Newton-like methods and polynomiographic visualization of modified Thakur processes

The content of this paper is twofold. First, it aims to provide some new Newton-like methods for solving the root-finding problem in the complex plane. Moreover a convergence test for the resulted methods is phrased and proved. The pseudo-Newton method of Kalantari for finding the maximum modulus of...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer mathematics Vol. 98; no. 5; pp. 1049 - 1068
Main Authors Usurelu, Gabriela Ioana, Bejenaru, Andreea, Postolache, Mihai
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 04.05.2021
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0020-7160
1029-0265
DOI10.1080/00207160.2020.1802017

Cover

Abstract The content of this paper is twofold. First, it aims to provide some new Newton-like methods for solving the root-finding problem in the complex plane. Moreover a convergence test for the resulted methods is phrased and proved. The pseudo-Newton method of Kalantari for finding the maximum modulus of complex polynomials arises as particular case of the newly proposed procedures. Secondly, a recently introduced Thakur iterative process is used in connection with the newly described methods. Its stability and data dependence is subject to analysis. Ultimately, an illustrative analysis regarding some modified Thakur iteration procedures, is obtained via polynomiographic techniques.
AbstractList The content of this paper is twofold. First, it aims to provide some new Newton-like methods for solving the root-finding problem in the complex plane. Moreover a convergence test for the resulted methods is phrased and proved. The pseudo-Newton method of Kalantari for finding the maximum modulus of complex polynomials arises as particular case of the newly proposed procedures. Secondly, a recently introduced Thakur iterative process is used in connection with the newly described methods. Its stability and data dependence is subject to analysis. Ultimately, an illustrative analysis regarding some modified Thakur iteration procedures, is obtained via polynomiographic techniques.
Author Postolache, Mihai
Usurelu, Gabriela Ioana
Bejenaru, Andreea
Author_xml – sequence: 1
  givenname: Gabriela Ioana
  orcidid: 0000-0002-0630-3980
  surname: Usurelu
  fullname: Usurelu, Gabriela Ioana
  organization: Department of Mathematics and Informatics, University Politehnica of Bucharest
– sequence: 2
  givenname: Andreea
  surname: Bejenaru
  fullname: Bejenaru, Andreea
  organization: Department of Mathematics and Informatics, University Politehnica of Bucharest
– sequence: 3
  givenname: Mihai
  surname: Postolache
  fullname: Postolache, Mihai
  email: mihai@mathem.pub.ro, emscolar@yahoo.com
  organization: Romanian Academy, Gh. Mihoc−C. Iacob Institute of Mathematical Statistics and Applied Mathematics
BookMark eNqFkEtPwzAQhC1UJNrCT0CKxDllnZcdcQFVvKQKDvRuuX5Qt4kd7ISq_HoSChcOcNndwzcz2pmgkXVWIXSOYYaBwiVAAgQXMEv6Y4ZpPzE5QmMMSRlDUuQjNB6YeIBO0CSEDQDQkhRj9PKkdq2zcWW2KqpVu3YyRNzKqHHV3rrauFfPm7UR0bsJHa_MB2-Ns5HTUe2k0UbJaLnm285HjXdChaDCKTrWvArq7HtP0fLudjl_iBfP94_zm0Us0pS2MdFlRmBVJnlSlnrFOU0UB5BYF0RQlWGtuaZEyhw08JKkEkSmUkoLrQQk6RRdHGz74LdOhZZtXOdtn8h6S1rkpMBZT10dKOFdCF5pJkz79UPruakYBjaUyH5KZEOJ7LvEXp3_Ujfe1Nzv_9VdH3TGaudrvnO-kqzl-8p57bkVJrD0b4tPRiKLlQ
CitedBy_id crossref_primary_10_1007_s12215_021_00653_3
crossref_primary_10_1007_s41478_022_00485_z
crossref_primary_10_3390_axioms13120850
crossref_primary_10_1016_j_chaos_2022_112540
crossref_primary_10_3390_fractalfract6120749
crossref_primary_10_3390_math9192510
crossref_primary_10_3934_math_2023041
crossref_primary_10_3390_sym13050884
crossref_primary_10_1007_s40314_024_02676_9
crossref_primary_10_3934_math_2022611
crossref_primary_10_1007_s11784_025_01167_6
crossref_primary_10_3390_sym12101676
Cites_doi 10.1016/j.cam.2010.12.022
10.1137/S0036142997331335
10.4236/ajcm.2012.24048
10.1186/1029-242X-2014-328
10.1080/00029890.1995.12004594
10.2298/FIL1610711T
10.1155/2013/560258
10.1016/j.jmaa.2005.03.002
10.1090/S0002-9939-1953-0054846-3
10.1007/978-1-4612-1588-2
10.1090/S0002-9939-1991-1086345-8
10.1137/1037125
10.1006/jmaa.1995.1335
10.22436/jnsa.009.05.53
10.1090/S0002-9939-1974-0336469-5
10.1186/1687-1812-2013-69
10.1006/jmaa.2000.7042
10.1002/zamm.19670470202
10.1155/2008/242916
ContentType Journal Article
Copyright 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
2020 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
– notice: 2020 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00207160.2020.1802017
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1029-0265
EndPage 1068
ExternalDocumentID 10_1080_00207160_2020_1802017
1802017
Genre Research Article
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACNCT
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AI.
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MK~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
TWF
UPT
UT5
UU3
VH1
WH7
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-7f9470b925299fbaa82ea00d1f67c8e41ffaf87dd50f0a973d0c4e3886fec023
ISSN 0020-7160
IngestDate Wed Aug 13 05:01:01 EDT 2025
Thu Apr 24 22:56:45 EDT 2025
Tue Jul 01 01:04:49 EDT 2025
Wed Dec 25 09:08:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-7f9470b925299fbaa82ea00d1f67c8e41ffaf87dd50f0a973d0c4e3886fec023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0630-3980
PQID 2528657614
PQPubID 52924
PageCount 20
ParticipantIDs informaworld_taylorfrancis_310_1080_00207160_2020_1802017
crossref_citationtrail_10_1080_00207160_2020_1802017
crossref_primary_10_1080_00207160_2020_1802017
proquest_journals_2528657614
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-04
PublicationDateYYYYMMDD 2021-05-04
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-04
  day: 04
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of computer mathematics
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Kalantari B (CIT0012) 2009
CIT0030
CIT0031
CIT0011
CIT0013
Householder A (CIT0010) 1970
CIT0016
Gdawiec K (CIT0007) 2015
CIT0015
CIT0018
CIT0017
CIT0019
Berinde V (CIT0003) 2007
CIT0021
Abbas M (CIT0001) 2014; 6
CIT0020
CIT0023
Agarwal R.P. (CIT0002) 2007; 8
CIT0022
Thakur B (CIT0028) 2016; 275
Karahan I (CIT0014) 2013; 3
CIT0025
CIT0024
CIT0027
CIT0004
Gdawiec K (CIT0005) 2017; 307
CIT0026
CIT0029
CIT0006
CIT0009
CIT0008
References_xml – volume: 275
  start-page: 147
  year: 2016
  ident: CIT0028
  publication-title: Appl. Math. Comput.
– ident: CIT0013
– ident: CIT0009
– ident: CIT0021
  doi: 10.1016/j.cam.2010.12.022
– ident: CIT0008
  doi: 10.1137/S0036142997331335
– ident: CIT0004
  doi: 10.4236/ajcm.2012.24048
– ident: CIT0006
– ident: CIT0027
  doi: 10.1186/1029-242X-2014-328
– volume: 8
  start-page: 61
  year: 2007
  ident: CIT0002
  publication-title: J. Nonlinear Convex Anal.
– ident: CIT0022
  doi: 10.1080/00029890.1995.12004594
– ident: CIT0029
  doi: 10.2298/FIL1610711T
– ident: CIT0015
  doi: 10.1155/2013/560258
– ident: CIT0026
  doi: 10.1016/j.jmaa.2005.03.002
– ident: CIT0018
  doi: 10.1090/S0002-9939-1953-0054846-3
– volume: 6
  start-page: 223
  issue: 6
  year: 2014
  ident: CIT0001
  publication-title: Math.  Vesn.
– ident: CIT0017
  doi: 10.1007/978-1-4612-1588-2
– ident: CIT0030
  doi: 10.1090/S0002-9939-1991-1086345-8
– volume: 307
  start-page: 17-30
  year: 2017
  ident: CIT0005
  publication-title: Appl. Math. Comput.
– volume-title: The Numerical Treatment of a Single Nonlinear Equation
  year: 1970
  ident: CIT0010
– volume-title: Polynomial Root-Finding and Polynomiography
  year: 2009
  ident: CIT0012
– ident: CIT0031
  doi: 10.1137/1037125
– ident: CIT0023
  doi: 10.1006/jmaa.1995.1335
– volume-title: Iterative Approximation of Fixed Points
  year: 2007
  ident: CIT0003
– volume: 3
  start-page: 510
  issue: 3
  year: 2013
  ident: CIT0014
  publication-title: Adv. Fixed Point Theory
– ident: CIT0024
  doi: 10.22436/jnsa.009.05.53
– ident: CIT0011
  doi: 10.1090/S0002-9939-1974-0336469-5
– ident: CIT0016
  doi: 10.1186/1687-1812-2013-69
– ident: CIT0019
  doi: 10.1006/jmaa.2000.7042
– ident: CIT0020
  doi: 10.1002/zamm.19670470202
– start-page: 797594
  year: 2015
  ident: CIT0007
  publication-title: Abstr. Appl. Anal.
– ident: CIT0025
  doi: 10.1155/2008/242916
SSID ssj0008976
Score 2.3891008
Snippet The content of this paper is twofold. First, it aims to provide some new Newton-like methods for solving the root-finding problem in the complex plane....
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1049
SubjectTerms Iterative process
Newton methods
Newton's method
Polynomials
polynomiography
root-finding algorithm
simulation
Stability analysis
Title Newton-like methods and polynomiographic visualization of modified Thakur processes
URI https://www.tandfonline.com/doi/abs/10.1080/00207160.2020.1802017
https://www.proquest.com/docview/2528657614
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKduHCN2JjIB-4VamcxEmc4wSbCprGgVRUXCIn8dO6ZW3VNUjsz-Av5jl23JRVDLhYkSMnrd8v78vvg5B3UcWrAs0GLwrj1OMRMK-QAXiF74cQM9AiXUdbnMfjCf80jaaDwc9e1FKzLkbl7c68kv-hKs4hXXWW7D9Q1j0UJ_Aa6YsjUhjHv6IxcijdAbieXSnbCtpUXF4u6h863diUo56Vw--zG508eev0w-tFNQOtfWYX8qpZDZcmX8AGFF5uwts33sJejYnStoIYXruir041n2iXY920_nZZoCFey-HHhZxvDH91qeZy1bhwSuVu6c7BaGojjkxE_4Wc9b0Sgd_GAG68ktmdBiG9KCWTRMA8NNXMkYwyvFdH4qBJGPWZcyp6IIx6nBbNyLQntdGyFTslQhdCGTD9uhH-VpwUOJqU0e0K3Oef89PJ2VmenUyzB2Q_SBJ99L9_PP7w7auT7yJtWxa6v9DlhemK7btes6XxbNXDvSP_W6Ume0IeWWuEHhtoPSUDNX9GHnedPqhl_M_Jlx7SqEUaRaTR35FGt5BGF0A7pFGDNOqQ9oJkpyfZ-7Fn23F4ZRiKtZdAyhNWpEGEKgwUUopAScYqH-KkFIr7ABJEUlURAybTJKxYyVUoRAyqRNXwJdmbL-bqFaH6dFdyqAAg4FFYFpAglwiZRKkdVhwOCO92LC9tqXrdMaXOfVfR1mx0rjc6txt9QEZu2dLUarlvQdonR75uUQsGsHl4z9qjjna5_QBvctwaEaMF7_PDP99-TR5uvpojsrdeNeoNarfr4q2F2y8Nc6PF
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5ReqCXQqFVoUD3wNXR2rt-HVEFCo_mQpC4rda7O2qUkESJU6n8ema8dsRDFQcuPliatT0ez2M93zeMnaROuQrLhiiVWRmpFERUmQSiKo4lZAIopFO3xSDr36rLu_TuCRaG2iqphoZAFNH4avq4aTO6a4kjCDdGxkxgeZfgqQKPcf6BfUwxdycrl2Kw9sZF2QyYI5GIZDoUz_-WeRafnrGXvvLWTQg632a2u_nQeTLureqqZx9e8Dq-7-l22Oc2Q-WnwaS-sA0_3WXb3fQH3jqDPXaD_pHmD09GY8_DIOolx6vy-Wzyj8DOgQx7ZPnf0ZKgmwHwyWfA72duBJj78uEfM14t-DygFfzyKxuenw1_9aN2RENksbatoxxKlYuqTFIMa1AZUyTeCOFiyHJbeBUDGChy51IBwpS5dMIqL4siA28xXfjGNqezqf_OOP3xMwocACQqlbaCHC1HCoOeXDoF-0x170Xblr6cpmhMdLxmOQ1606Q33eptn_XWYvPA3_GWQPn0peu62TiBMOVEyzdkDzsL0a0rWGpUTZFhVRerg3cs_ZNt9Ye_r_X1xeDqB_uUUGcNtV2qQ7ZZL1b-CFOjujpubP8RGMT-9w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZpAqWXJumDbvPSoVcvsiW_jiHJkhdLoFvoTUiWhprdrM3aW2h_fUaWvSQNJYdcfDCMbI_G87C_mY-Qb7ERRmPZEMQ8yQMRAwu0iiDQYcghYeBCukNbTJPLH-L6ZzygCZseVulqaPCDIjpf7V7u2sCAiHMd3BgYE4bVXYSnMjyG6Ruyk2B64lB9nE03zjjLO345JxI4maGJ53_LPAlPT4aXPnPWXQSa7BI93LsHnszH61aPi7__jHV81cPtkfd9fkpPvUHtky27_EB2B-4H2ruCj-Q7ekfHPrwo55Z6GuqG4kVpXS3-uFZnPwq7LOjvsnGNm77dk1ZA7ytTAma-dPZLzdcrWvteBdt8IrPJxezsMugJGoICK9s2SCEXKdN5FGNQA61UFlnFmAkhSYvMihBAQZYaEzNgKk-5YYWwPMsSsAUmC5_J9rJa2i-Euv99SoABgEjEvNCQot1wptCPcyNgRMSwLbLoh5c7Do2FDDczTr3epNOb7PU2IuONWO2nd7wkkD_ec9l2n03Ac5xI_oLs4WAgsncEjUTVZAnWdKH4-oqlT8jbu_OJvL2a3hyQd5GD1TjMpTgk2-1qbY8wL2r1cWf5D-r6_Zs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Newton-like+methods+and+polynomiographic+visualization+of+modified+Thakur+processes&rft.jtitle=International+journal+of+computer+mathematics&rft.au=Usurelu%2C+Gabriela+Ioana&rft.au=Bejenaru%2C+Andreea&rft.au=Postolache%2C+Mihai&rft.date=2021-05-04&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0020-7160&rft.eissn=1029-0265&rft.volume=98&rft.issue=5&rft.spage=1049&rft.epage=1068&rft_id=info:doi/10.1080%2F00207160.2020.1802017&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon