Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems
In this paper, we study a classical monotone and Lipschitz continuous variational inequality and fixed point problems defined on a level set of a convex function in the setting of Hilbert space. We propose a modified inertial viscosity subgradient extragradient algorithm with self-adaptive stepsize...
Saved in:
Published in | Optimization Vol. 70; no. 3; pp. 545 - 574 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
04.03.2021
Taylor & Francis LLC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we study a classical monotone and Lipschitz continuous variational inequality and fixed point problems defined on a level set of a convex function in the setting of Hilbert space. We propose a modified inertial viscosity subgradient extragradient algorithm with self-adaptive stepsize in which the two projections are made onto some half-spaces. Moreover, we obtain a strong convergence result for approximating a common solution of the variational inequality and fixed point of quasi-nonexpansive mappings under some mild conditions. The main advantages of our method are: the self adaptive step-size which avoids the need to know apriori the Lipschitz constant of the associated monotone operator, the two projections made onto some half-spaces, the strong convergence and the inertial technique employed which speeds up the rate of convergence of the algorithm. Numerical experiments are presented to demonstrate the efficiency of our algorithm in comparison with other existing algorithms in literature. |
---|---|
AbstractList | In this paper, we study a classical monotone and Lipschitz continuous variational inequality and fixed point problems defined on a level set of a convex function in the setting of Hilbert space. We propose a modified inertial viscosity subgradient extragradient algorithm with self-adaptive stepsize in which the two projections are made onto some half-spaces. Moreover, we obtain a strong convergence result for approximating a common solution of the variational inequality and fixed point of quasi-nonexpansive mappings under some mild conditions. The main advantages of our method are: the self adaptive step-size which avoids the need to know apriori the Lipschitz constant of the associated monotone operator, the two projections made onto some half-spaces, the strong convergence and the inertial technique employed which speeds up the rate of convergence of the algorithm. Numerical experiments are presented to demonstrate the efficiency of our algorithm in comparison with other existing algorithms in literature. |
Author | Alakoya, T. O. Mewomo, O. T. Jolaoso, L. O. |
Author_xml | – sequence: 1 givenname: T. O. surname: Alakoya fullname: Alakoya, T. O. organization: School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal – sequence: 2 givenname: L. O. surname: Jolaoso fullname: Jolaoso, L. O. organization: DSI-NRF Center of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) – sequence: 3 givenname: O. T. surname: Mewomo fullname: Mewomo, O. T. email: mewomoo@ukzn.ac.za organization: School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal |
BookMark | eNqFUc1u1DAQtlCR2BYeAckS5xTbcRJbXEAVBaQiLnC2nHjSTuXYqe3ddnkNXhgvWzhwgNPIo-_P852SkxADEPKSs3POFHvNRNty3cpzwURdDaLtVP-EbDgTupFadidkc8A0B9AzcprzLWOC90JuyI_P0eGM4CgGSAWtp3k7XifrEEKh8FCS_fNaoNxER--x3NAMfqbW2bXgDmgusGb8DnSOiebodxiu6RJDLDUq3dmEtmAMVb3a3G2tx7KnNjg640P1XiNW-TXF0cOSn5Ons_UZXjzOM_Lt8v3Xi4_N1ZcPny7eXTVT26rSDLaTw8iG3oHSrLdOjYIpNzA-6g5gls5KBqJTgxqHqUadVO-0sJo5wbjm7Rl5ddStxndbyMXcxm2qIbMRUgs5CKFFRb05oqYUc04wmwnLr9_U06A3nJlDC-Z3C-bQgnlsobK7v9hrwsWm_X95b488DPWki72PyTtT7N7HNCcbJsym_bfETyWUpIg |
CitedBy_id | crossref_primary_10_1515_dema_2021_0006 crossref_primary_10_1002_mma_10112 crossref_primary_10_3390_sym12122007 crossref_primary_10_1007_s12215_025_01187_8 crossref_primary_10_1007_s13398_023_01416_8 crossref_primary_10_3934_jimo_2020178 crossref_primary_10_3390_axioms10010016 crossref_primary_10_3390_math8112039 crossref_primary_10_1155_2021_9974351 crossref_primary_10_3390_math11020386 crossref_primary_10_1007_s10473_022_0501_5 crossref_primary_10_1007_s10915_021_01670_1 crossref_primary_10_1007_s11565_020_00354_2 crossref_primary_10_1515_taa_2022_0133 crossref_primary_10_1007_s00009_024_02749_3 crossref_primary_10_1080_02331934_2020_1808648 crossref_primary_10_1007_s10957_023_02182_8 crossref_primary_10_1080_02331934_2021_1895154 crossref_primary_10_1186_s13660_020_02462_1 crossref_primary_10_1515_dema_2023_0113 crossref_primary_10_3934_jimo_2021095 crossref_primary_10_1007_s40574_020_00272_3 crossref_primary_10_3934_naco_2021011 crossref_primary_10_1007_s11784_020_00834_0 crossref_primary_10_3934_jimo_2021133 crossref_primary_10_1515_taa_2022_0124 crossref_primary_10_1007_s11587_021_00624_x crossref_primary_10_1515_dema_2021_0019 crossref_primary_10_1007_s13370_020_00832_y crossref_primary_10_1186_s13660_021_02591_1 crossref_primary_10_1080_01630563_2023_2209147 crossref_primary_10_1007_s11075_021_01170_1 crossref_primary_10_1007_s12190_023_01853_z crossref_primary_10_1007_s00025_020_01306_0 crossref_primary_10_1007_s12215_020_00505_6 crossref_primary_10_3390_mca25030054 crossref_primary_10_1007_s10915_023_02132_6 crossref_primary_10_1515_cmam_2020_0174 crossref_primary_10_3934_naco_2021004 crossref_primary_10_1007_s00186_022_00780_2 crossref_primary_10_1007_s40590_021_00340_4 crossref_primary_10_3846_mma_2022_13846 crossref_primary_10_1007_s43034_022_00212_6 crossref_primary_10_3390_math11081850 crossref_primary_10_1007_s11075_021_01081_1 crossref_primary_10_3934_jimo_2020152 crossref_primary_10_1080_02331934_2022_2123242 crossref_primary_10_1515_cmam_2022_0199 crossref_primary_10_1007_s40314_021_01490_x crossref_primary_10_1515_dema_2022_0005 crossref_primary_10_1007_s11075_020_00937_2 crossref_primary_10_1007_s10915_020_01385_9 crossref_primary_10_3390_math11224708 crossref_primary_10_3390_axioms9040143 crossref_primary_10_1007_s10013_021_00485_9 crossref_primary_10_1007_s43036_020_00112_3 crossref_primary_10_1080_00207160_2020_1856823 |
Cites_doi | 10.1007/s11075-018-0633-9 10.1073/pnas.50.6.1038 10.1007/s11075-018-0504-4 10.1016/0022-247X(80)90323-6 10.24193/fpt-ro.2018.1.26 10.1016/j.na.2011.09.005 10.1016/S0252-9602(12)60127-1 10.1007/s10957-010-9757-3 10.1515/dema-2018-0015 10.1080/02331934.2010.539689 10.1007/s10559-015-9768-z 10.1007/s11075-018-0499-x 10.1007/s10957-015-0746-4 10.4995/agt.2019.10635 10.1287/moor.26.2.248.10558 10.1016/0041-5553(64)90137-5 10.1007/s11075-011-9490-5 10.1007/s11587-019-00460-0 10.1016/0167-6377(84)90055-5 10.2989/16073606.2017.1375569 10.1007/s10957-013-0494-2 10.1023/A:1011253113155 10.1007/s40840-019-00781-1 10.1007/s13370-016-0450-z 10.1007/s10851-014-0523-2 10.1016/S1076-5670(08)70157-5 10.1016/S0377-0427(02)00906-8 10.1090/S0002-9904-1967-11864-0 10.1016/j.camwa.2009.09.003 10.1137/080716542 10.1007/s10898-009-9454-7 10.1137/15100463X 10.1137/1.9780898719451 10.1137/060675319 10.1090/S0002-9904-1968-11983-4 10.1515/dema-2019-0013 10.1080/02331934.2017.1377199 10.1186/s13660-015-0590-y 10.1007/s10114-016-5548-6 10.1007/978-3-642-56468-0 10.1007/s40314-019-0841-5 10.1007/978-3-642-61566-5 10.1007/s10107-013-0741-1 10.1515/apam-2017-0037 |
ContentType | Journal Article |
Copyright | 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 2020 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
DOI | 10.1080/02331934.2020.1723586 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1029-4945 |
EndPage | 574 |
ExternalDocumentID | 10_1080_02331934_2020_1723586 1723586 |
Genre | Research Article |
GroupedDBID | .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DKSSO DU5 EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 7TB 8FD FR3 H8D JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c338t-7a547b076de8906ad8b208d701b95eef4da40e25878b7cadac86d92a90d201913 |
ISSN | 0233-1934 |
IngestDate | Wed Aug 13 04:06:19 EDT 2025 Tue Jul 01 03:52:12 EDT 2025 Thu Apr 24 23:01:52 EDT 2025 Wed Dec 25 09:07:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-7a547b076de8906ad8b208d701b95eef4da40e25878b7cadac86d92a90d201913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2492472292 |
PQPubID | 27961 |
PageCount | 30 |
ParticipantIDs | crossref_citationtrail_10_1080_02331934_2020_1723586 informaworld_taylorfrancis_310_1080_02331934_2020_1723586 crossref_primary_10_1080_02331934_2020_1723586 proquest_journals_2492472292 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-04 |
PublicationDateYYYYMMDD | 2021-03-04 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Optimization |
PublicationYear | 2021 |
Publisher | Taylor & Francis Taylor & Francis LLC |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
References | Jolaoso LO (CIT0016) 2019 CIT0030 CIT0032 CIT0034 Oyewole KO (CIT0031) 2019; 81 CIT0033 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 He S (CIT0048) 2017; 1 Kimura Y (CIT0052) 2015; 1 CIT0003 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0051 CIT0054 CIT0053 CIT0056 CIT0011 CIT0013 Thong DV (CIT0047) 2019 CIT0057 CIT0015 CIT0017 CIT0019 Izuchukwu C (CIT0014) 2019 Apostol RY (CIT0021) 2012; 107 Wang ZM (CIT0018) 2014; 2014 Jolaoso LO (CIT0025) 2019 CIT0023 CIT0022 Korpelevich GM. (CIT0020) 1976; 12 Takahashi W. (CIT0055) 2000 Cho SY (CIT0012) 2014; 235 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 Bin Dehaish BA (CIT0010) 2015; 16 |
References_xml | – ident: CIT0015 doi: 10.1007/s11075-018-0633-9 – volume: 2014 start-page: 25 year: 2014 ident: CIT0018 publication-title: J Nonlinear Funct Anal – volume: 107 start-page: 3 year: 2012 ident: CIT0021 publication-title: J Comput Appl Math – ident: CIT0054 doi: 10.1073/pnas.50.6.1038 – year: 2019 ident: CIT0016 publication-title: Comput Appl Math – ident: CIT0056 doi: 10.1007/s11075-018-0504-4 – ident: CIT0037 doi: 10.1016/0022-247X(80)90323-6 – ident: CIT0008 doi: 10.24193/fpt-ro.2018.1.26 – ident: CIT0053 doi: 10.1016/j.na.2011.09.005 – ident: CIT0011 doi: 10.1016/S0252-9602(12)60127-1 – ident: CIT0026 doi: 10.1007/s10957-010-9757-3 – ident: CIT0005 doi: 10.1515/dema-2018-0015 – ident: CIT0023 doi: 10.1080/02331934.2010.539689 – ident: CIT0024 doi: 10.1007/s10559-015-9768-z – ident: CIT0004 doi: 10.1007/s11075-018-0499-x – ident: CIT0046 doi: 10.1007/s10957-015-0746-4 – ident: CIT0013 doi: 10.4995/agt.2019.10635 – ident: CIT0027 doi: 10.1287/moor.26.2.248.10558 – volume: 81 start-page: 19 issue: 1 year: 2019 ident: CIT0031 publication-title: Politehn Univ Bucharest Sci Bull Ser A Appl Math Phys – ident: CIT0040 doi: 10.1016/0041-5553(64)90137-5 – ident: CIT0038 doi: 10.1007/s11075-011-9490-5 – ident: CIT0034 doi: 10.1007/s11587-019-00460-0 – ident: CIT0002 doi: 10.1016/0167-6377(84)90055-5 – ident: CIT0007 doi: 10.2989/16073606.2017.1375569 – ident: CIT0035 doi: 10.1007/s10957-013-0494-2 – ident: CIT0041 doi: 10.1023/A:1011253113155 – ident: CIT0033 doi: 10.1007/s40840-019-00781-1 – ident: CIT0009 doi: 10.1007/s13370-016-0450-z – ident: CIT0043 doi: 10.1007/s10851-014-0523-2 – volume-title: Nonlinear functional analysis: fixed point theory and its applications year: 2000 ident: CIT0055 – ident: CIT0001 doi: 10.1016/S1076-5670(08)70157-5 – ident: CIT0042 doi: 10.1016/S0377-0427(02)00906-8 – year: 2019 ident: CIT0025 publication-title: Rend Circ Mat Palermo II – volume: 1 start-page: 53 year: 2015 ident: CIT0052 publication-title: Linear Nonlinear Anal – ident: CIT0036 doi: 10.1090/S0002-9904-1967-11864-0 – ident: CIT0057 doi: 10.1016/j.camwa.2009.09.003 – ident: CIT0045 doi: 10.1137/080716542 – volume: 12 start-page: 747 year: 1976 ident: CIT0020 publication-title: Ekon Mat Metody – volume: 235 start-page: 430 year: 2014 ident: CIT0012 publication-title: Appl Math Comput – ident: CIT0022 doi: 10.1007/s10898-009-9454-7 – start-page: 1 year: 2019 ident: CIT0047 publication-title: Optim Lett – ident: CIT0044 doi: 10.1137/15100463X – ident: CIT0019 doi: 10.1137/1.9780898719451 – ident: CIT0030 doi: 10.1137/060675319 – ident: CIT0050 doi: 10.1090/S0002-9904-1968-11983-4 – ident: CIT0006 doi: 10.1515/dema-2019-0013 – ident: CIT0039 doi: 10.1080/02331934.2017.1377199 – ident: CIT0049 doi: 10.1186/s13660-015-0590-y – volume: 16 start-page: 1321 year: 2015 ident: CIT0010 publication-title: J Nonlinear Convex Anal – ident: CIT0032 doi: 10.1007/s10114-016-5548-6 – ident: CIT0051 doi: 10.1007/978-3-642-56468-0 – ident: CIT0017 doi: 10.1007/s40314-019-0841-5 – year: 2019 ident: CIT0014 publication-title: Rend Circ Mat Palermo II – ident: CIT0003 doi: 10.1007/978-3-642-61566-5 – ident: CIT0028 doi: 10.1007/s10107-013-0741-1 – volume: 1 start-page: 89 year: 2017 ident: CIT0048 publication-title: Math J Inequ Appl – ident: CIT0029 doi: 10.1515/apam-2017-0037 |
SSID | ssj0021624 |
Score | 2.4838617 |
Snippet | In this paper, we study a classical monotone and Lipschitz continuous variational inequality and fixed point problems defined on a level set of a convex... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 545 |
SubjectTerms | Adaptive algorithms Algorithms Convergence Extragradient method fixed point Fixed points (mathematics) Half spaces Hilbert space inertia Lipschitz-continuous Mathematical analysis monotone Operators (mathematics) variational inequality |
Title | Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems |
URI | https://www.tandfonline.com/doi/abs/10.1080/02331934.2020.1723586 https://www.proquest.com/docview/2492472292 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZK9wIHxFPssiAfuFWJEufp44qHKkTppStWXCLHdlBFd1O1Kbvs3-DA32X8Sl260vK4RK0bP5r5Op5xZ75B6FWT87SQPA9Y0rAgpYwHtBFxIMBcTiJZNzxXucOTj_n4NH1_lp0NBj-9qKVNV4f8-sa8kn-RKrSBXFWW7F9Ith8UGuA1yBeuIGG4_pGMJ62YN8qGVBl8nU792NRfVjqKqxuB2l2x_p0pFW1D0uVC_fvPljpuCOS8XM-vDfs3LFgfMcB3aBVP9-gbONPuwBCmMUmYhrSpmV_B3Mt2DsPbwjRr39idwvjnNs-zB9aCfW2_a4t1Fo6m4TaCZ8HatT63_eC3T-Rle66bpyH08A8piInS2h5SzvbqhXhqjiRJAGakuVsaNayCclJqiCadnjYFRiweE0_pZvY-s39npurP3tZgYylhNjVZCKuExkJlCv9GxW18I_PJHXRAwP8gQ3RwMn7z-VPvy8e5rpfcL94lhyna9pum2DF7dkhx94wAbdnMHqD71iXBJwZfD9FAXjxC9zyiysfoh0MadkjDHtLwDtKwQRpWSMMKadghDTukYVgXtkjDDmnYQxreIg0D0rBGGtZIww5pT9Dpu7ez1-PAlvMIeJKUXVCwLC3qqMiFLGmUM1HWJCpFEcU1zaRsUsHSSJKsLMq64LA0XuaCEkYjAVYqjZOnaHgBy3mGcMK5bEqifHMJOxCro5qSggp40iymVB6i1D3tiluue1VyZVHFjhLXCqlSQqqskA5R2HdbGrKX2zpQX5RVp3HeGIhXyS19j53cK6tT1pXi71T0rZQc_cfQz9Hd7Y_wGA271Ua-ANu5q19aHP8COGTEoA |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxtBDB5Remg5QF8IKI859Lrp7Gtm54hQUXgkJ5C4jeZZRY2SKLtBwN_gD2PvIwpUiAPHXcmzM17bY1v2Z0J-BW4z4S2PdBp0lEltIxlcHDlwl1PmTbAce4cHQ96_zs5v8puVXhgsq8QYOjRAEbWtRuXGZHRXEvcb7hmQnBRTIgm8EtjuyT-Qj7nkAqcYpGy4DLpiXg-2RZIIabounteWeXY_PUMv_c9a11fQ6Rax3eabypN_vUVlevbhBa7j-073hWy2Hio9bkTqK1nzk29kYwW38Dt5HEzdKIDzSrF1EGzEmJYL83del49VFOz9XC-fmhnVFBO-tPTjQLXTMzSyFARsVo4ePIXTU9ABzG1QUIspAoTTW4ji20wlfqbp_ryncC4aRnfw7dl0BMu3E3HKH-T69M_VST9qpztEFsLiKhI6z4RhgjtfSMa1K0zCCidYbGTufciczphP8kIURljYmi24k4mWzIHTIuN0m6xPYDs7hKbW-lAkGKp5MEjaMCMTIR0wTsdS-l2Sdf9U2Rb6HCdwjFXcIaS2PFfIc9XyfJf0lmSzBvvjLQK5KjCqqpMuoZmQotI3aPc76VKtGSkVwjkimqdM9t6x9BH51L8aXKrLs-HFT_I5waocrKLL9sl6NV_4A3CrKnNY680TaCkXdg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBbWDBjaw97DumWrDrs6kx-RrGPRLci2NthhBXYT9ByCBo0RO0Xbv7E_PNKWg7ZDkUOPNkBZokmKJMiPhHwK3BbCW57oPOikkNomMrg0ceAu58ybYDn2Dp_M-PS0-P573FcT1rGsEmPo0AFFtLYalbtyoa-I-wzXDAhOjhmRDF4J7PbkO-QxR_Bw7OJgs03MlfJ2ri2SJEjTN_Hct8yt6-kWeOl_xrq9gSbPiOn33hWenI3WjRnZ6zuwjg863HPyNPqn9LATqBfkkT9_SfZuoBa-In9Plm4ewHWl2DgIFmJB67X5s2qLxxoK1n6lN0_dhGqK6V5a-0Wg2ukKTSwF8arq-bWncHgKGoCZDQpKsUR4cHoBMXzMU-Jnut7PKwrHomF-Cd-ulnNYPs7DqV-T08nXX0fTJM52SCwExU0i9LgQhgnufCkZ1640GSudYKmRY-9D4XTBfDYuRWmEha3ZkjuZackcuCwyzd-QwTls5y2hubU-lBkGah7MkTbMyExIB4zTqZR-nxT9L1U2Ap_j_I2FSnt81MhzhTxXkef7ZLQhqzrkj20E8qa8qKZNuYRuPorKt9AOe-FS0YjUCsEcEctTZu8esPQBefLzy0Qdf5v9eE92MyzJwRK6YkgGzWrtP4BP1ZiPrdb8A-MSFho |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+inertial+subgradient+extragradient+method+with+self+adaptive+stepsize+for+solving+monotone+variational+inequality+and+fixed+point+problems&rft.jtitle=Optimization&rft.au=Alakoya%2C+T.+O.&rft.au=Jolaoso%2C+L.+O.&rft.au=Mewomo%2C+O.+T.&rft.date=2021-03-04&rft.pub=Taylor+%26+Francis&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=70&rft.issue=3&rft.spage=545&rft.epage=574&rft_id=info:doi/10.1080%2F02331934.2020.1723586&rft.externalDocID=1723586 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon |