/1.9781611970883 10.1016/j.asej.2013.07.007 10.1088/1402-4896/aaded5 10.1016/j.physleta.2003.12.014 10.1016/j.ijleo.2022.169617 10.11121/ijocta.01.2021.00786 10.1016/0375-9601(94)00926-G 10.20852/ntmsci.2018.274 10.1016/j.jksus.2014.09.001 10.1016/j.chaos.2021.111692 10.1016/j.cjph.2021.07.025 10.1119/1.17120 10.1016/j.ecocom.2021.100966 10.1080/16583655.2022.2160290 10.1088/1009-1963/12/10/301 10.1017/CBO9780511623998 |
ContentType | Journal Article |
Copyright | 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 2023 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1080/00207160.2023.2186775 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1029-0265 |
EndPage | 1355 |
ExternalDocumentID | 10_1080_00207160_2023_2186775 2186775 |
Genre | Research Article |
GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACNCT ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AI. AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EDO EMK EPL EST ESX E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z MK~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS TWF UPT UT5 UU3 VH1 WH7 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 8FD JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c338t-81acd2eeab8da240ba89746dbefad598031531123d18c5d46ec63ef3f0f365de3 |
ISSN | 0020-7160 |
IngestDate | Wed Aug 13 03:54:16 EDT 2025 Thu Apr 24 22:53:51 EDT 2025 Tue Jul 01 01:04:50 EDT 2025 Wed Dec 25 09:04:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-81acd2eeab8da240ba89746dbefad598031531123d18c5d46ec63ef3f0f365de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4686-1263 0000-0003-4085-3625 0000-0001-7499-1896 0000-0002-9328-8941 |
PQID | 2810827849 |
PQPubID | 52924 |
PageCount | 16 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_00207160_2023_2186775 crossref_primary_10_1080_00207160_2023_2186775 proquest_journals_2810827849 crossref_citationtrail_10_1080_00207160_2023_2186775 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-03 |
PublicationDateYYYYMMDD | 2023-06-03 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | International journal of computer mathematics |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 CIT0032 CIT0031 CIT0034 CIT0033 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 Darvishi M.T. (CIT0012) 2012; 6 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 CIT0003 CIT0047 CIT0002 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0052 CIT0051 CIT0010 Uddin S. (CIT0046) 2014; 1 CIT0054 CIT0053 CIT0056 CIT0011 CIT0055 Zhang S. (CIT0057) 2007; 190 Kaur L. (CIT0021) 2022; 74 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0020 CIT0023 CIT0022 Li Y.-S. (CIT0025) 1993; 26 Wei L. (CIT0050) 2021; 11 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 |
References_xml | – ident: CIT0030 doi: 10.1016/j.amc.2019.03.016 – ident: CIT0040 doi: 10.1016/j.physa.2020.125114 – ident: CIT0047 doi: 10.1088/0031-8949/81/03/035005 – ident: CIT0009 doi: 10.1007/978-1-4757-4307-4 – ident: CIT0014 doi: 10.1016/j.chaos.2004.02.025 – ident: CIT0043 doi: 10.31801/cfsuasmas.451619 – ident: CIT0054 doi: 10.1088/0253-6102/40/2/137 – ident: CIT0039 doi: 10.1016/j.camwa.2013.11.001 – ident: CIT0016 doi: 10.1016/j.chaos.2006.03.020 – ident: CIT0001 doi: 10.1016/j.physleta.2007.05.039 – ident: CIT0053 doi: 10.1016/S0898-1221(02)00268-7 – ident: CIT0010 doi: 10.1007/BF02727634 – ident: CIT0032 doi: 10.1007/978-3-662-00922-2 – ident: CIT0004 doi: 10.1142/S0217979220502835 – volume: 190 start-page: 510 year: 2007 ident: CIT0057 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2007.01.042 – ident: CIT0028 doi: 10.1016/S0377-0427(03)00645-9 – ident: CIT0006 doi: 10.1080/17455030.2015.1062577 – volume: 11 start-page: 2151 year: 2021 ident: CIT0050 publication-title: J. Appl. Anal. Comput. – ident: CIT0037 – volume: 6 start-page: 13 year: 2012 ident: CIT0012 publication-title: Int. J. Comput. Math. Sci. – ident: CIT0033 doi: 10.4236/am.2014.58112 – ident: CIT0020 doi: 10.1080/17455030.2019.1574410 – ident: CIT0044 doi: 10.17654/DE019030213 – ident: CIT0048 doi: 10.1088/0253-6102/66/4/385 – ident: CIT0038 doi: 10.1140/epjp/i2019-12375-x – ident: CIT0018 doi: 10.1016/j.rinp.2021.105030 – ident: CIT0036 doi: 10.1016/j.rinp.2020.103661 – ident: CIT0026 doi: 10.1016/j.camwa.2019.03.002 – ident: CIT0052 doi: 10.1016/j.aml.2015.05.015 – volume: 74 start-page: 108 year: 2022 ident: CIT0021 publication-title: Rom. Rep. Phys. – volume: 26 start-page: 7487 year: 1993 ident: CIT0025 publication-title: J. Phys. A Math. Theor. – volume: 1 start-page: 1 year: 2014 ident: CIT0046 publication-title: Front. Math. Its Appl. – ident: CIT0023 doi: 10.1063/1.5043848 – ident: CIT0017 doi: 10.1016/j.cnsns.2020.105447 – ident: CIT0007 doi: 10.1002/mma.8259 – ident: CIT0041 doi: 10.1088/0253-6102/48/4/019 – ident: CIT0008 doi: 10.2298/TSCI200331247B – ident: CIT0051 doi: 10.1016/j.camwa.2006.12.041 – ident: CIT0013 doi: 10.1007/s11071-021-06672-0 – ident: CIT0029 doi: 10.1088/0031-8949/54/6/003 – ident: CIT0011 doi: 10.1016/j.chaos.2007.01.063 – ident: CIT0003 doi: 10.1137/1.9781611970883 – ident: CIT0024 doi: 10.1016/j.asej.2013.07.007 – ident: CIT0049 doi: 10.1088/1402-4896/aaded5 – ident: CIT0055 doi: 10.1016/j.physleta.2003.12.014 – ident: CIT0022 doi: 10.1016/j.ijleo.2022.169617 – ident: CIT0005 doi: 10.11121/ijocta.01.2021.00786 – ident: CIT0034 doi: 10.1016/0375-9601(94)00926-G – ident: CIT0042 doi: 10.20852/ntmsci.2018.274 – ident: CIT0015 doi: 10.1016/j.jksus.2014.09.001 – ident: CIT0056 doi: 10.1016/j.chaos.2021.111692 – ident: CIT0035 doi: 10.1016/j.cjph.2021.07.025 – ident: CIT0027 doi: 10.1119/1.17120 – ident: CIT0045 doi: 10.1016/j.ecocom.2021.100966 – ident: CIT0031 doi: 10.1080/16583655.2022.2160290 – ident: CIT0019 doi: 10.1088/1009-1963/12/10/301 – ident: CIT0002 doi: 10.1017/CBO9780511623998 |
SSID | ssj0008976 |
Score | 2.3966393 |
Snippet | In this study, the nonlinear (2+1)-dimensional generalized breaking soliton system has been studied by introducing an appropriate travelling wave... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1340 |
SubjectTerms | 34-04 65-04 65-06 Dynamic characteristics Exponential functions Generalized breaking soliton system Graphs Hyperbolic functions modified exponential function method Nonlinear systems Propagation Riemann wave propagation Riemann waves Software Solitary waves soliton solutions Traveling waves travelling wave transformation Wave propagation |
Title | Interaction characteristics of the Riemann wave propagation in the (2+1)-dimensional generalized breaking soliton system |
URI | https://www.tandfonline.com/doi/abs/10.1080/00207160.2023.2186775 https://www.proquest.com/docview/2810827849 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9sILd8RgID-ABKpSJXauj-WmClQeUCcmXiLHdrRqS4bWRpv2o_kNnBM7idtNjPEStWntpjlfjo-PP3-HkNc8gyi9ZNKToUxhgiJir2BSeIWM40SWOkkj3Cg8_xbPDsIvh9HhaPTbYS0162IiL6_dV_I_VoVzYFfcJXsLy_adwgl4DfaFI1gYjv9k4zadZ4t9yy3lZbv2_32pK1HX43OsMgTeEvyHcPmNEGCyN-w9-LPMU6j0b1Q6sLIyZquWlxihQmB53OYdkCwHbY38sxvXbiYWHTkKaatGjKteH3Y1GPlIVAZiX-Fe4VJBoZoTcH_VgNmFqM-QO6Ja2gG8Kwc-8Ry-2ZjEuKrBUU2hoRpysysIfpsWpzMhl-O5Pqrsdm-b5mC8pWNx13XDPBcmd2YRRxtvjdwdmERGG-7c9x3cus454KHvDPQBNwLBVwaRjnXJfPy9CV7NhLXCf9EwanZMga3BtKc4Br32qukmx25y280dssuSBGkFu9PZx58_-tghzdpyiP2f7facoRr8ddezEU1taO1eiS3agGnxgNyzMx06NbB9SEa6fkTud1VEqB1UHpMLB8V0C8X0tKQAG2pRTBHF1EExXdbt52_ZOHjn4pc6-KUdfqnFLzX4fUIOPn9afJh5th6IJzlP114aCKmY1qJIlYBItBBwu8JYFboUKspSLFjCYf7AVZDKSIWxljHXJS_9kseR0vwp2alPa_2M0ACMzwrOJYyxYeJLodNSZkwn2HURsz0Sdvc1l1YsH2u2nOR_tesemfTNfhm1mJsaZK7R8nWbpitNTZ2c39B2v7Nwbp_rVc5SaIBkguz5ba_lBbk7PHj7ZGd91uiXEHGvi1cWpn8A_ejSEA |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BTxUxEG4UD3oRRAgIaA8cMGQ3b7e7fd0jMZKnwjsQSLg17bQlL8piZFHCr2em3X3haQwHzs003XY6_dqd-T7GdkWDKD2UkEEFCi8oRma2BJNZkHIMwY9VTYXCx1M5Oau-ntfnD2phKK2S7tAhEUXEWE2bmx6jh5Q4KuHGk1GOctL-zsvIyVY_Zy9qxO7k5WI0nUdj1USBOTLJyGao4vlfNwvn0wJ76T_ROh5Bh8sMhsGnzJPv-U1nc7j7i9fxaV-3wl73CJUfJJd6w575dpUtD-oPvA8Gb9ltfExMdREcFnmf-VXgiCz5ycxfmrblf8xvz3HcGL2iJ_BZG9v3yv3iY-ZIYSCxg_CLRIM9u_OO4209amXxa0rSQ6tEO73Gzg4_n36aZL2OQwZ4Ae4yVRhwpffGKmcQQViDi1JJZ30wrm4UCU0IxH3CFQpqV0kPUvggwigIWTsv1tlSe9X6DcaLAgGjFQIwNlbjERivAjSlH1PXVpabrBpWT0NPck5aGz90MedCTbOraXZ1P7ubLJ-b_UwsH48ZNA9dQ3fxeSUkLRQtHrHdHvxI9wHjWpcKDegncPPuCV1_YC8np8dH-ujL9NsWe0VNMa1NbLOl7teN30EA1dn3cYfcA3UIDXI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA4uIF7cxd0cPCjSMm3aTHoUdXAdRBS8hawyqFWcuuCv9yVpB0cRD57DC2ny8vIlfe_7ENoiBaB0m6pIZYrBBUXQSKZKRFJR2lbWtFnuCoXPu_ToOju5yZtswn6dVunu0DYQRfhY7Tb3k7ZNRpyr4IaDkbZiJ_0dp56SLR9F4xTgicvqI63uIBizwuvLOZPI2TRFPL91M3Q8DZGX_gjW_gTqTCPZjD0kntzFL5WM1cc3Wsd_fdwMmqrxKd4LDjWLRkw5h6Yb7Qdch4J59O6fEkNVBFbDrM_40WLAlfiyZx5EWeI38WowDBtil_cD3Ct9-3a6m-xE2ukLBG4QfBtIsHsfRmO4q3ulLNx3KXpgFUinF9B15_Bq_yiqVRwiBdffKmKJUDo1RkimBeAHKWBNMqqlsULnBXMyEwRQH9EJU7nOqFGUGEtsyxKaa0MW0Vj5WJolhJME4KIkREFkzNotJQyzqkhN23UtabqMsmbxuKopzp3Sxj1PBkyoYXa5m11ez-4yigdmT4Hj4y-D4qtn8Mo_rtighMLJH7ZrjRvxOlz0ecrAwP0CLlb-0fUmmrg46PCz4-7pKpp0LT6njayhser5xawDeqrkht8fnxElDBY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction+characteristics+of+the+Riemann+wave+propagation+in+the+%282%2B1%29-dimensional+generalized+breaking+soliton+system&rft.jtitle=International+journal+of+computer+mathematics&rft.au=Muhamad%2C+Kalsum+Abdulrahman&rft.au=Tanriverdi%2C+Tanfer&rft.au=Mahmud%2C+Adnan+Ahmad&rft.au=Baskonus%2C+Haci+Mehmet&rft.date=2023-06-03&rft.issn=0020-7160&rft.eissn=1029-0265&rft.volume=100&rft.issue=6&rft.spage=1340&rft.epage=1355&rft_id=info:doi/10.1080%2F00207160.2023.2186775&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00207160_2023_2186775 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon |