Approximation of misclassification probabilities in linear discriminant analysis based on repeated measurements

The classification of observations based on repeated measurements performed on the same subject over a given period of time or under different conditions is a common procedure in many disciplines such as medicine, psychology and environmental studies. In this article repeated measurements follow an...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Theory and methods Vol. 52; no. 23; pp. 8388 - 8407
Main Authors Ngailo, Edward Kanuti, Chuma, Furaha
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.12.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0361-0926
1532-415X
DOI10.1080/03610926.2022.2062605

Cover

Loading…
Abstract The classification of observations based on repeated measurements performed on the same subject over a given period of time or under different conditions is a common procedure in many disciplines such as medicine, psychology and environmental studies. In this article repeated measurements follow an extended growth curve model and are classified using linear discriminant analysis. The aim of this article is to propose approximation for the misclassification probabilities in the linear discriminant function when the population means follow an extended growth curve structure. Using specific statistic relations we derive the approximation of misclassification probabilities for known and unknown covariance matrices. Finally, we perform a Monte Carlo simulation study to assess the accuracy of the developed results.
AbstractList The classification of observations based on repeated measurements performed on the same subject over a given period of time or under different conditions is a common procedure in many disciplines such as medicine, psychology and environmental studies. In this article repeated measurements follow an extended growth curve model and are classified using linear discriminant analysis. The aim of this article is to propose approximation for the misclassification probabilities in the linear discriminant function when the population means follow an extended growth curve structure. Using specific statistic relations we derive the approximation of misclassification probabilities for known and unknown covariance matrices. Finally, we perform a Monte Carlo simulation study to assess the accuracy of the developed results.
Author Chuma, Furaha
Ngailo, Edward Kanuti
Author_xml – sequence: 1
  givenname: Edward Kanuti
  surname: Ngailo
  fullname: Ngailo, Edward Kanuti
  organization: Department of Physics, Mathematics and Informatics, University of Dar es Salaam, Dar es Salaam University College of Education
– sequence: 2
  givenname: Furaha
  surname: Chuma
  fullname: Chuma, Furaha
  organization: Department of Physics, Mathematics and Informatics, University of Dar es Salaam, Dar es Salaam University College of Education
BookMark eNqFkE1r3DAQhkVJoZuPn1Aw5OxUH7Ys00tC6EcgkEsCvYmxVoIJtrTVaEn231ebTS85JJeZQTzvMHqO2VFM0TP2VfALwQ3_xpUWfJT6QnIpa9FS8_4TW4leybYT_Z8jttoz7R76wo6JHjkX_WDUiqWrzSanZ1ygYIpNCs2C5GYgwoDu8FiBCSacsaCnBmMzY_SQm3UlMy4YIZYGIsw7QmomIL9uaiz7jYdS58UDbbNffCx0yj4HmMmfvfYT9vDzx_317_b27tfN9dVt65QypR10WIdO-2nolOk657wYtO_HCcyoa-EVMIrLoLowDgNoZbTr3CRhVMZ1QZ2w88PeevzfradiH9M21xvJSjP0UoixN5X6fqBcTkTZB-uwvHy6ZMDZCm73hu1_w3Zv2L4arun-TXpTdUDefZi7POQwhpQXeEp5XtsCuznlkCE6JKveX_EPtiWWyg
CitedBy_id crossref_primary_10_1080_03610926_2022_2116286
crossref_primary_10_1007_s42952_023_00246_z
Cites_doi 10.1111/j.1469-1809.1938.tb02189.x
10.1080/13607860801933414
10.1214/aoms/1177703864
10.3389/fpsyg.2010.00146
10.2307/2528217
10.1006/jmva.1999.1862
10.1007/978-1-4614-7138-7
10.1016/j.jmva.2015.05.008
10.1007/978-3-319-78784-8
10.1081/STA-200031350
10.2307/2334137
10.1002/9780470539873
10.1007/978-1-4612-5098-2-2
10.1016/S0169-7161(82)02008-2
10.1007/978-981-13-2616-5
10.1007/BF02313425
10.10520/AJA0038271X-690
10.1375/twin.3.3.134
10.1111/j.1469-1809.1936.tb02137.x
10.1016/j.jmva.2012.11.001
10.1002/9781118391686
10.2307/2528873
10.4236/ojs.2019.91002
10.10520/AJA0038271X-274
10.1016/j.jspi.2011.07.001
ContentType Journal Article
Copyright 2022 Taylor & Francis Group, LLC 2022
2022 Taylor & Francis Group, LLC
Copyright_xml – notice: 2022 Taylor & Francis Group, LLC 2022
– notice: 2022 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610926.2022.2062605
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1532-415X
EndPage 8407
ExternalDocumentID 10_1080_03610926_2022_2062605
2062605
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
TWZ
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~02
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
K1G
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-76fdf46eb743844cce176e59ba896ba8076f8302f34f977a6386c4cb2a938c4f3
ISSN 0361-0926
IngestDate Wed Aug 13 07:44:57 EDT 2025
Thu Apr 24 22:48:42 EDT 2025
Tue Jul 01 00:46:55 EDT 2025
Wed Dec 25 09:02:53 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-76fdf46eb743844cce176e59ba896ba8076f8302f34f977a6386c4cb2a938c4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2875211958
PQPubID 186202
PageCount 20
ParticipantIDs informaworld_taylorfrancis_310_1080_03610926_2022_2062605
proquest_journals_2875211958
crossref_citationtrail_10_1080_03610926_2022_2062605
crossref_primary_10_1080_03610926_2022_2062605
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-02
PublicationDateYYYYMMDD 2023-12-02
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-02
  day: 02
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Theory and methods
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Gupta A. K. (e_1_3_2_12_1) 2000
e_1_3_2_28_1
e_1_3_2_29_1
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
Siotani M. (e_1_3_2_32_1) 1982
e_1_3_2_26_1
Rao C. R. (e_1_3_2_27_1) 1967; 5
Siotani M. (e_1_3_2_33_1) 1977
e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
Arnold J. R. (e_1_3_2_4_1) 2007
e_1_3_2_2_1
e_1_3_2_31_1
e_1_3_2_30_1
e_1_3_2_10_1
e_1_3_2_11_1
e_1_3_2_6_1
McLachlan G. J. (e_1_3_2_22_1) 2004
e_1_3_2_35_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_34_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
Friedman J. H. (e_1_3_2_8_1) 2009
References_xml – start-page: 523
  volume-title: Multivariate Analysis
  year: 1977
  ident: e_1_3_2_33_1
– ident: e_1_3_2_7_1
  doi: 10.1111/j.1469-1809.1938.tb02189.x
– volume-title: Matrix variate distributions
  year: 2000
  ident: e_1_3_2_12_1
– ident: e_1_3_2_19_1
  doi: 10.1080/13607860801933414
– ident: e_1_3_2_25_1
  doi: 10.1214/aoms/1177703864
– ident: e_1_3_2_20_1
  doi: 10.3389/fpsyg.2010.00146
– ident: e_1_3_2_5_1
  doi: 10.2307/2528217
– ident: e_1_3_2_9_1
  doi: 10.1006/jmva.1999.1862
– ident: e_1_3_2_14_1
  doi: 10.1007/978-1-4614-7138-7
– ident: e_1_3_2_35_1
  doi: 10.1016/j.jmva.2015.05.008
– ident: e_1_3_2_30_1
  doi: 10.1007/978-3-319-78784-8
– ident: e_1_3_2_23_1
  doi: 10.1081/STA-200031350
– ident: e_1_3_2_26_1
  doi: 10.2307/2334137
– ident: e_1_3_2_11_1
  doi: 10.1002/9780470539873
– ident: e_1_3_2_2_1
  doi: 10.1007/978-1-4612-5098-2-2
– ident: e_1_3_2_18_1
  doi: 10.1016/S0169-7161(82)02008-2
– ident: e_1_3_2_13_1
  doi: 10.1111/j.1469-1809.1938.tb02189.x
– ident: e_1_3_2_10_1
  doi: 10.1007/978-981-13-2616-5
– ident: e_1_3_2_3_1
  doi: 10.1007/BF02313425
– ident: e_1_3_2_24_1
  doi: 10.10520/AJA0038271X-690
– ident: e_1_3_2_29_1
  doi: 10.1375/twin.3.3.134
– volume-title: Applied multivariate statistical analysis
  year: 2007
  ident: e_1_3_2_4_1
– ident: e_1_3_2_6_1
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– ident: e_1_3_2_15_1
  doi: 10.1016/j.jmva.2012.11.001
– start-page: 61
  volume-title: Handbook of statistics
  year: 1982
  ident: e_1_3_2_32_1
– volume-title: Discriminant analysis and statistical pattern recognition
  year: 2004
  ident: e_1_3_2_22_1
– ident: e_1_3_2_28_1
  doi: 10.1002/9781118391686
– ident: e_1_3_2_16_1
  doi: 10.2307/2528873
– ident: e_1_3_2_34_1
– ident: e_1_3_2_21_1
  doi: 10.4236/ojs.2019.91002
– ident: e_1_3_2_17_1
  doi: 10.10520/AJA0038271X-274
– ident: e_1_3_2_31_1
  doi: 10.1016/j.jspi.2011.07.001
– volume: 5
  start-page: 355
  issue: 1
  year: 1967
  ident: e_1_3_2_27_1
  article-title: Least squares theory using an estimated dispersion matrix and its application to measurement of signals
  publication-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
– volume-title: The elements of statistical learning: Data mining, inference and prediction
  year: 2009
  ident: e_1_3_2_8_1
SSID ssj0015783
Score 2.354038
Snippet The classification of observations based on repeated measurements performed on the same subject over a given period of time or under different conditions is a...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8388
SubjectTerms Approximation
Covariance matrix
Discriminant analysis
Environmental studies
extended growth curve model
growth curve model
linear discriminant function
Mathematical analysis
Monte Carlo simulation
probability of misclassification
Title Approximation of misclassification probabilities in linear discriminant analysis based on repeated measurements
URI https://www.tandfonline.com/doi/abs/10.1080/03610926.2022.2062605
https://www.proquest.com/docview/2875211958
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFBZZd-kOY-s21rUdOuxWHGJJduxjKSulo7kshdyMJUsjsDglcWDsP-h_3fck2ZZJoftxMUaJ7ODvy9N71nvfI-RLpUVaSc1QtxUCFC2rqOSZinSZx8IoI0yFgeLtLL2-EzeLZDEaPQRZS7tGjtXvJ-tK_gVVGANcsUr2L5DtLgoDcA74whEQhuMfYXyBguC_lqvO7QPQFLrDmP_jBrFhjJPiXtrUq3N0K8sNbswo19HL5ph7ZRJc0yrcP9joezDScL7q3yFuQ0d2UFhiL4ylSU71eewr_u3GhGtR3Xnusx_l0u32uHbR59_KGp5Qn2WwW1l39mqHJdzhOwnGbX5HH8HO99qDBFaNp3E0yZnXv26tLovAk1iEZjlhAf0YD4xsxl0nwHbBFq5v7t5i4LMnOSrKM0xHYVh5ZyO4fvXrchL9Jy_ISwYRBzbD4JNZtyEFhs112va_vi0GQ5n2p24wcHMGIrh7i771ZOZvyGsfgtALx6e3ZKTrI_LqttPv3R6Rw-8dmO_IekAzujZ0j2Z0QDO6rKmjGQ1pRluaUUszCtNamtGQZu_J3dXX-eV15Pt0RIrzrImmqamMSLUEbzQTQikdT1Od5LLM8hQOE_gCyswZLgyEGyWY_FQJJVmZg1kQhn8gB_W61h8JrXglSliCRIKdmVUsBZeJBIYJ5IiZHBPRPtZCeRF77KXys4hbrVuPRoFoFB6NYzLupt07FZfnJuQhZkVjGW0cmQv-zNzTFuDCG4ttwbJpgmKKSfbpPy59Qg77v9spOWg2O30GTnEjP1u6PgK4SLWI
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HIADb8R45sC1Y23SbD0iBBqw7QQSt6hJEwkB3bR1EuLXYzftGCDEgUtVtXWUpo7zObU_A5xlVshM24h4W9FBsToLUt4xgU2TUDjjhMvIUewPZPdB3D7Gj3O5MBRWST6080QRpa2myU2b0XVI3Dla3bCVRBRhEFEyVQnKF2E5TmSbqhjw1mD2JwE10pdIlug2o0ydxfNbM1_Wpy_spT-sdbkEXW-AqTvvI0-em9NCN837N17H_73dJqxXCJVdeJXaggWbb8Naf0bvOtmGVYKonuF5B4YXREv-9uRzINnQMVQdQ6CcopD8RSpb4wnB0TFnTzmjfqVjRjnBvq5YXrC04kdhtLJmDMXGdoRLBZ6_fu5kTnbh4frq_rIbVGUcAoP-bxG0pcuckFYjWOkIYYwN29LGiU47icRDCx8gFjLHhUM0mqJFkEYYHaUJao1wfA-W8mFu94FlPBMpWigRU-FeE2rBdawRdiAM4ZFrNUDUH0-ZiuOcSm28qLCmQq0GV9HgqmpwG9CciY08ycdfAsm8Zqii3F1xvhSK4n_IHtVqpCp7MVHot8bEtRd3Dv7R9CmsdO_7PdW7Gdwdwire4mXkTXQES8V4ao8RPxX6pJwgHyjHDRM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58gOjBR1V8VN2D19Qm2azNUdTiq8WDBW9L9gWipqWNIP56Z7JJfSEevISQZJbNZnb2m83MNwCHxnJhlI2ItxUdFKtMkMUdHdgsDbnTjjtDjmKvLy4G_Oo-qaMJJ1VYJfnQzhNFlLaaJvfIuDoi7giNbthOIwowiCiXqsTkszAviDycsjja_emPBFRIXyFZoNeMMnUSz2_NfFmevpCX_jDW5QrUXQFV990Hnjy2XgrV0m_faB3_9XKrsFzhU3biFWoNZmzegKXelNx10oBFAqie33kdhidESv764DMg2dAxVBxNkJxikPxFKlrj6cDRLWcPOaNuZWNGGcG-qlhesKxiR2G0rhqGYmM7woUCz58_9jEnGzDont-dXgRVEYdAo_dbBMfCGceFVQhVOpxrbcNjYZNUZZ1U4KGNDxAHmYu5QyyaoT0QmmsVZSnqDHfxJszlw9xuATOx4RnaJ55Q2V4dKh6rRCHoQBASR669Dbz-dlJXDOdUaONJhjURajW4kgZXVoO7Da2p2MhTfPwlkH5WDFmUeyvOF0KR8R-yzVqLZGUtJhK91oSY9pLOzj-aPoCF27OuvLnsX-_CIt6Jy7CbqAlzxfjF7iF4KtR-OT3eAcUaC7c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+of+misclassification+probabilities+in+linear+discriminant+analysis+based+on+repeated+measurements&rft.jtitle=Communications+in+statistics.+Theory+and+methods&rft.au=Ngailo%2C+Edward+Kanuti&rft.au=Chuma%2C+Furaha&rft.date=2023-12-02&rft.pub=Taylor+%26+Francis&rft.issn=0361-0926&rft.eissn=1532-415X&rft.volume=52&rft.issue=23&rft.spage=8388&rft.epage=8407&rft_id=info:doi/10.1080%2F03610926.2022.2062605&rft.externalDocID=2062605
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0926&client=summon