A new filled function for global minimization and system of nonlinear equations

Filled function methods have been considered as an effective approach for solving global optimization problems. However, most filled functions have the drawbacks of discontinuity, non-differentiability, and they could be sensitive to parameters and have exponential or logarithmic terms which may red...

Full description

Saved in:
Bibliographic Details
Published inOptimization Vol. 71; no. 14; pp. 4083 - 4106
Main Author Ahmed, A. I.
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 09.12.2022
Taylor & Francis LLC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Filled function methods have been considered as an effective approach for solving global optimization problems. However, most filled functions have the drawbacks of discontinuity, non-differentiability, and they could be sensitive to parameters and have exponential or logarithmic terms which may reduce their efficiency. In this paper, we propose a continuously differentiable filled function without parameters and exponential/logarithmic terms to overcome these problems. The continuous differentiability of the presented filled function makes its minimization an easy process and allows using efficient indirect local search methods. The proposed filled function has no parameters to adjust. Adjustment of the parameters is not an easy task, since the parameters may take different values for different problems. Moreover, the new filled function is numerically stable, since there are no exponential or logarithmic terms. Theoretical features of the considered filled function are investigated and a new algorithm for unconstrained global optimization problems is designed. The numerical results show that this method can successfully be used to solve global optimization problems, with a large number of variables. Furthermore, we extend the proposed filled function method to solve systems of nonlinear equations. Finally, some test problems for systems of nonlinear equations are reported, with satisfactory numerical results.
AbstractList Filled function methods have been considered as an effective approach for solving global optimization problems. However, most filled functions have the drawbacks of discontinuity, non-differentiability, and they could be sensitive to parameters and have exponential or logarithmic terms which may reduce their efficiency. In this paper, we propose a continuously differentiable filled function without parameters and exponential/logarithmic terms to overcome these problems. The continuous differentiability of the presented filled function makes its minimization an easy process and allows using efficient indirect local search methods. The proposed filled function has no parameters to adjust. Adjustment of the parameters is not an easy task, since the parameters may take different values for different problems. Moreover, the new filled function is numerically stable, since there are no exponential or logarithmic terms. Theoretical features of the considered filled function are investigated and a new algorithm for unconstrained global optimization problems is designed. The numerical results show that this method can successfully be used to solve global optimization problems, with a large number of variables. Furthermore, we extend the proposed filled function method to solve systems of nonlinear equations. Finally, some test problems for systems of nonlinear equations are reported, with satisfactory numerical results.
Author Ahmed, A. I.
Author_xml – sequence: 1
  givenname: A. I.
  orcidid: 0000-0003-0888-7198
  surname: Ahmed
  fullname: Ahmed, A. I.
  email: aiahmed@azhar.edu.eg
  organization: Al-Azhar University
BookMark eNqFkE1rAjEQhkOxULX9CYVAz2vzsZvd0EtF-gWCF-8hu0lKJJtosiL213dX7aWH9jTD8LwzyTMBIx-8BuAeoxlGFXpEhFLMaT4jiOBZ3xWcsiswxojwLOd5MQLjgckG6AZMUtqgnmQkH4PVHHp9gMY6pxU0e990NnhoQoSfLtTSwdZ629oveZpLr2A6pk63MBjYv8NZr2WEerc_AekWXBvpkr671ClYv76sF-_ZcvX2sZgvs4bSqssqhCgpMVF1XVcNJZXCkhRc8kZiRTAhEhcyp5yWzJQVU0QxxUgpecGNYQWdgofz2m0Mu71OndiEffT9RUHKHGNSsV7CFBRnqokhpaiN2EbbyngUGIlBnfhRJwZ14qKuzz39yjW2O_2vi9K6f9PP57T1vcZWHkJ0SnTy6EI0UfrGJkH_XvENWwSIhA
CitedBy_id crossref_primary_10_1016_j_cam_2024_115955
crossref_primary_10_1080_0305215X_2024_2345744
crossref_primary_10_1080_02331934_2024_2390118
crossref_primary_10_2478_auom_2023_0039
crossref_primary_10_1007_s00707_023_03630_2
crossref_primary_10_1080_02331934_2024_2367642
crossref_primary_10_1016_j_cam_2024_116198
crossref_primary_10_1080_02331934_2022_2069023
crossref_primary_10_1080_02331934_2024_2389251
Cites_doi 10.1007/s10957-015-0781-1
10.1016/j.amc.2007.04.011
10.1016/j.eswa.2012.01.131
10.1007/s00607-011-0146-z
10.1016/j.cam.2008.10.062
10.1080/02331934.2018.1487423
10.1109/TEVC.2004.826076
10.1016/j.amc.2009.10.057
10.1016/S0305-0548(02)00154-5
10.1016/j.amc.2011.09.022
10.1126/science.220.4598.671
10.1007/s10957-008-9405-3
10.1016/j.amc.2012.10.035
10.1007/s40314-016-0407-8
10.3233/JIFS-17899
10.1016/j.camwa.2006.12.081
10.1109/ICDSP.2015.7251329
10.1016/j.apm.2015.01.059
10.1080/02331934.2011.564621
10.1016/j.neunet.2008.09.008
10.1016/j.amc.2009.01.007
10.1109/TSMCA.2007.909554
10.1016/j.ejor.2007.05.028
10.1016/j.amc.2005.05.025
10.1007/BF01585737
10.1016/j.amc.2005.04.046
10.1080/00207160.2017.1283021
10.1007/s10589-006-6444-2
10.17654/AM095030195
10.1007/BF00939433
10.1023/A:1020243720794
10.1023/B:JOGO.0000006653.60256.f6
10.1137/S0036142901397423
10.1023/A:1008330632677
10.1007/s10957-013-0515-1
10.1090/S0025-5718-1986-0815839-9
10.1016/j.cam.2008.07.001
10.1016/j.cam.2006.04.038
10.1109/5326.885111
10.1007/s11075-013-9746-3
10.1007/s11075-015-0013-7
10.1007/BF00940781
10.1109/21.44040
10.3934/jimo.2018035
10.1080/00207160.2020.1731484
10.1023/A:1008202821328
10.1016/j.mcm.2007.08.007
10.1007/BF01580583
10.1016/j.amc.2005.05.009
10.1016/j.amc.2015.08.091
10.1016/j.camwa.2011.05.006
10.1016/j.cam.2010.09.010
10.1016/j.amc.2007.02.074
10.1016/j.amc.2006.11.183
10.1016/j.amc.2015.06.090
ContentType Journal Article
Copyright 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
2021 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
– notice: 2021 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/02331934.2021.1935936
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4945
EndPage 4106
ExternalDocumentID 10_1080_02331934_2021_1935936
1935936
Genre Research Article
GroupedDBID .7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-80032712dbbb8c328d1a259a9ca1d2122a15a439376f786d2d6d627a959ff653
ISSN 0233-1934
IngestDate Wed Aug 13 05:55:12 EDT 2025
Tue Jul 01 03:52:13 EDT 2025
Thu Apr 24 23:02:00 EDT 2025
Wed Dec 25 09:06:49 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-80032712dbbb8c328d1a259a9ca1d2122a15a439376f786d2d6d627a959ff653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0888-7198
PQID 2741128659
PQPubID 27961
PageCount 24
ParticipantIDs informaworld_taylorfrancis_310_1080_02331934_2021_1935936
proquest_journals_2741128659
crossref_citationtrail_10_1080_02331934_2021_1935936
crossref_primary_10_1080_02331934_2021_1935936
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-09
PublicationDateYYYYMMDD 2022-12-09
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-09
  day: 09
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Optimization
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References CIT0030
CIT0031
Sahiner A (CIT0059) 2019; 15
CIT0034
CIT0033
El-Gindy TM (CIT0001) 2013; 11
CIT0036
Zhu WX. (CIT0044) 2006; 174
CIT0035
Shang Y-L (CIT0029) 2007; 191
CIT0038
CIT0037
CIT0039
Wu ZY (CIT0058) 2007; 189
CIT0041
CIT0040
CIT0043
CIT0042
CIT0045
CIT0003
CIT0047
CIT0002
CIT0046
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0050
CIT0052
CIT0051
CIT0010
CIT0054
CIT0053
CIT0012
Holland JH. (CIT0008) 1992; 4
CIT0011
Ma SZ (CIT0028) 2010; 215
Lin H (CIT0020) 2011; 218
Wang W (CIT0032) 2007; 194
CIT0014
Gao Y (CIT0015) 2015; 268
CIT0057
CIT0016
CIT0018
CIT0017
CIT0019
CIT0021
CIT0023
CIT0022
Lin Y (CIT0056) 2009; 210
Ullah MZ (CIT0055) 2016; 269
CIT0025
CIT0024
CIT0027
El-Gindy TM (CIT0013) 2016; 273
CIT0026
Salim MS (CIT0005) 2021; 12
References_xml – ident: CIT0051
  doi: 10.1007/s10957-015-0781-1
– volume: 194
  start-page: 54
  year: 2007
  ident: CIT0032
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2007.04.011
– ident: CIT0010
  doi: 10.1016/j.eswa.2012.01.131
– ident: CIT0050
  doi: 10.1007/s00607-011-0146-z
– ident: CIT0049
  doi: 10.1016/j.cam.2008.10.062
– ident: CIT0003
  doi: 10.1080/02331934.2018.1487423
– ident: CIT0012
  doi: 10.1109/TEVC.2004.826076
– volume: 215
  start-page: 3610
  year: 2010
  ident: CIT0028
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2009.10.057
– ident: CIT0026
  doi: 10.1016/S0305-0548(02)00154-5
– volume: 218
  start-page: 3776
  year: 2011
  ident: CIT0020
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2011.09.022
– ident: CIT0007
  doi: 10.1126/science.220.4598.671
– ident: CIT0039
  doi: 10.1007/s10957-008-9405-3
– ident: CIT0021
  doi: 10.1016/j.amc.2012.10.035
– ident: CIT0022
  doi: 10.1007/s40314-016-0407-8
– volume: 269
  start-page: 972
  year: 2016
  ident: CIT0055
  publication-title: J Comput Anal Appl
– ident: CIT0004
  doi: 10.3233/JIFS-17899
– ident: CIT0047
  doi: 10.1016/j.camwa.2006.12.081
– ident: CIT0036
  doi: 10.1109/ICDSP.2015.7251329
– ident: CIT0041
  doi: 10.1016/j.apm.2015.01.059
– ident: CIT0048
  doi: 10.1080/02331934.2011.564621
– ident: CIT0006
  doi: 10.1016/j.neunet.2008.09.008
– volume: 210
  start-page: 411
  year: 2009
  ident: CIT0056
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2009.01.007
– ident: CIT0025
  doi: 10.1109/TSMCA.2007.909554
– ident: CIT0030
  doi: 10.1016/j.ejor.2007.05.028
– volume: 174
  start-page: 921
  year: 2006
  ident: CIT0044
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2005.05.025
– ident: CIT0016
  doi: 10.1007/BF01585737
– ident: CIT0037
  doi: 10.1016/j.amc.2005.04.046
– volume: 4
  start-page: 14
  year: 1992
  ident: CIT0008
  publication-title: Sci Am
– ident: CIT0023
  doi: 10.1080/00207160.2017.1283021
– ident: CIT0052
  doi: 10.1007/s10589-006-6444-2
– ident: CIT0002
  doi: 10.17654/AM095030195
– ident: CIT0017
  doi: 10.1007/BF00939433
– ident: CIT0027
  doi: 10.1023/A:1020243720794
– ident: CIT0038
  doi: 10.1023/B:JOGO.0000006653.60256.f6
– ident: CIT0053
  doi: 10.1137/S0036142901397423
– ident: CIT0024
  doi: 10.1023/A:1008330632677
– ident: CIT0035
  doi: 10.1007/s10957-013-0515-1
– ident: CIT0046
  doi: 10.1090/S0025-5718-1986-0815839-9
– ident: CIT0031
  doi: 10.1016/j.cam.2008.07.001
– ident: CIT0018
  doi: 10.1016/j.cam.2006.04.038
– ident: CIT0009
  doi: 10.1109/5326.885111
– ident: CIT0019
  doi: 10.1007/s11075-013-9746-3
– ident: CIT0054
  doi: 10.1007/s11075-015-0013-7
– ident: CIT0040
  doi: 10.1007/BF00940781
– ident: CIT0042
  doi: 10.1109/21.44040
– volume: 15
  start-page: 113
  year: 2019
  ident: CIT0059
  publication-title: J Ind Manag Optim
  doi: 10.3934/jimo.2018035
– ident: CIT0045
  doi: 10.1080/00207160.2020.1731484
– ident: CIT0011
  doi: 10.1023/A:1008202821328
– ident: CIT0034
  doi: 10.1016/j.mcm.2007.08.007
– ident: CIT0043
  doi: 10.1007/BF01580583
– volume: 12
  start-page: 1123
  year: 2021
  ident: CIT0005
  publication-title: Int J Nonlinear Anal Appl
– ident: CIT0033
  doi: 10.1016/j.amc.2005.05.009
– volume: 273
  start-page: 1246
  year: 2016
  ident: CIT0013
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2015.08.091
– volume: 11
  start-page: 136
  year: 2013
  ident: CIT0001
  publication-title: J Concr Appl Math
– ident: CIT0014
  doi: 10.1016/j.camwa.2011.05.006
– ident: CIT0057
  doi: 10.1016/j.cam.2010.09.010
– volume: 191
  start-page: 176
  year: 2007
  ident: CIT0029
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2007.02.074
– volume: 189
  start-page: 1196
  year: 2007
  ident: CIT0058
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2006.11.183
– volume: 268
  start-page: 685
  year: 2015
  ident: CIT0015
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2015.06.090
SSID ssj0021624
Score 2.3769825
Snippet Filled function methods have been considered as an effective approach for solving global optimization problems. However, most filled functions have the...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4083
SubjectTerms Algorithms
filled function
global minimizer
Global optimization
Logarithms
Nonlinear equations
Nonlinear systems
Optimization
parameter free
Parameter sensitivity
system of nonlinear equations
Unconstrained global optimization
Title A new filled function for global minimization and system of nonlinear equations
URI https://www.tandfonline.com/doi/abs/10.1080/02331934.2021.1935936
https://www.proquest.com/docview/2741128659
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4ED4ikKBfnADWUVP-LExwharVDpXlKx4mLZji0OLY-SXvj1jGPHm2pXFLhEUSLHWn_j8YzX830Ivalqw53UsmCMlwWHBRvmHPOFtZT2TlgpRkmWj2didc4_bKrNVjhxrC4ZzNL-2ltX8j-owjPANVTJ_gOy-aPwAO4BX7gCwnD9K4zbIAgeqJUuIGwMK1Q-OJh4PgJxyGWqtBz_JojEzePpjciRoa_euh_Xs227FKiuwZVMLbNRfLmMW6Nt2mtNuwV0FC4ptz6p2xHuyOLE0edQxgqI6WKO76JPDCdkuIysj5PTjLopk3HwmQvkZVSmScspJyOjwK6rTmcbocPQH2TqlCxJqBNme6ixz9bq5Pz0VHXHm-4uOqCQE9AFOmhX7z9_yvk1EaOGcf4NU8FWoFLf182NUOQGUe3OwjxGG91D9CClCbiNmD9Cd9zXx-j-jDzyCVq3GNDHEX08oY_h8ziij-foY0AfR_TxN48z-jij_xR1J8fdu1WR5DEKy1gzQGxRMloT2htjGsto0xMNyayWVpMeIhKqSaV5IDwUvm5ET3vRC1prWUnvRcWeoQV05p4j3BjihGHWU-cAL6I97WvDSuqb2jpeHyI-DZSyiTo-KJhcKDIxzKbxVWF8VRrfQ7TMzb5H7pTbGsg5CmoYrdVHQ1XslrZHE2QqTdGfKnAzkVB7LV_8-fVLdG87W47QYri6dq8g2hzM62RlvwECKXdV
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgHIADO6KsPnBNqe3EiY8IgcrScikSN8vrBSjQphe-Hk-coBaEOPABk3gZz_NY894gdJrlOnVCiYSxtJukAbDDmWM-MYZS67gRvGrJ0h_w3kN685g9znBhoKwScmgfhSKqWA2HGx6jm5K4s4AzwXMYPIlQ0iFALmV8ES1lgufQxYB1B19JF-FVY1swScCmYfH89pk5fJpTL_0RrSsIulpHphl8rDx56kxL3TEf33Qd_ze7DbRW31DxeXSpTbTgRltodUa3cBvdn-NwG8ceeIQWAzTC9uIwCRwFRjAolrzUFE8choKjYjR-9XgUR6XG2L1HnfHJDhpeXQ4vekndmSExIaUtA6x1Gc0JtVrrwjBaWKJCHqWEUcQGMKSKZCoFrT3u84JbarnlNFciE97zjO2iVviZ20O40MRxzYynzqUhPChPba5Zl_oiNy7N2yhttkOaWrUcmmc8S9KIm9bLJWG5ZL1cbdT5MnuLsh1_GYjZvZZl9V7iY3MTyf6wPWwcQ9YRYCJBFogA7Vfs_-PTJ2i5N-zfybvrwe0BWqHAvYBaGnGIWuV46o7CjajUx5XLfwKPAfp5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TgMxELUgSAgKbsQRwAXthtje9a7LCIg4A0WQ6CyfDRBCsjR8PZ71LuIQouADxufYz2PNe4PQYZbr1AklEsbSbpIGwA5njvnEGEqt40bwqiTL9YCf3aUX91mTTTit0yohhvZRKKK6q-Fwj61vMuKOAswEx2HwI0JJhwC3lPFZNMdBPBxYHN3BR8xFeFXXFkwSsGlIPL818wWevoiX_risKwTqLyPdjD0mnjx0XkvdMW_fZB3_NbkVtFS_T3EvOtQqmnGjNbT4SbVwHd30cHiLYw8sQosBGGFzcZgDjvIiGPRKnmqCJw4jwVEvGj97PIqDUhPsXqLK-HQDDfunw-OzpK7LkJgQ0JYB1LqM5oRarXVhGC0sUSGKUsIoYgMUUkUylYLSHvd5wS213HKaK5EJ73nGNlErdOa2EC40cVwz46lzabgclKc216xLfZEbl-bbKG12Q5pasxxKZzxK0kib1sslYblkvVzbqPNhNo6iHX8ZiM9bLcvqt8TH0iaS_WHbbvxC1ud_KkEUiADpV-z8o-kDNH970pdX54PLXbRAgXgBiTSijVrl5NXthedQqfcrh38Hbs35HQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+filled+function+for+global+minimization+and+system+of+nonlinear+equations&rft.jtitle=Optimization&rft.au=Ahmed%2C+A+I&rft.date=2022-12-09&rft.pub=Taylor+%26+Francis+LLC&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=71&rft.issue=14&rft.spage=4083&rft.epage=4106&rft_id=info:doi/10.1080%2F02331934.2021.1935936&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon