Classical and robust orthogonal regression between parts of compositional data
The different parts (variables) of a compositional data set cannot be considered independent from each other, since only the ratios between the parts constitute the relevant information to be analysed. Practically, this information can be included in a system of orthonormal coordinates. For the task...
Saved in:
Published in | Statistics (Berlin, DDR) Vol. 50; no. 6; pp. 1261 - 1275 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
01.11.2016
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The different parts (variables) of a compositional data set cannot be considered independent from each other, since only the ratios between the parts constitute the relevant information to be analysed. Practically, this information can be included in a system of orthonormal coordinates. For the task of regression of one part on other parts, a specific choice of orthonormal coordinates is proposed which allows for an interpretation of the regression parameters in terms of the original parts. In this context, orthogonal regression is appropriate since all compositional parts - also the explanatory variables - are measured with errors. Besides classical (least-squares based) parameter estimation, also robust estimation based on robust principal component analysis is employed. Statistical inference for the regression parameters is obtained by bootstrap; in the robust version the fast and robust bootstrap procedure is used. The methodology is illustrated with a data set from macroeconomics. |
---|---|
AbstractList | The different parts (variables) of a compositional data set cannot be considered independent from each other, since only the ratios between the parts constitute the relevant information to be analysed. Practically, this information can be included in a system of orthonormal coordinates. For the task of regression of one part on other parts, a specific choice of orthonormal coordinates is proposed which allows for an interpretation of the regression parameters in terms of the original parts. In this context, orthogonal regression is appropriate since all compositional parts - also the explanatory variables - are measured with errors. Besides classical (least-squares based) parameter estimation, also robust estimation based on robust principal component analysis is employed. Statistical inference for the regression parameters is obtained by bootstrap; in the robust version the fast and robust bootstrap procedure is used. The methodology is illustrated with a data set from macroeconomics. |
Author | Hrůzová, K. Todorov, V. Filzmoser, P. Hron, K. |
Author_xml | – sequence: 1 givenname: K. surname: Hrůzová fullname: Hrůzová, K. email: klara.hruzova@gmail.com organization: Department of Mathematical Analysis and Applications of Mathematics, Palacký University – sequence: 2 givenname: V. surname: Todorov fullname: Todorov, V. organization: United Nations Industrial Development Organization (UNIDO), Vienna International Centre – sequence: 3 givenname: K. surname: Hron fullname: Hron, K. organization: Department of Mathematical Analysis and Applications of Mathematics, Palacký University – sequence: 4 givenname: P. surname: Filzmoser fullname: Filzmoser, P. organization: Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology |
BookMark | eNp9kE1LAzEQhoNUsFV_grDgeesk2U2yN6X4BUUveg6z2Wzdsk1qklL679219SpzmGF43mF4ZmTivLOE3FCYU1BwB4xzqpSaM6BiTqlgVBRnZEqBVXlRUZiQ6cjkI3RBZjGuAUBwLqfkbdFjjJ3BPkPXZMHXu5gyH9KXX3k3bINdBTsQ3mW1TXtrXbbFkGLm28z4zdbHLnW_ZIMJr8h5i32016d-ST6fHj8WL_ny_fl18bDMDecq5bJoW14XCqSEsqikNRxtZQsQVSVNQbmVtDGqoSWVwEtkrJG1QisEDjMT_JLcHu9ug__e2Zj02u_C8EXUDKDiHIYaqPJImeBjDLbV29BtMBw0BT2q03_q9KhOn9QNuftjrnOtDxvc-9A3OuGh96EN6EwXNf__xA_w1nap |
CitedBy_id | crossref_primary_10_1007_s11004_020_09895_w crossref_primary_10_1007_s12561_019_09253_3 crossref_primary_10_1007_s11749_019_00670_6 crossref_primary_10_1007_s11831_021_09696_2 crossref_primary_10_1007_s11831_022_09728_5 crossref_primary_10_3390_ijerph15102248 |
Cites_doi | 10.1007/s11004-009-9238-0 10.1016/S0047-259X(03)00057-5 10.1016/j.csda.2012.02.012 10.1016/j.cageo.2011.06.014 10.1016/j.sigpro.2007.04.004 10.1214/aos/1021379865 10.1007/s11004-007-9141-5 10.1023/A:1021979409012 10.1007/s11004-005-7381-9 10.1002/(SICI)1099-095X(199907/08)10:4<363::AID-ENV362>3.0.CO;2-0 10.1002/0470010940 10.1198/016214506000000096 10.1007/978-94-009-4109-0 10.1198/004017005000000166 10.1080/02331888.2015.1135155 10.1002/9780470316665 10.1093/biomet/76.1.149 10.1007/s11004-011-9333-x 10.1002/cem.2657 10.1016/j.jhydrol.2014.08.028 10.1007/s11749-009-0155-9 10.1080/02664763.2011.644268 10.1002/9781119976462 10.1017/CBO9780511802843 10.1023/A:1023818214614 |
ContentType | Journal Article |
Copyright | 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 2016 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION |
DOI | 10.1080/02331888.2016.1162164 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1029-4910 |
EndPage | 1275 |
ExternalDocumentID | 10_1080_02331888_2016_1162164 1162164 |
Genre | Original Articles |
GrantInformation_xml | – fundername: COST Action CRoNoS grantid: IC1408 – fundername: Internal Grant Agency of the Palacký University in Olomouc grantid: IGA_PrF_2015_013 |
GroupedDBID | .7F .QJ 0BK 0R~ 123 29Q 30N 4.4 5VS AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABCCY ABDBF ABFIM ABHAV ABJVF ABLIJ ABPEM ABPTK ABQHQ ABTAI ABXUL ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFOLD AFWLO AGDLA AGMYJ AHDLD AIJEM AIRXU AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EJD EMK EPL EST ESX E~A E~B F5P FUNRP FVPDL GTTXZ H13 HF~ HZ~ H~9 H~P IPNFZ J.P KYCEM M4Z NA5 NY~ O9- P2P PQEST PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TEJ TFL TFT TFW TN5 TTHFI TUS TWF UT5 UU3 V1K ZGOLN ~S~ 07G 1TA AAIKQ AAKBW AAYXX ABJNI ABPAQ ABXYU ACAGQ ACGEE AEUMN AGCQS AGLEN AGROQ AHDZW AHMOU ALCKM AMXXU BCCOT BPLKW C06 CAG CITATION COF CRFIH DMQIW DWIFK IVXBP LJTGL NUSFT QCRFL TAQ TBQAZ TDBHL TFMCV TOXWX TUROJ UB9 ULY UU8 V3K V4Q |
ID | FETCH-LOGICAL-c338t-74ff3b4807705497ec3ae9e406997c413e71dc8d1517035a22d7b8ae66aa22263 |
ISSN | 0233-1888 |
IngestDate | Thu Oct 10 21:52:52 EDT 2024 Thu Sep 12 16:58:27 EDT 2024 Tue Jun 13 19:24:56 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-74ff3b4807705497ec3ae9e406997c413e71dc8d1517035a22d7b8ae66aa22263 |
PQID | 2009330303 |
PQPubID | 216163 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1080_02331888_2016_1162164 proquest_journals_2009330303 informaworld_taylorfrancis_310_1080_02331888_2016_1162164 |
PublicationCentury | 2000 |
PublicationDate | 2016-11-01 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Statistics (Berlin, DDR) |
PublicationYear | 2016 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0010 CIT0032 CIT0031 CIT0012 CIT0011 CIT0033 Van Aelst S (CIT0030) 2013 Pawlowsky-Glahn V (CIT0003) 2015 Pawlowsky-Glahn V (CIT0014) 2001; 15 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 Eaton ML (CIT0005) 1983 Saikia D (CIT0035) 2011; 6 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 Todorov V (CIT0036) 2009 CIT0002 CIT0024 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
References_xml | – year: 2013 ident: CIT0030 publication-title: J Statist Softw contributor: fullname: Van Aelst S – ident: CIT0012 doi: 10.1007/s11004-009-9238-0 – ident: CIT0023 doi: 10.1016/S0047-259X(03)00057-5 – volume: 6 start-page: 6766 year: 2011 ident: CIT0035 publication-title: Afr J Agric Res contributor: fullname: Saikia D – volume-title: Modeling and analysis of compositional data year: 2015 ident: CIT0003 contributor: fullname: Pawlowsky-Glahn V – ident: CIT0016 doi: 10.1016/j.csda.2012.02.012 – volume: 15 start-page: 384 year: 2001 ident: CIT0014 publication-title: SERRA contributor: fullname: Pawlowsky-Glahn V – ident: CIT0007 doi: 10.1016/j.cageo.2011.06.014 – ident: CIT0018 doi: 10.1016/j.sigpro.2007.04.004 – ident: CIT0031 doi: 10.1214/aos/1021379865 – volume-title: Multivariate statistics. A vector space approach year: 1983 ident: CIT0005 contributor: fullname: Eaton ML – ident: CIT0033 doi: 10.1007/s11004-007-9141-5 – ident: CIT0021 doi: 10.1023/A:1021979409012 – ident: CIT0006 doi: 10.1007/s11004-005-7381-9 – ident: CIT0022 doi: 10.1002/(SICI)1099-095X(199907/08)10:4<363::AID-ENV362>3.0.CO;2-0 – ident: CIT0026 doi: 10.1002/0470010940 – ident: CIT0029 doi: 10.1198/016214506000000096 – ident: CIT0001 doi: 10.1007/978-94-009-4109-0 – ident: CIT0024 doi: 10.1198/004017005000000166 – ident: CIT0010 doi: 10.1080/02331888.2015.1135155 – ident: CIT0017 doi: 10.1002/9780470316665 – ident: CIT0019 doi: 10.1093/biomet/76.1.149 – ident: CIT0008 doi: 10.1007/s11004-011-9333-x – ident: CIT0032 doi: 10.1002/cem.2657 – ident: CIT0011 doi: 10.1016/j.jhydrol.2014.08.028 – ident: CIT0020 doi: 10.1007/s11749-009-0155-9 – ident: CIT0009 doi: 10.1080/02664763.2011.644268 – ident: CIT0002 doi: 10.1002/9781119976462 – year: 2009 ident: CIT0036 publication-title: J Statist Softw contributor: fullname: Todorov V – ident: CIT0028 doi: 10.1017/CBO9780511802843 – ident: CIT0015 doi: 10.1023/A:1023818214614 |
SSID | ssj0006337 |
Score | 2.1280413 |
Snippet | The different parts (variables) of a compositional data set cannot be considered independent from each other, since only the ratios between the parts... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 1261 |
SubjectTerms | bootstrap inference Compositional data Economic analysis isometric log-ratio coordinates MM-estimates orthogonal regression Parameter estimation Parameter robustness Principal components analysis Regression analysis Robustness (mathematics) Statistical analysis Statistical inference |
Title | Classical and robust orthogonal regression between parts of compositional data |
URI | https://www.tandfonline.com/doi/abs/10.1080/02331888.2016.1162164 https://www.proquest.com/docview/2009330303 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2F9lIOqC0gSgvaAz0hW7HX8ccxaomiSlQItaLiYq33o0KiMXIcDvkR_c2d2V17HYiAokiW5cRrx_M8M7v75i0h7wo9TrSq8iCPJQ8SOU6CXI95IHMpBOT3TGrD8r1M59fJxc3kZjS6H7CWVm0VivXWupL_sSocA7tilewjLNs3CgdgH-wLW7AwbP_JxmZFy77cv6mr1bJ9jxMx9a0Z4GvUraW5LjwfizeWvYFcckfYwnkaW6LW56mYgzoJZ0hBrSaWcU_nnwdjB_Pm9GxyOp2t659mwj0ybiP0I9eybuArpNKG_hw7z-9_Nvv2fX1XLy12PoXDcYgodQV53l3FjAVRbhfpC5V1p0iuSQpHXHX-1grNOlwNnWcUW112F4hRen6rk3esSLgeXg7peSl4_jSOrB76pqj2L8GupyBGnTaqa6bEZkrXzBOyG4PjAo-5O52ff_3Sx_aUWRXW7r92NWGo1r7tfjaynQ0t3N9iv0lorvbJM9cToVMLqwMyUotD8vRjL-O7PCR7HgbPyWWPNgpooxZt1KONerRRhzZq0EZrTTfQRhFtL8j17MPV2Txwq3EEgrG8DbJEa1ahAkEGaX6RKcG4KhRWTheZgFxIZZEUuYQUEqLIhMexzKqcqzTlsB-n7CXZWdQL9YpQDf1orsWYCxYlUkIQENgNz8DikRC6OiJh99TKH1Z0pfyjvY5IMXy2ZWtGu7RdmqZkfzn3pDNE6d7tJS7OiiN98Hn92Hs5Jnv-9TghO22zUm8gcW2rtw5ND1PxjFs |
link.rule.ids | 315,783,787,27936,27937,60214,61003 |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ5oPVgPPqrGatU9eKXyKo-jMTZVW05t0huBffRgAk2hF3-9Myw0VWM8NFxIYBfYmZ3H8s23AA-hMl0l08AIbJEYrjBdI1BmYohAcI7xvSNUhfKNvNHMfZsP5lu1MASrpBxaaaKIylbT5KbF6AYS94h-BlUxqJBZHk56z8agfx8OPCIAozIOM9pYY8_RvJnYxKA2TRXPX91880_f2Et_WevKBQ1PgDcvr5EnH_11mfb55w9ex92-7hSO6wiVPWmVOoM9mXXgaLKhdy060KYQVTM8n0NU7atJsmb4TLbK03VRMvodlC8ozGcrudBg24zVqDC2RIUtWK4YIdpr2BjeSXDVC5gNX6bPI6PepcHgmN6Whu8q5aRUme5j-Bf6kjuJDCVV1IY-Rx8pfUvwQGBogdZlkNi28NMgkZ6X4LntOZfQyvJMXgFTmF8lipsJdyxXCDQOnNIz37J9i3OVdqHfyCZeajKO2Go4TutRi2nU4nrUuhBuSzAuq1UQpbcsiZ1_2vYaccf1vC5o005aAcLjeoeu7-FwNJ2M4_Fr9H4Dbbqkyxt70CpXa3mLcU6Z3lWK_AWH0e-N |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ5oTUw9-Kgaq1X34JUKLOVxNGpTX8SDTbwR2EcPJrQp9OKvd4aFxmqMh4YLCewCO7Mz3yzfzAJcRdr2tMpCK3RlannS9qxQ26klQykE4nsudcXyjf3R2Ht8HzRswqKmVVIMrU2hiMpW0-SeSd0w4q7RzaAmhhUxy8c577uI-TdhC5GATarO7XhpjH1uymZiE4vaNEk8f3Wz4p5Wipf-MtaVBxruQda8uyGefPQXZdYXnz_KOq71cfuwW-NTdmMU6gA2VN6BnZdlcdeiA20CqKa-8yHE1a6aJGmGj2TzabYoSkY_g6YTAvlsriaGapuzmhPGZqiuBZtqRnz2mjSGdxJZ9QjGw_u325FV79FgCQxuSyvwtOYZ5aUHCP6iQAmeqkhRPm0UCPSQKnCkCCUCC7Qtg9R1ZZCFqfL9FM9dnx9DK5_m6gSYxugq1cJOBXc8KdE0CArOAscNHCF01oV-I5pkZkpxJE5T4bQetYRGLalHrQvRdwEmZbUGos2GJQn_p22vkXZSz-qCtuyk9R88Ttfo-hK2X--GyfND_HQGbbpicht70CrnC3WOIKfMLio1_gKzne46 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classical+and+robust+orthogonal+regression+between+parts+of+compositional+data&rft.jtitle=Statistics+%28Berlin%2C+DDR%29&rft.au=Hr%C5%AFzov%C3%A1%2C+K.&rft.au=Todorov%2C+V.&rft.au=Hron%2C+K.&rft.au=Filzmoser%2C+P.&rft.date=2016-11-01&rft.issn=0233-1888&rft.eissn=1029-4910&rft.volume=50&rft.issue=6&rft.spage=1261&rft.epage=1275&rft_id=info:doi/10.1080%2F02331888.2016.1162164&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02331888_2016_1162164 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1888&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1888&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1888&client=summon |