Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems

In this paper, we study a classical monotone and Lipschitz continuous variational inequality and fixed point problems defined on a level set of a convex function in the setting of Hilbert space. We propose a modified inertial viscosity subgradient extragradient algorithm with self-adaptive stepsize...

Full description

Saved in:
Bibliographic Details
Published inOptimization Vol. 70; no. 3; pp. 545 - 574
Main Authors Alakoya, T. O., Jolaoso, L. O., Mewomo, O. T.
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 04.03.2021
Taylor & Francis LLC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we study a classical monotone and Lipschitz continuous variational inequality and fixed point problems defined on a level set of a convex function in the setting of Hilbert space. We propose a modified inertial viscosity subgradient extragradient algorithm with self-adaptive stepsize in which the two projections are made onto some half-spaces. Moreover, we obtain a strong convergence result for approximating a common solution of the variational inequality and fixed point of quasi-nonexpansive mappings under some mild conditions. The main advantages of our method are: the self adaptive step-size which avoids the need to know apriori the Lipschitz constant of the associated monotone operator, the two projections made onto some half-spaces, the strong convergence and the inertial technique employed which speeds up the rate of convergence of the algorithm. Numerical experiments are presented to demonstrate the efficiency of our algorithm in comparison with other existing algorithms in literature.
AbstractList In this paper, we study a classical monotone and Lipschitz continuous variational inequality and fixed point problems defined on a level set of a convex function in the setting of Hilbert space. We propose a modified inertial viscosity subgradient extragradient algorithm with self-adaptive stepsize in which the two projections are made onto some half-spaces. Moreover, we obtain a strong convergence result for approximating a common solution of the variational inequality and fixed point of quasi-nonexpansive mappings under some mild conditions. The main advantages of our method are: the self adaptive step-size which avoids the need to know apriori the Lipschitz constant of the associated monotone operator, the two projections made onto some half-spaces, the strong convergence and the inertial technique employed which speeds up the rate of convergence of the algorithm. Numerical experiments are presented to demonstrate the efficiency of our algorithm in comparison with other existing algorithms in literature.
Author Alakoya, T. O.
Mewomo, O. T.
Jolaoso, L. O.
Author_xml – sequence: 1
  givenname: T. O.
  surname: Alakoya
  fullname: Alakoya, T. O.
  organization: School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal
– sequence: 2
  givenname: L. O.
  surname: Jolaoso
  fullname: Jolaoso, L. O.
  organization: DSI-NRF Center of Excellence in Mathematical and Statistical Sciences (CoE-MaSS)
– sequence: 3
  givenname: O. T.
  surname: Mewomo
  fullname: Mewomo, O. T.
  email: mewomoo@ukzn.ac.za
  organization: School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal
BookMark eNqFUc1u1DAQtlCR2BYeAckS5xTbcRJbXEAVBaQiLnC2nHjSTuXYqe3ddnkNXhgvWzhwgNPIo-_P852SkxADEPKSs3POFHvNRNty3cpzwURdDaLtVP-EbDgTupFadidkc8A0B9AzcprzLWOC90JuyI_P0eGM4CgGSAWtp3k7XifrEEKh8FCS_fNaoNxER--x3NAMfqbW2bXgDmgusGb8DnSOiebodxiu6RJDLDUq3dmEtmAMVb3a3G2tx7KnNjg640P1XiNW-TXF0cOSn5Ons_UZXjzOM_Lt8v3Xi4_N1ZcPny7eXTVT26rSDLaTw8iG3oHSrLdOjYIpNzA-6g5gls5KBqJTgxqHqUadVO-0sJo5wbjm7Rl5ddStxndbyMXcxm2qIbMRUgs5CKFFRb05oqYUc04wmwnLr9_U06A3nJlDC-Z3C-bQgnlsobK7v9hrwsWm_X95b488DPWki72PyTtT7N7HNCcbJsym_bfETyWUpIg
CitedBy_id crossref_primary_10_1515_dema_2021_0006
crossref_primary_10_1002_mma_10112
crossref_primary_10_3390_sym12122007
crossref_primary_10_1007_s12215_025_01187_8
crossref_primary_10_1007_s13398_023_01416_8
crossref_primary_10_3934_jimo_2020178
crossref_primary_10_3390_axioms10010016
crossref_primary_10_3390_math8112039
crossref_primary_10_1155_2021_9974351
crossref_primary_10_3390_math11020386
crossref_primary_10_1007_s10473_022_0501_5
crossref_primary_10_1007_s10915_021_01670_1
crossref_primary_10_1007_s11565_020_00354_2
crossref_primary_10_1515_taa_2022_0133
crossref_primary_10_1007_s00009_024_02749_3
crossref_primary_10_1080_02331934_2020_1808648
crossref_primary_10_1007_s10957_023_02182_8
crossref_primary_10_1080_02331934_2021_1895154
crossref_primary_10_1186_s13660_020_02462_1
crossref_primary_10_1515_dema_2023_0113
crossref_primary_10_3934_jimo_2021095
crossref_primary_10_1007_s40574_020_00272_3
crossref_primary_10_3934_naco_2021011
crossref_primary_10_1007_s11784_020_00834_0
crossref_primary_10_3934_jimo_2021133
crossref_primary_10_1515_taa_2022_0124
crossref_primary_10_1007_s11587_021_00624_x
crossref_primary_10_1515_dema_2021_0019
crossref_primary_10_1007_s13370_020_00832_y
crossref_primary_10_1186_s13660_021_02591_1
crossref_primary_10_1080_01630563_2023_2209147
crossref_primary_10_1007_s11075_021_01170_1
crossref_primary_10_1007_s12190_023_01853_z
crossref_primary_10_1007_s00025_020_01306_0
crossref_primary_10_1007_s12215_020_00505_6
crossref_primary_10_3390_mca25030054
crossref_primary_10_1007_s10915_023_02132_6
crossref_primary_10_1515_cmam_2020_0174
crossref_primary_10_3934_naco_2021004
crossref_primary_10_1007_s00186_022_00780_2
crossref_primary_10_1007_s40590_021_00340_4
crossref_primary_10_3846_mma_2022_13846
crossref_primary_10_1007_s43034_022_00212_6
crossref_primary_10_3390_math11081850
crossref_primary_10_1007_s11075_021_01081_1
crossref_primary_10_3934_jimo_2020152
crossref_primary_10_1080_02331934_2022_2123242
crossref_primary_10_1515_cmam_2022_0199
crossref_primary_10_1007_s40314_021_01490_x
crossref_primary_10_1515_dema_2022_0005
crossref_primary_10_1007_s11075_020_00937_2
crossref_primary_10_1007_s10915_020_01385_9
crossref_primary_10_3390_math11224708
crossref_primary_10_3390_axioms9040143
crossref_primary_10_1007_s10013_021_00485_9
crossref_primary_10_1007_s43036_020_00112_3
crossref_primary_10_1080_00207160_2020_1856823
Cites_doi 10.1007/s11075-018-0633-9
10.1073/pnas.50.6.1038
10.1007/s11075-018-0504-4
10.1016/0022-247X(80)90323-6
10.24193/fpt-ro.2018.1.26
10.1016/j.na.2011.09.005
10.1016/S0252-9602(12)60127-1
10.1007/s10957-010-9757-3
10.1515/dema-2018-0015
10.1080/02331934.2010.539689
10.1007/s10559-015-9768-z
10.1007/s11075-018-0499-x
10.1007/s10957-015-0746-4
10.4995/agt.2019.10635
10.1287/moor.26.2.248.10558
10.1016/0041-5553(64)90137-5
10.1007/s11075-011-9490-5
10.1007/s11587-019-00460-0
10.1016/0167-6377(84)90055-5
10.2989/16073606.2017.1375569
10.1007/s10957-013-0494-2
10.1023/A:1011253113155
10.1007/s40840-019-00781-1
10.1007/s13370-016-0450-z
10.1007/s10851-014-0523-2
10.1016/S1076-5670(08)70157-5
10.1016/S0377-0427(02)00906-8
10.1090/S0002-9904-1967-11864-0
10.1016/j.camwa.2009.09.003
10.1137/080716542
10.1007/s10898-009-9454-7
10.1137/15100463X
10.1137/1.9780898719451
10.1137/060675319
10.1090/S0002-9904-1968-11983-4
10.1515/dema-2019-0013
10.1080/02331934.2017.1377199
10.1186/s13660-015-0590-y
10.1007/s10114-016-5548-6
10.1007/978-3-642-56468-0
10.1007/s40314-019-0841-5
10.1007/978-3-642-61566-5
10.1007/s10107-013-0741-1
10.1515/apam-2017-0037
ContentType Journal Article
Copyright 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
2020 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
– notice: 2020 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/02331934.2020.1723586
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4945
EndPage 574
ExternalDocumentID 10_1080_02331934_2020_1723586
1723586
Genre Research Article
GroupedDBID .7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-7a547b076de8906ad8b208d701b95eef4da40e25878b7cadac86d92a90d201913
ISSN 0233-1934
IngestDate Wed Aug 13 04:06:19 EDT 2025
Tue Jul 01 03:52:12 EDT 2025
Thu Apr 24 23:01:52 EDT 2025
Wed Dec 25 09:07:00 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-7a547b076de8906ad8b208d701b95eef4da40e25878b7cadac86d92a90d201913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2492472292
PQPubID 27961
PageCount 30
ParticipantIDs crossref_citationtrail_10_1080_02331934_2020_1723586
informaworld_taylorfrancis_310_1080_02331934_2020_1723586
crossref_primary_10_1080_02331934_2020_1723586
proquest_journals_2492472292
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-04
PublicationDateYYYYMMDD 2021-03-04
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-04
  day: 04
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Optimization
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References Jolaoso LO (CIT0016) 2019
CIT0030
CIT0032
CIT0034
Oyewole KO (CIT0031) 2019; 81
CIT0033
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
He S (CIT0048) 2017; 1
Kimura Y (CIT0052) 2015; 1
CIT0003
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0051
CIT0054
CIT0053
CIT0056
CIT0011
CIT0013
Thong DV (CIT0047) 2019
CIT0057
CIT0015
CIT0017
CIT0019
Izuchukwu C (CIT0014) 2019
Apostol RY (CIT0021) 2012; 107
Wang ZM (CIT0018) 2014; 2014
Jolaoso LO (CIT0025) 2019
CIT0023
CIT0022
Korpelevich GM. (CIT0020) 1976; 12
Takahashi W. (CIT0055) 2000
Cho SY (CIT0012) 2014; 235
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
Bin Dehaish BA (CIT0010) 2015; 16
References_xml – ident: CIT0015
  doi: 10.1007/s11075-018-0633-9
– volume: 2014
  start-page: 25
  year: 2014
  ident: CIT0018
  publication-title: J Nonlinear Funct Anal
– volume: 107
  start-page: 3
  year: 2012
  ident: CIT0021
  publication-title: J Comput Appl Math
– ident: CIT0054
  doi: 10.1073/pnas.50.6.1038
– year: 2019
  ident: CIT0016
  publication-title: Comput Appl Math
– ident: CIT0056
  doi: 10.1007/s11075-018-0504-4
– ident: CIT0037
  doi: 10.1016/0022-247X(80)90323-6
– ident: CIT0008
  doi: 10.24193/fpt-ro.2018.1.26
– ident: CIT0053
  doi: 10.1016/j.na.2011.09.005
– ident: CIT0011
  doi: 10.1016/S0252-9602(12)60127-1
– ident: CIT0026
  doi: 10.1007/s10957-010-9757-3
– ident: CIT0005
  doi: 10.1515/dema-2018-0015
– ident: CIT0023
  doi: 10.1080/02331934.2010.539689
– ident: CIT0024
  doi: 10.1007/s10559-015-9768-z
– ident: CIT0004
  doi: 10.1007/s11075-018-0499-x
– ident: CIT0046
  doi: 10.1007/s10957-015-0746-4
– ident: CIT0013
  doi: 10.4995/agt.2019.10635
– ident: CIT0027
  doi: 10.1287/moor.26.2.248.10558
– volume: 81
  start-page: 19
  issue: 1
  year: 2019
  ident: CIT0031
  publication-title: Politehn Univ Bucharest Sci Bull Ser A Appl Math Phys
– ident: CIT0040
  doi: 10.1016/0041-5553(64)90137-5
– ident: CIT0038
  doi: 10.1007/s11075-011-9490-5
– ident: CIT0034
  doi: 10.1007/s11587-019-00460-0
– ident: CIT0002
  doi: 10.1016/0167-6377(84)90055-5
– ident: CIT0007
  doi: 10.2989/16073606.2017.1375569
– ident: CIT0035
  doi: 10.1007/s10957-013-0494-2
– ident: CIT0041
  doi: 10.1023/A:1011253113155
– ident: CIT0033
  doi: 10.1007/s40840-019-00781-1
– ident: CIT0009
  doi: 10.1007/s13370-016-0450-z
– ident: CIT0043
  doi: 10.1007/s10851-014-0523-2
– volume-title: Nonlinear functional analysis: fixed point theory and its applications
  year: 2000
  ident: CIT0055
– ident: CIT0001
  doi: 10.1016/S1076-5670(08)70157-5
– ident: CIT0042
  doi: 10.1016/S0377-0427(02)00906-8
– year: 2019
  ident: CIT0025
  publication-title: Rend Circ Mat Palermo II
– volume: 1
  start-page: 53
  year: 2015
  ident: CIT0052
  publication-title: Linear Nonlinear Anal
– ident: CIT0036
  doi: 10.1090/S0002-9904-1967-11864-0
– ident: CIT0057
  doi: 10.1016/j.camwa.2009.09.003
– ident: CIT0045
  doi: 10.1137/080716542
– volume: 12
  start-page: 747
  year: 1976
  ident: CIT0020
  publication-title: Ekon Mat Metody
– volume: 235
  start-page: 430
  year: 2014
  ident: CIT0012
  publication-title: Appl Math Comput
– ident: CIT0022
  doi: 10.1007/s10898-009-9454-7
– start-page: 1
  year: 2019
  ident: CIT0047
  publication-title: Optim Lett
– ident: CIT0044
  doi: 10.1137/15100463X
– ident: CIT0019
  doi: 10.1137/1.9780898719451
– ident: CIT0030
  doi: 10.1137/060675319
– ident: CIT0050
  doi: 10.1090/S0002-9904-1968-11983-4
– ident: CIT0006
  doi: 10.1515/dema-2019-0013
– ident: CIT0039
  doi: 10.1080/02331934.2017.1377199
– ident: CIT0049
  doi: 10.1186/s13660-015-0590-y
– volume: 16
  start-page: 1321
  year: 2015
  ident: CIT0010
  publication-title: J Nonlinear Convex Anal
– ident: CIT0032
  doi: 10.1007/s10114-016-5548-6
– ident: CIT0051
  doi: 10.1007/978-3-642-56468-0
– ident: CIT0017
  doi: 10.1007/s40314-019-0841-5
– year: 2019
  ident: CIT0014
  publication-title: Rend Circ Mat Palermo II
– ident: CIT0003
  doi: 10.1007/978-3-642-61566-5
– ident: CIT0028
  doi: 10.1007/s10107-013-0741-1
– volume: 1
  start-page: 89
  year: 2017
  ident: CIT0048
  publication-title: Math J Inequ Appl
– ident: CIT0029
  doi: 10.1515/apam-2017-0037
SSID ssj0021624
Score 2.4838617
Snippet In this paper, we study a classical monotone and Lipschitz continuous variational inequality and fixed point problems defined on a level set of a convex...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 545
SubjectTerms Adaptive algorithms
Algorithms
Convergence
Extragradient method
fixed point
Fixed points (mathematics)
Half spaces
Hilbert space
inertia
Lipschitz-continuous
Mathematical analysis
monotone
Operators (mathematics)
variational inequality
Title Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems
URI https://www.tandfonline.com/doi/abs/10.1080/02331934.2020.1723586
https://www.proquest.com/docview/2492472292
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZK9wIHxFPssiAfuFWJEufp44qHKkTppStWXCLHdlBFd1O1Kbvs3-DA32X8Sl260vK4RK0bP5r5Op5xZ75B6FWT87SQPA9Y0rAgpYwHtBFxIMBcTiJZNzxXucOTj_n4NH1_lp0NBj-9qKVNV4f8-sa8kn-RKrSBXFWW7F9Ith8UGuA1yBeuIGG4_pGMJ62YN8qGVBl8nU792NRfVjqKqxuB2l2x_p0pFW1D0uVC_fvPljpuCOS8XM-vDfs3LFgfMcB3aBVP9-gbONPuwBCmMUmYhrSpmV_B3Mt2DsPbwjRr39idwvjnNs-zB9aCfW2_a4t1Fo6m4TaCZ8HatT63_eC3T-Rle66bpyH08A8piInS2h5SzvbqhXhqjiRJAGakuVsaNayCclJqiCadnjYFRiweE0_pZvY-s39npurP3tZgYylhNjVZCKuExkJlCv9GxW18I_PJHXRAwP8gQ3RwMn7z-VPvy8e5rpfcL94lhyna9pum2DF7dkhx94wAbdnMHqD71iXBJwZfD9FAXjxC9zyiysfoh0MadkjDHtLwDtKwQRpWSMMKadghDTukYVgXtkjDDmnYQxreIg0D0rBGGtZIww5pT9Dpu7ez1-PAlvMIeJKUXVCwLC3qqMiFLGmUM1HWJCpFEcU1zaRsUsHSSJKsLMq64LA0XuaCEkYjAVYqjZOnaHgBy3mGcMK5bEqifHMJOxCro5qSggp40iymVB6i1D3tiluue1VyZVHFjhLXCqlSQqqskA5R2HdbGrKX2zpQX5RVp3HeGIhXyS19j53cK6tT1pXi71T0rZQc_cfQz9Hd7Y_wGA271Ua-ANu5q19aHP8COGTEoA
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxtBDB5Remg5QF8IKI859Lrp7Gtm54hQUXgkJ5C4jeZZRY2SKLtBwN_gD2PvIwpUiAPHXcmzM17bY1v2Z0J-BW4z4S2PdBp0lEltIxlcHDlwl1PmTbAce4cHQ96_zs5v8puVXhgsq8QYOjRAEbWtRuXGZHRXEvcb7hmQnBRTIgm8EtjuyT-Qj7nkAqcYpGy4DLpiXg-2RZIIabounteWeXY_PUMv_c9a11fQ6Rax3eabypN_vUVlevbhBa7j-073hWy2Hio9bkTqK1nzk29kYwW38Dt5HEzdKIDzSrF1EGzEmJYL83del49VFOz9XC-fmhnVFBO-tPTjQLXTMzSyFARsVo4ePIXTU9ABzG1QUIspAoTTW4ji20wlfqbp_ryncC4aRnfw7dl0BMu3E3HKH-T69M_VST9qpztEFsLiKhI6z4RhgjtfSMa1K0zCCidYbGTufciczphP8kIURljYmi24k4mWzIHTIuN0m6xPYDs7hKbW-lAkGKp5MEjaMCMTIR0wTsdS-l2Sdf9U2Rb6HCdwjFXcIaS2PFfIc9XyfJf0lmSzBvvjLQK5KjCqqpMuoZmQotI3aPc76VKtGSkVwjkimqdM9t6x9BH51L8aXKrLs-HFT_I5waocrKLL9sl6NV_4A3CrKnNY680TaCkXdg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBbWDBjaw97DumWrDrs6kx-RrGPRLci2NthhBXYT9ByCBo0RO0Xbv7E_PNKWg7ZDkUOPNkBZokmKJMiPhHwK3BbCW57oPOikkNomMrg0ceAu58ybYDn2Dp_M-PS0-P573FcT1rGsEmPo0AFFtLYalbtyoa-I-wzXDAhOjhmRDF4J7PbkO-QxR_Bw7OJgs03MlfJ2ri2SJEjTN_Hct8yt6-kWeOl_xrq9gSbPiOn33hWenI3WjRnZ6zuwjg863HPyNPqn9LATqBfkkT9_SfZuoBa-In9Plm4ewHWl2DgIFmJB67X5s2qLxxoK1n6lN0_dhGqK6V5a-0Wg2ukKTSwF8arq-bWncHgKGoCZDQpKsUR4cHoBMXzMU-Jnut7PKwrHomF-Cd-ulnNYPs7DqV-T08nXX0fTJM52SCwExU0i9LgQhgnufCkZ1640GSudYKmRY-9D4XTBfDYuRWmEha3ZkjuZackcuCwyzd-QwTls5y2hubU-lBkGah7MkTbMyExIB4zTqZR-nxT9L1U2Ap_j_I2FSnt81MhzhTxXkef7ZLQhqzrkj20E8qa8qKZNuYRuPorKt9AOe-FS0YjUCsEcEctTZu8esPQBefLzy0Qdf5v9eE92MyzJwRK6YkgGzWrtP4BP1ZiPrdb8A-MSFho
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+inertial+subgradient+extragradient+method+with+self+adaptive+stepsize+for+solving+monotone+variational+inequality+and+fixed+point+problems&rft.jtitle=Optimization&rft.au=Alakoya%2C+T.+O.&rft.au=Jolaoso%2C+L.+O.&rft.au=Mewomo%2C+O.+T.&rft.date=2021-03-04&rft.pub=Taylor+%26+Francis&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=70&rft.issue=3&rft.spage=545&rft.epage=574&rft_id=info:doi/10.1080%2F02331934.2020.1723586&rft.externalDocID=1723586
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon