Model-based comparison of hybrid nanofluid Darcy-Forchheimer flow subject to quadratic convection and frictional heating with multiple slip conditions
Hybrid nanofluids provide several advantages over conventional fluids, including improved thermal characteristics, increased stability, customizable features, multifunctionality, and environmental advantages. Hybrid nanofluids are an appealing alternative for a variety of applications due to these b...
Saved in:
Published in | Numerical heat transfer. Part A, Applications Vol. 85; no. 18; pp. 3013 - 3033 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
16.09.2024
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hybrid nanofluids provide several advantages over conventional fluids, including improved thermal characteristics, increased stability, customizable features, multifunctionality, and environmental advantages. Hybrid nanofluids are an appealing alternative for a variety of applications due to these benefits. This study aims to compute the non-similar solution of single-multi wall carbon nanotubes (SWCNTs-MWCNTs)-based hybrid nanofluid flow over an inclined extending surface. Heat transmission and flow are observed under the effects of quadratic convection, Darcy-Forchheimer quadratic drag forces, viscous dissipation, and non-linear thermal radiative heat flux. The velocity and thermal slip constraints are imposed at the inclined surface. For the model-based comparison, Xue, and Modified Hamilton Crosser thermal conductivity models for carbon nanotubes (CNTs) are adopted. The irreversibility of the system is also investigated using the second law of thermodynamics for the distinct CNTs-based thermal conductivity models. Non-similarity variables are adopted to convert nonlinear partial differential equations into dimensionless PDEs. Analytical modeling of non-similar systems is done by adopting non-similarity transformations up to second-level truncation, and the bvp4c technique is then used to compute the results numerically. The research found that at 75
°
of plate inclination, the Modified Hamilton Crosser model for CNTs outperforms the Xue model in terms of heat transfer rate. Further, entropy generation is significantly larger for the Xue model than for the Modified Hamilton Crosser model for CNTs against higher values of viscous dissipation and porosity parameters. It is also revealed that for opposing buoyancy force G
R
< 0, the temperature of the fluid escalates. This study possesses multiple applications including petroleum engineering, heat exchangers, environmental remediation, and biomedical applications. |
---|---|
AbstractList | Hybrid nanofluids provide several advantages over conventional fluids, including improved thermal characteristics, increased stability, customizable features, multifunctionality, and environmental advantages. Hybrid nanofluids are an appealing alternative for a variety of applications due to these benefits. This study aims to compute the non-similar solution of single-multi wall carbon nanotubes (SWCNTs-MWCNTs)-based hybrid nanofluid flow over an inclined extending surface. Heat transmission and flow are observed under the effects of quadratic convection, Darcy-Forchheimer quadratic drag forces, viscous dissipation, and non-linear thermal radiative heat flux. The velocity and thermal slip constraints are imposed at the inclined surface. For the model-based comparison, Xue, and Modified Hamilton Crosser thermal conductivity models for carbon nanotubes (CNTs) are adopted. The irreversibility of the system is also investigated using the second law of thermodynamics for the distinct CNTs-based thermal conductivity models. Non-similarity variables are adopted to convert nonlinear partial differential equations into dimensionless PDEs. Analytical modeling of non-similar systems is done by adopting non-similarity transformations up to second-level truncation, and the bvp4c technique is then used to compute the results numerically. The research found that at 75° of plate inclination, the Modified Hamilton Crosser model for CNTs outperforms the Xue model in terms of heat transfer rate. Further, entropy generation is significantly larger for the Xue model than for the Modified Hamilton Crosser model for CNTs against higher values of viscous dissipation and porosity parameters. It is also revealed that for opposing buoyancy force GR < 0, the temperature of the fluid escalates. This study possesses multiple applications including petroleum engineering, heat exchangers, environmental remediation, and biomedical applications. Hybrid nanofluids provide several advantages over conventional fluids, including improved thermal characteristics, increased stability, customizable features, multifunctionality, and environmental advantages. Hybrid nanofluids are an appealing alternative for a variety of applications due to these benefits. This study aims to compute the non-similar solution of single-multi wall carbon nanotubes (SWCNTs-MWCNTs)-based hybrid nanofluid flow over an inclined extending surface. Heat transmission and flow are observed under the effects of quadratic convection, Darcy-Forchheimer quadratic drag forces, viscous dissipation, and non-linear thermal radiative heat flux. The velocity and thermal slip constraints are imposed at the inclined surface. For the model-based comparison, Xue, and Modified Hamilton Crosser thermal conductivity models for carbon nanotubes (CNTs) are adopted. The irreversibility of the system is also investigated using the second law of thermodynamics for the distinct CNTs-based thermal conductivity models. Non-similarity variables are adopted to convert nonlinear partial differential equations into dimensionless PDEs. Analytical modeling of non-similar systems is done by adopting non-similarity transformations up to second-level truncation, and the bvp4c technique is then used to compute the results numerically. The research found that at 75 ° of plate inclination, the Modified Hamilton Crosser model for CNTs outperforms the Xue model in terms of heat transfer rate. Further, entropy generation is significantly larger for the Xue model than for the Modified Hamilton Crosser model for CNTs against higher values of viscous dissipation and porosity parameters. It is also revealed that for opposing buoyancy force G R < 0, the temperature of the fluid escalates. This study possesses multiple applications including petroleum engineering, heat exchangers, environmental remediation, and biomedical applications. |
Author | Kadry, Seifedine Ramzan, Muhammad Eldin, Sayed M. Saleel, C. Ahamed Saeed, Abdulkafi Mohammed Shahmir, Nazia |
Author_xml | – sequence: 1 givenname: Muhammad orcidid: 0000-0002-9523-5800 surname: Ramzan fullname: Ramzan, Muhammad organization: Department of Computer Science, Bahria University – sequence: 2 givenname: Nazia surname: Shahmir fullname: Shahmir, Nazia organization: Department of Computer Science, Bahria University – sequence: 3 givenname: C. Ahamed surname: Saleel fullname: Saleel, C. Ahamed organization: Department of Mechanical Engineering, College of Engineering, King Khalid University – sequence: 4 givenname: Seifedine surname: Kadry fullname: Kadry, Seifedine organization: Department of Electrical and Computer Engineering, Lebanese American University – sequence: 5 givenname: Sayed M. surname: Eldin fullname: Eldin, Sayed M. organization: Center of Research, Faculty of Engineering, Future University in Egypt New Cairo – sequence: 6 givenname: Abdulkafi Mohammed surname: Saeed fullname: Saeed, Abdulkafi Mohammed organization: Department of Mathematics, College of Science, Qassim University |
BookMark | eNqFkUuLFDEUhYOM4MzoTxACrqvNo16NG2WcUWHEja7DzctKk0pqkpRN_xF_ryl73LjQbHJv-M7hhHOFLkIMBqGXlOwoGclrSloyDCPbMcL4jjFOe06foEvaMdqQnrcXda5Ms0HP0FXOB1IPY_tL9PNz1MY3ErLRWMV5geRyDDhaPJ1kchoHCNH6tU7vIalTcxeTmibjZpOw9fGI8yoPRhVcIn5YQScoTlWr8KM-umoFQWOb3O8FPJ5MBcJ3fHRlwvPqi1u8wdm7ZRNpt2H5OXpqwWfz4vG-Rt_ubr_efGzuv3z4dPPuvlGcj6UZxhFatq__BK4G4P2eDL3kmmipFW21HvUoQXJioQc7UNl1TBrZDj3rWkYIv0avzr5Lig-ryUUc4ppqzCw4Gbs9H1rWVurNmVIp5pyMFcoV2IKWBM4LSsRWhPhThNiKEI9FVHX3l3pJboZ0-q_u7Vnngo1phmNMXosCJx-TTRCUqyH_bfELpCWkiA |
CitedBy_id | crossref_primary_10_1038_s41598_023_44640_3 crossref_primary_10_1038_s41598_023_49433_2 crossref_primary_10_1515_phys_2023_0201 crossref_primary_10_1007_s00396_024_05233_2 crossref_primary_10_1002_zamm_202300392 crossref_primary_10_1016_j_padiff_2024_100958 crossref_primary_10_1016_j_asej_2023_102503 crossref_primary_10_1093_jcde_qwae029 crossref_primary_10_1007_s13201_024_02235_x crossref_primary_10_1080_10407782_2023_2240509 |
Cites_doi | 10.1080/17455030.2022.2089368 10.1016/j.aej.2022.10.075 10.1002/htj.22433 10.1007/s13369-022-06825-2 10.3390/math9222934 10.1016/j.aej.2015.03.003 10.1016/j.physa.2019.122471 10.1002/htj.22571 10.22055/JACM.2020.32882.2095 10.1088/1402-4896/ab534b 10.1615/SpecialTopicsRevPorousMedia.2023045731 10.1080/17455030.2022.2119302 10.4028/www.scientific.net/NHC.26.62 10.1016/j.aej.2022.12.029 10.1007/s00419-022-02214-1 10.3390/nano12152552 10.1016/j.csite.2022.101893 10.3390/mi13112019 10.1016/j.aej.2023.01.016 10.1016/j.padiff.2021.100056 10.1007/s10483-021-2801-6 10.1063/1.1700493 10.1016/j.icheatmasstransfer.2021.105264 10.1142/S0217979223500029 10.3390/nano12234291 10.3390/nano12111791 10.3390/math9222927 10.1080/17455030.2022.2148014 10.1016/j.csite.2021.101359 10.1080/17455030.2022.2096944 10.1007/s13369-022-07210-9 10.1080/17455030.2021.1927237 10.1088/1402-4896/acab92 |
ContentType | Journal Article |
Copyright | 2023 Taylor & Francis Group, LLC 2023 2023 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2023 Taylor & Francis Group, LLC 2023 – notice: 2023 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/10407782.2023.2231631 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1521-0634 |
EndPage | 3033 |
ExternalDocumentID | 10_1080_10407782_2023_2231631 2231631 |
Genre | Research Article |
GrantInformation_xml | – fundername: King Khalid University grantid: RGP2/45/44 |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 123 29N 30N 4.4 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 DGEBU DKSSO EAP EBS EST ESX E~A E~B GEVLZ GTTXZ H13 HF~ HZ~ H~P J.P KYCEM LJTGL M4Z NA5 NX~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TEN TFL TFT TFW TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~02 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7SC 7TB 8FD ACUHS ADMLS EMK EPL FR3 H8D I-F JQ2 KR7 L7M L~C L~D TASJS TUS |
ID | FETCH-LOGICAL-c338t-788a429521a3c7a369076b3d0dbdc14dd8d8bab30fa6af71b552beb4762542003 |
ISSN | 1040-7782 |
IngestDate | Wed Aug 13 02:34:58 EDT 2025 Tue Jul 01 00:53:20 EDT 2025 Thu Apr 24 23:02:29 EDT 2025 Wed Dec 25 09:02:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-788a429521a3c7a369076b3d0dbdc14dd8d8bab30fa6af71b552beb4762542003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9523-5800 |
PQID | 3085937424 |
PQPubID | 53105 |
PageCount | 21 |
ParticipantIDs | proquest_journals_3085937424 crossref_primary_10_1080_10407782_2023_2231631 crossref_citationtrail_10_1080_10407782_2023_2231631 informaworld_taylorfrancis_310_1080_10407782_2023_2231631 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-16 |
PublicationDateYYYYMMDD | 2024-09-16 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Numerical heat transfer. Part A, Applications |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_3_30_1 e_1_3_3_18_1 e_1_3_3_17_1 e_1_3_3_19_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_34_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_9_1 e_1_3_3_8_1 e_1_3_3_29_1 e_1_3_3_28_1 e_1_3_3_25_1 e_1_3_3_24_1 e_1_3_3_27_1 e_1_3_3_26_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_4_1 e_1_3_3_22_1 |
References_xml | – ident: e_1_3_3_2_1 doi: 10.1080/17455030.2022.2089368 – ident: e_1_3_3_14_1 doi: 10.1016/j.aej.2022.10.075 – ident: e_1_3_3_22_1 doi: 10.1002/htj.22433 – ident: e_1_3_3_27_1 doi: 10.1007/s13369-022-06825-2 – ident: e_1_3_3_15_1 doi: 10.3390/math9222934 – ident: e_1_3_3_23_1 doi: 10.1016/j.aej.2015.03.003 – ident: e_1_3_3_33_1 doi: 10.1016/j.physa.2019.122471 – ident: e_1_3_3_26_1 doi: 10.1002/htj.22571 – ident: e_1_3_3_38_1 doi: 10.22055/JACM.2020.32882.2095 – ident: e_1_3_3_35_1 doi: 10.1088/1402-4896/ab534b – ident: e_1_3_3_12_1 doi: 10.1615/SpecialTopicsRevPorousMedia.2023045731 – ident: e_1_3_3_30_1 doi: 10.1080/17455030.2022.2119302 – ident: e_1_3_3_36_1 doi: 10.4028/www.scientific.net/NHC.26.62 – ident: e_1_3_3_18_1 doi: 10.1016/j.aej.2022.12.029 – ident: e_1_3_3_9_1 doi: 10.1016/j.aej.2022.12.029 – ident: e_1_3_3_7_1 doi: 10.1007/s00419-022-02214-1 – ident: e_1_3_3_19_1 doi: 10.3390/nano12152552 – ident: e_1_3_3_28_1 doi: 10.1016/j.csite.2022.101893 – ident: e_1_3_3_13_1 doi: 10.3390/mi13112019 – ident: e_1_3_3_20_1 doi: 10.1016/j.aej.2023.01.016 – ident: e_1_3_3_31_1 doi: 10.1016/j.padiff.2021.100056 – ident: e_1_3_3_24_1 doi: 10.1007/s10483-021-2801-6 – ident: e_1_3_3_37_1 doi: 10.1063/1.1700493 – ident: e_1_3_3_4_1 doi: 10.1016/j.aej.2022.10.075 – ident: e_1_3_3_32_1 doi: 10.1016/j.icheatmasstransfer.2021.105264 – ident: e_1_3_3_8_1 doi: 10.1080/17455030.2022.2089368 – ident: e_1_3_3_10_1 doi: 10.1142/S0217979223500029 – ident: e_1_3_3_17_1 doi: 10.3390/nano12234291 – ident: e_1_3_3_16_1 doi: 10.3390/nano12111791 – ident: e_1_3_3_34_1 doi: 10.3390/math9222927 – ident: e_1_3_3_29_1 doi: 10.1080/17455030.2022.2148014 – ident: e_1_3_3_6_1 doi: 10.3390/mi13112019 – ident: e_1_3_3_25_1 doi: 10.1016/j.csite.2021.101359 – ident: e_1_3_3_3_1 doi: 10.1080/17455030.2022.2096944 – ident: e_1_3_3_11_1 doi: 10.1007/s13369-022-07210-9 – ident: e_1_3_3_21_1 doi: 10.1080/17455030.2021.1927237 – ident: e_1_3_3_5_1 doi: 10.1088/1402-4896/acab92 |
SSID | ssj0000229 |
Score | 2.4529681 |
Snippet | Hybrid nanofluids provide several advantages over conventional fluids, including improved thermal characteristics, increased stability, customizable features,... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3013 |
SubjectTerms | Biomedical engineering Biomedical materials Convection heating Darcy-Forchheimer quadratic drag force Dimensionless analysis Dissipation Drag Electrons Flow stability Fluid flow Heat conductivity Heat exchangers Heat flux Heat transfer Heat transmission hybrid nanofluid Mathematical models modified hamilton crosser/xue models for CNTs Multi wall carbon nanotubes Nanofluids non-linear thermal radiation Nonlinear differential equations Parameter modification Partial differential equations Petroleum engineering quadratic convection Similarity Single wall carbon nanotubes Thermal conductivity Thermodynamics |
Title | Model-based comparison of hybrid nanofluid Darcy-Forchheimer flow subject to quadratic convection and frictional heating with multiple slip conditions |
URI | https://www.tandfonline.com/doi/abs/10.1080/10407782.2023.2231631 https://www.proquest.com/docview/3085937424 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWWIiQ4ICggWgrygVuUsPnaZI-rQlWB6IVW6i2yY0e7aJOUNBHq_pD-UH4BM7bjpHRFKZcoWmmcZOfF8zJ-niHkvcC1MubPXAg-sQsRH945XxSuEMmcxamYFlwJZE9mx2fR5_P4fDL5NVItdS338s3WfSX_41X4DfyKu2Tv4Vk7KPwA5-BfOIKH4fhPPsZGZmsXA5EwYnLTUNBZXuFOLKdiVV2sOzj7CIC-co9qgPVSrkrZOMW6_ulcdhwTMchAf3RMNKp-q1KimxbilXCwk5DJGOLMbbO3VosIVPUCjcRqyP5977f16hUhbYoNKYAmy8YD5tq0zkLNTKMl9GHVqdzozOzXbsnKkgmbCVqyZblqdGDYrGxQ-QaBTgsODj1nATbSmnyB59KKNrkqMFbLcaojiFCXoXdimtlZyR8T3a3Ik2bGDlC6ZTKiZkrXXYB66KajCRrms3AU7CGAh1sDiVZe4gXxeh42mfeASQF79YfI2asF_gioVubom_qr_TAZDpOZYR6QhwF82mDXjXB6MrCHQHXWs4_a7zpLpx-23s0NPnWj2u4tdqEo0-kz8tR869CFBu5zMpHVLnkyqoC5Sx4pBXJ--YJcj8BMBzDTuqAazNSCmd4CM0UwUwNm2tbUgpkOYKYAZjqAmRowUwQz7cFMEcx0APNLcnb06fTw2DVNQ9w8DNMW1bEMOBaggoV5wkLM_sx4KKaCi9yPhEhFyhkPpwWbsSLxeRwHXPIISEEcoVLzFdmp6kq-JnQOnzsJsDwYCotQxXwugVakwufAcX2R7JGo_-uz3FTUx8Yu6-yvjt8jnjW70CVl7jKYj_2atSqXV-jGO1l4h-1BD4LMzFxgoqocJlEQ7d_3Xt6Qx8ObeUB22qaTb4GWt_ydwvFvEzHc6w |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EEfXgW3xUnYPXhG7zao6ilvrqScFb2EcWxZpUTRD9If5eZzZJrYp48NRCmSVhd-abmX47H2MHmv4rEzx0EHwCBxEffY5r42gdxSLo6raRliA7CPvX_tlNcDNxF4ZolVRDm2pQhI3V5NzUjG4ocfiJZQhCm0va3y4CHCYVWAHNBHEYkYqB1x58RuOOVSrjljmHNs0tnt-W-YJPX6aX_ojWFoJ6S0w1D18xT-7dspCuevs21_F_b7fMFusMFQ6rI7XCptJslS1MzC1cZbOWN6qe19g7aakNHcJCDWqsaQi5gdtXugwGmchyMyzx2zH61KvTy9GzbtO7h_QJzDB_gedSUi8IihweS6HpRCqwZHh75QLwRYDEjKqmJRB44EMANZChoUMCZssjMtIVA22dXfdOro76Ti314CiskQviNApERswlhKci4VHNHkpPt7XUivtad3VXCum1jQiFibgMgo5MpY-hPPCJX7fBprM8SzcZxJikRojNuBSNDgpknCIYdDWXmJlwHW0xv9ngRNVz0EmOY5jwelxqswEJbUBSb8AWc8dmo2oQyF8G8eTpSQrbgTGVXEri_WHbao5aUscUNLGz6SK_42__Y-l9Nte_urxILk4H5ztsHn_yif7CwxabLp7KdBdzrELuWSf6AIdhGCU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iKHrwLb6dg9eWzfa1exR18cXiQcFbSToNimu77raI_hB_rzNp6xPx4KmFMqElmflm0i_fCLGP_K9MydAh8AkcQnzyOYnGQYy6Kuhgy2hLkO2HJ9f-2U3QsAnHNa2Sa2hTCUXYWM3OPUTTMOLoSlUIIZvLrb9dwjfKKagAmgpZPJxPcbT6H8G4bRuVSUucI5vmEM9vw3yBpy_ipT-CtUWg3oLQzbtXxJN7tyy0m7x8k3X818ctivk6P4WDakEtiYk0WxZzn1QLl8W0ZY0m4xXxyp3UBg4jIULy3tEQcgO3z3wUDDKV5WZQ0t0RedSz08vJr27Tu4d0BGaQP8G41LwTBEUOj6VCXo8JWCq8PXAB9B3ArYyqLUtg6KCXAN4-hoYMCZQrD9kIK_7ZqrjuHV8dnjh1owcnoQq5YEajIlykTEJ5SaQ8rthD7WELNSbSR-xgRyvttYwKlYmkDoK2TrVPgTzwmV23JiazPEvXBXQpRY0ImWkoFg4KdDclKOig1JSXSIw2hN_Mb5zUKujcjGMQy1ostZmAmCcgridgQ7jvZsNKBuQvg-7nxRMXdv_FVM1SYu8P2-1mpcV1RCETq0wX-W1_8x9D74mZy6NefHHaP98Ss_TEZ-6LDLfFZDEq0x1KsAq9a13oDfdNFsk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-based+comparison+of+hybrid+nanofluid+Darcy-Forchheimer+flow+subject+to+quadratic+convection+and+frictional+heating+with+multiple+slip+conditions&rft.jtitle=Numerical+heat+transfer.+Part+A%2C+Applications&rft.au=Ramzan%2C+Muhammad&rft.au=Shahmir%2C+Nazia&rft.au=Saleel%2C+C.+Ahamed&rft.au=Kadry%2C+Seifedine&rft.date=2024-09-16&rft.issn=1040-7782&rft.eissn=1521-0634&rft.volume=85&rft.issue=18&rft.spage=3013&rft.epage=3033&rft_id=info:doi/10.1080%2F10407782.2023.2231631&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10407782_2023_2231631 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-7782&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-7782&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-7782&client=summon |