Model-based comparison of hybrid nanofluid Darcy-Forchheimer flow subject to quadratic convection and frictional heating with multiple slip conditions

Hybrid nanofluids provide several advantages over conventional fluids, including improved thermal characteristics, increased stability, customizable features, multifunctionality, and environmental advantages. Hybrid nanofluids are an appealing alternative for a variety of applications due to these b...

Full description

Saved in:
Bibliographic Details
Published inNumerical heat transfer. Part A, Applications Vol. 85; no. 18; pp. 3013 - 3033
Main Authors Ramzan, Muhammad, Shahmir, Nazia, Saleel, C. Ahamed, Kadry, Seifedine, Eldin, Sayed M., Saeed, Abdulkafi Mohammed
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 16.09.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hybrid nanofluids provide several advantages over conventional fluids, including improved thermal characteristics, increased stability, customizable features, multifunctionality, and environmental advantages. Hybrid nanofluids are an appealing alternative for a variety of applications due to these benefits. This study aims to compute the non-similar solution of single-multi wall carbon nanotubes (SWCNTs-MWCNTs)-based hybrid nanofluid flow over an inclined extending surface. Heat transmission and flow are observed under the effects of quadratic convection, Darcy-Forchheimer quadratic drag forces, viscous dissipation, and non-linear thermal radiative heat flux. The velocity and thermal slip constraints are imposed at the inclined surface. For the model-based comparison, Xue, and Modified Hamilton Crosser thermal conductivity models for carbon nanotubes (CNTs) are adopted. The irreversibility of the system is also investigated using the second law of thermodynamics for the distinct CNTs-based thermal conductivity models. Non-similarity variables are adopted to convert nonlinear partial differential equations into dimensionless PDEs. Analytical modeling of non-similar systems is done by adopting non-similarity transformations up to second-level truncation, and the bvp4c technique is then used to compute the results numerically. The research found that at 75 ° of plate inclination, the Modified Hamilton Crosser model for CNTs outperforms the Xue model in terms of heat transfer rate. Further, entropy generation is significantly larger for the Xue model than for the Modified Hamilton Crosser model for CNTs against higher values of viscous dissipation and porosity parameters. It is also revealed that for opposing buoyancy force G R < 0, the temperature of the fluid escalates. This study possesses multiple applications including petroleum engineering, heat exchangers, environmental remediation, and biomedical applications.
AbstractList Hybrid nanofluids provide several advantages over conventional fluids, including improved thermal characteristics, increased stability, customizable features, multifunctionality, and environmental advantages. Hybrid nanofluids are an appealing alternative for a variety of applications due to these benefits. This study aims to compute the non-similar solution of single-multi wall carbon nanotubes (SWCNTs-MWCNTs)-based hybrid nanofluid flow over an inclined extending surface. Heat transmission and flow are observed under the effects of quadratic convection, Darcy-Forchheimer quadratic drag forces, viscous dissipation, and non-linear thermal radiative heat flux. The velocity and thermal slip constraints are imposed at the inclined surface. For the model-based comparison, Xue, and Modified Hamilton Crosser thermal conductivity models for carbon nanotubes (CNTs) are adopted. The irreversibility of the system is also investigated using the second law of thermodynamics for the distinct CNTs-based thermal conductivity models. Non-similarity variables are adopted to convert nonlinear partial differential equations into dimensionless PDEs. Analytical modeling of non-similar systems is done by adopting non-similarity transformations up to second-level truncation, and the bvp4c technique is then used to compute the results numerically. The research found that at 75° of plate inclination, the Modified Hamilton Crosser model for CNTs outperforms the Xue model in terms of heat transfer rate. Further, entropy generation is significantly larger for the Xue model than for the Modified Hamilton Crosser model for CNTs against higher values of viscous dissipation and porosity parameters. It is also revealed that for opposing buoyancy force GR < 0, the temperature of the fluid escalates. This study possesses multiple applications including petroleum engineering, heat exchangers, environmental remediation, and biomedical applications.
Hybrid nanofluids provide several advantages over conventional fluids, including improved thermal characteristics, increased stability, customizable features, multifunctionality, and environmental advantages. Hybrid nanofluids are an appealing alternative for a variety of applications due to these benefits. This study aims to compute the non-similar solution of single-multi wall carbon nanotubes (SWCNTs-MWCNTs)-based hybrid nanofluid flow over an inclined extending surface. Heat transmission and flow are observed under the effects of quadratic convection, Darcy-Forchheimer quadratic drag forces, viscous dissipation, and non-linear thermal radiative heat flux. The velocity and thermal slip constraints are imposed at the inclined surface. For the model-based comparison, Xue, and Modified Hamilton Crosser thermal conductivity models for carbon nanotubes (CNTs) are adopted. The irreversibility of the system is also investigated using the second law of thermodynamics for the distinct CNTs-based thermal conductivity models. Non-similarity variables are adopted to convert nonlinear partial differential equations into dimensionless PDEs. Analytical modeling of non-similar systems is done by adopting non-similarity transformations up to second-level truncation, and the bvp4c technique is then used to compute the results numerically. The research found that at 75 ° of plate inclination, the Modified Hamilton Crosser model for CNTs outperforms the Xue model in terms of heat transfer rate. Further, entropy generation is significantly larger for the Xue model than for the Modified Hamilton Crosser model for CNTs against higher values of viscous dissipation and porosity parameters. It is also revealed that for opposing buoyancy force G R < 0, the temperature of the fluid escalates. This study possesses multiple applications including petroleum engineering, heat exchangers, environmental remediation, and biomedical applications.
Author Kadry, Seifedine
Ramzan, Muhammad
Eldin, Sayed M.
Saleel, C. Ahamed
Saeed, Abdulkafi Mohammed
Shahmir, Nazia
Author_xml – sequence: 1
  givenname: Muhammad
  orcidid: 0000-0002-9523-5800
  surname: Ramzan
  fullname: Ramzan, Muhammad
  organization: Department of Computer Science, Bahria University
– sequence: 2
  givenname: Nazia
  surname: Shahmir
  fullname: Shahmir, Nazia
  organization: Department of Computer Science, Bahria University
– sequence: 3
  givenname: C. Ahamed
  surname: Saleel
  fullname: Saleel, C. Ahamed
  organization: Department of Mechanical Engineering, College of Engineering, King Khalid University
– sequence: 4
  givenname: Seifedine
  surname: Kadry
  fullname: Kadry, Seifedine
  organization: Department of Electrical and Computer Engineering, Lebanese American University
– sequence: 5
  givenname: Sayed M.
  surname: Eldin
  fullname: Eldin, Sayed M.
  organization: Center of Research, Faculty of Engineering, Future University in Egypt New Cairo
– sequence: 6
  givenname: Abdulkafi Mohammed
  surname: Saeed
  fullname: Saeed, Abdulkafi Mohammed
  organization: Department of Mathematics, College of Science, Qassim University
BookMark eNqFkUuLFDEUhYOM4MzoTxACrqvNo16NG2WcUWHEja7DzctKk0pqkpRN_xF_ryl73LjQbHJv-M7hhHOFLkIMBqGXlOwoGclrSloyDCPbMcL4jjFOe06foEvaMdqQnrcXda5Ms0HP0FXOB1IPY_tL9PNz1MY3ErLRWMV5geRyDDhaPJ1kchoHCNH6tU7vIalTcxeTmibjZpOw9fGI8yoPRhVcIn5YQScoTlWr8KM-umoFQWOb3O8FPJ5MBcJ3fHRlwvPqi1u8wdm7ZRNpt2H5OXpqwWfz4vG-Rt_ubr_efGzuv3z4dPPuvlGcj6UZxhFatq__BK4G4P2eDL3kmmipFW21HvUoQXJioQc7UNl1TBrZDj3rWkYIv0avzr5Lig-ryUUc4ppqzCw4Gbs9H1rWVurNmVIp5pyMFcoV2IKWBM4LSsRWhPhThNiKEI9FVHX3l3pJboZ0-q_u7Vnngo1phmNMXosCJx-TTRCUqyH_bfELpCWkiA
CitedBy_id crossref_primary_10_1038_s41598_023_44640_3
crossref_primary_10_1038_s41598_023_49433_2
crossref_primary_10_1515_phys_2023_0201
crossref_primary_10_1007_s00396_024_05233_2
crossref_primary_10_1002_zamm_202300392
crossref_primary_10_1016_j_padiff_2024_100958
crossref_primary_10_1016_j_asej_2023_102503
crossref_primary_10_1093_jcde_qwae029
crossref_primary_10_1007_s13201_024_02235_x
crossref_primary_10_1080_10407782_2023_2240509
Cites_doi 10.1080/17455030.2022.2089368
10.1016/j.aej.2022.10.075
10.1002/htj.22433
10.1007/s13369-022-06825-2
10.3390/math9222934
10.1016/j.aej.2015.03.003
10.1016/j.physa.2019.122471
10.1002/htj.22571
10.22055/JACM.2020.32882.2095
10.1088/1402-4896/ab534b
10.1615/SpecialTopicsRevPorousMedia.2023045731
10.1080/17455030.2022.2119302
10.4028/www.scientific.net/NHC.26.62
10.1016/j.aej.2022.12.029
10.1007/s00419-022-02214-1
10.3390/nano12152552
10.1016/j.csite.2022.101893
10.3390/mi13112019
10.1016/j.aej.2023.01.016
10.1016/j.padiff.2021.100056
10.1007/s10483-021-2801-6
10.1063/1.1700493
10.1016/j.icheatmasstransfer.2021.105264
10.1142/S0217979223500029
10.3390/nano12234291
10.3390/nano12111791
10.3390/math9222927
10.1080/17455030.2022.2148014
10.1016/j.csite.2021.101359
10.1080/17455030.2022.2096944
10.1007/s13369-022-07210-9
10.1080/17455030.2021.1927237
10.1088/1402-4896/acab92
ContentType Journal Article
Copyright 2023 Taylor & Francis Group, LLC 2023
2023 Taylor & Francis Group, LLC
Copyright_xml – notice: 2023 Taylor & Francis Group, LLC 2023
– notice: 2023 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/10407782.2023.2231631
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1521-0634
EndPage 3033
ExternalDocumentID 10_1080_10407782_2023_2231631
2231631
Genre Research Article
GrantInformation_xml – fundername: King Khalid University
  grantid: RGP2/45/44
GroupedDBID -~X
.7F
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
DGEBU
DKSSO
EAP
EBS
EST
ESX
E~A
E~B
GEVLZ
GTTXZ
H13
HF~
HZ~
H~P
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~02
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7SC
7TB
8FD
ACUHS
ADMLS
EMK
EPL
FR3
H8D
I-F
JQ2
KR7
L7M
L~C
L~D
TASJS
TUS
ID FETCH-LOGICAL-c338t-788a429521a3c7a369076b3d0dbdc14dd8d8bab30fa6af71b552beb4762542003
ISSN 1040-7782
IngestDate Wed Aug 13 02:34:58 EDT 2025
Tue Jul 01 00:53:20 EDT 2025
Thu Apr 24 23:02:29 EDT 2025
Wed Dec 25 09:02:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-788a429521a3c7a369076b3d0dbdc14dd8d8bab30fa6af71b552beb4762542003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9523-5800
PQID 3085937424
PQPubID 53105
PageCount 21
ParticipantIDs proquest_journals_3085937424
crossref_primary_10_1080_10407782_2023_2231631
crossref_citationtrail_10_1080_10407782_2023_2231631
informaworld_taylorfrancis_310_1080_10407782_2023_2231631
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-16
PublicationDateYYYYMMDD 2024-09-16
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-16
  day: 16
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Numerical heat transfer. Part A, Applications
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_3_30_1
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_34_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_29_1
e_1_3_3_28_1
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_26_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_4_1
e_1_3_3_22_1
References_xml – ident: e_1_3_3_2_1
  doi: 10.1080/17455030.2022.2089368
– ident: e_1_3_3_14_1
  doi: 10.1016/j.aej.2022.10.075
– ident: e_1_3_3_22_1
  doi: 10.1002/htj.22433
– ident: e_1_3_3_27_1
  doi: 10.1007/s13369-022-06825-2
– ident: e_1_3_3_15_1
  doi: 10.3390/math9222934
– ident: e_1_3_3_23_1
  doi: 10.1016/j.aej.2015.03.003
– ident: e_1_3_3_33_1
  doi: 10.1016/j.physa.2019.122471
– ident: e_1_3_3_26_1
  doi: 10.1002/htj.22571
– ident: e_1_3_3_38_1
  doi: 10.22055/JACM.2020.32882.2095
– ident: e_1_3_3_35_1
  doi: 10.1088/1402-4896/ab534b
– ident: e_1_3_3_12_1
  doi: 10.1615/SpecialTopicsRevPorousMedia.2023045731
– ident: e_1_3_3_30_1
  doi: 10.1080/17455030.2022.2119302
– ident: e_1_3_3_36_1
  doi: 10.4028/www.scientific.net/NHC.26.62
– ident: e_1_3_3_18_1
  doi: 10.1016/j.aej.2022.12.029
– ident: e_1_3_3_9_1
  doi: 10.1016/j.aej.2022.12.029
– ident: e_1_3_3_7_1
  doi: 10.1007/s00419-022-02214-1
– ident: e_1_3_3_19_1
  doi: 10.3390/nano12152552
– ident: e_1_3_3_28_1
  doi: 10.1016/j.csite.2022.101893
– ident: e_1_3_3_13_1
  doi: 10.3390/mi13112019
– ident: e_1_3_3_20_1
  doi: 10.1016/j.aej.2023.01.016
– ident: e_1_3_3_31_1
  doi: 10.1016/j.padiff.2021.100056
– ident: e_1_3_3_24_1
  doi: 10.1007/s10483-021-2801-6
– ident: e_1_3_3_37_1
  doi: 10.1063/1.1700493
– ident: e_1_3_3_4_1
  doi: 10.1016/j.aej.2022.10.075
– ident: e_1_3_3_32_1
  doi: 10.1016/j.icheatmasstransfer.2021.105264
– ident: e_1_3_3_8_1
  doi: 10.1080/17455030.2022.2089368
– ident: e_1_3_3_10_1
  doi: 10.1142/S0217979223500029
– ident: e_1_3_3_17_1
  doi: 10.3390/nano12234291
– ident: e_1_3_3_16_1
  doi: 10.3390/nano12111791
– ident: e_1_3_3_34_1
  doi: 10.3390/math9222927
– ident: e_1_3_3_29_1
  doi: 10.1080/17455030.2022.2148014
– ident: e_1_3_3_6_1
  doi: 10.3390/mi13112019
– ident: e_1_3_3_25_1
  doi: 10.1016/j.csite.2021.101359
– ident: e_1_3_3_3_1
  doi: 10.1080/17455030.2022.2096944
– ident: e_1_3_3_11_1
  doi: 10.1007/s13369-022-07210-9
– ident: e_1_3_3_21_1
  doi: 10.1080/17455030.2021.1927237
– ident: e_1_3_3_5_1
  doi: 10.1088/1402-4896/acab92
SSID ssj0000229
Score 2.4529681
Snippet Hybrid nanofluids provide several advantages over conventional fluids, including improved thermal characteristics, increased stability, customizable features,...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3013
SubjectTerms Biomedical engineering
Biomedical materials
Convection heating
Darcy-Forchheimer quadratic drag force
Dimensionless analysis
Dissipation
Drag
Electrons
Flow stability
Fluid flow
Heat conductivity
Heat exchangers
Heat flux
Heat transfer
Heat transmission
hybrid nanofluid
Mathematical models
modified hamilton crosser/xue models for CNTs
Multi wall carbon nanotubes
Nanofluids
non-linear thermal radiation
Nonlinear differential equations
Parameter modification
Partial differential equations
Petroleum engineering
quadratic convection
Similarity
Single wall carbon nanotubes
Thermal conductivity
Thermodynamics
Title Model-based comparison of hybrid nanofluid Darcy-Forchheimer flow subject to quadratic convection and frictional heating with multiple slip conditions
URI https://www.tandfonline.com/doi/abs/10.1080/10407782.2023.2231631
https://www.proquest.com/docview/3085937424
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWWIiQ4ICggWgrygVuUsPnaZI-rQlWB6IVW6i2yY0e7aJOUNBHq_pD-UH4BM7bjpHRFKZcoWmmcZOfF8zJ-niHkvcC1MubPXAg-sQsRH945XxSuEMmcxamYFlwJZE9mx2fR5_P4fDL5NVItdS338s3WfSX_41X4DfyKu2Tv4Vk7KPwA5-BfOIKH4fhPPsZGZmsXA5EwYnLTUNBZXuFOLKdiVV2sOzj7CIC-co9qgPVSrkrZOMW6_ulcdhwTMchAf3RMNKp-q1KimxbilXCwk5DJGOLMbbO3VosIVPUCjcRqyP5977f16hUhbYoNKYAmy8YD5tq0zkLNTKMl9GHVqdzozOzXbsnKkgmbCVqyZblqdGDYrGxQ-QaBTgsODj1nATbSmnyB59KKNrkqMFbLcaojiFCXoXdimtlZyR8T3a3Ik2bGDlC6ZTKiZkrXXYB66KajCRrms3AU7CGAh1sDiVZe4gXxeh42mfeASQF79YfI2asF_gioVubom_qr_TAZDpOZYR6QhwF82mDXjXB6MrCHQHXWs4_a7zpLpx-23s0NPnWj2u4tdqEo0-kz8tR869CFBu5zMpHVLnkyqoC5Sx4pBXJ--YJcj8BMBzDTuqAazNSCmd4CM0UwUwNm2tbUgpkOYKYAZjqAmRowUwQz7cFMEcx0APNLcnb06fTw2DVNQ9w8DNMW1bEMOBaggoV5wkLM_sx4KKaCi9yPhEhFyhkPpwWbsSLxeRwHXPIISEEcoVLzFdmp6kq-JnQOnzsJsDwYCotQxXwugVakwufAcX2R7JGo_-uz3FTUx8Yu6-yvjt8jnjW70CVl7jKYj_2atSqXV-jGO1l4h-1BD4LMzFxgoqocJlEQ7d_3Xt6Qx8ObeUB22qaTb4GWt_ydwvFvEzHc6w
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EEfXgW3xUnYPXhG7zao6ilvrqScFb2EcWxZpUTRD9If5eZzZJrYp48NRCmSVhd-abmX47H2MHmv4rEzx0EHwCBxEffY5r42gdxSLo6raRliA7CPvX_tlNcDNxF4ZolVRDm2pQhI3V5NzUjG4ocfiJZQhCm0va3y4CHCYVWAHNBHEYkYqB1x58RuOOVSrjljmHNs0tnt-W-YJPX6aX_ojWFoJ6S0w1D18xT-7dspCuevs21_F_b7fMFusMFQ6rI7XCptJslS1MzC1cZbOWN6qe19g7aakNHcJCDWqsaQi5gdtXugwGmchyMyzx2zH61KvTy9GzbtO7h_QJzDB_gedSUi8IihweS6HpRCqwZHh75QLwRYDEjKqmJRB44EMANZChoUMCZssjMtIVA22dXfdOro76Ti314CiskQviNApERswlhKci4VHNHkpPt7XUivtad3VXCum1jQiFibgMgo5MpY-hPPCJX7fBprM8SzcZxJikRojNuBSNDgpknCIYdDWXmJlwHW0xv9ngRNVz0EmOY5jwelxqswEJbUBSb8AWc8dmo2oQyF8G8eTpSQrbgTGVXEri_WHbao5aUscUNLGz6SK_42__Y-l9Nte_urxILk4H5ztsHn_yif7CwxabLp7KdBdzrELuWSf6AIdhGCU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iKHrwLb6dg9eWzfa1exR18cXiQcFbSToNimu77raI_hB_rzNp6xPx4KmFMqElmflm0i_fCLGP_K9MydAh8AkcQnzyOYnGQYy6Kuhgy2hLkO2HJ9f-2U3QsAnHNa2Sa2hTCUXYWM3OPUTTMOLoSlUIIZvLrb9dwjfKKagAmgpZPJxPcbT6H8G4bRuVSUucI5vmEM9vw3yBpy_ipT-CtUWg3oLQzbtXxJN7tyy0m7x8k3X818ctivk6P4WDakEtiYk0WxZzn1QLl8W0ZY0m4xXxyp3UBg4jIULy3tEQcgO3z3wUDDKV5WZQ0t0RedSz08vJr27Tu4d0BGaQP8G41LwTBEUOj6VCXo8JWCq8PXAB9B3ArYyqLUtg6KCXAN4-hoYMCZQrD9kIK_7ZqrjuHV8dnjh1owcnoQq5YEajIlykTEJ5SaQ8rthD7WELNSbSR-xgRyvttYwKlYmkDoK2TrVPgTzwmV23JiazPEvXBXQpRY0ImWkoFg4KdDclKOig1JSXSIw2hN_Mb5zUKujcjGMQy1ostZmAmCcgridgQ7jvZsNKBuQvg-7nxRMXdv_FVM1SYu8P2-1mpcV1RCETq0wX-W1_8x9D74mZy6NefHHaP98Ss_TEZ-6LDLfFZDEq0x1KsAq9a13oDfdNFsk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-based+comparison+of+hybrid+nanofluid+Darcy-Forchheimer+flow+subject+to+quadratic+convection+and+frictional+heating+with+multiple+slip+conditions&rft.jtitle=Numerical+heat+transfer.+Part+A%2C+Applications&rft.au=Ramzan%2C+Muhammad&rft.au=Shahmir%2C+Nazia&rft.au=Saleel%2C+C.+Ahamed&rft.au=Kadry%2C+Seifedine&rft.date=2024-09-16&rft.issn=1040-7782&rft.eissn=1521-0634&rft.volume=85&rft.issue=18&rft.spage=3013&rft.epage=3033&rft_id=info:doi/10.1080%2F10407782.2023.2231631&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10407782_2023_2231631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-7782&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-7782&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-7782&client=summon