Classical and robust orthogonal regression between parts of compositional data

The different parts (variables) of a compositional data set cannot be considered independent from each other, since only the ratios between the parts constitute the relevant information to be analysed. Practically, this information can be included in a system of orthonormal coordinates. For the task...

Full description

Saved in:
Bibliographic Details
Published inStatistics (Berlin, DDR) Vol. 50; no. 6; pp. 1261 - 1275
Main Authors Hrůzová, K., Todorov, V., Hron, K., Filzmoser, P.
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 01.11.2016
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The different parts (variables) of a compositional data set cannot be considered independent from each other, since only the ratios between the parts constitute the relevant information to be analysed. Practically, this information can be included in a system of orthonormal coordinates. For the task of regression of one part on other parts, a specific choice of orthonormal coordinates is proposed which allows for an interpretation of the regression parameters in terms of the original parts. In this context, orthogonal regression is appropriate since all compositional parts - also the explanatory variables - are measured with errors. Besides classical (least-squares based) parameter estimation, also robust estimation based on robust principal component analysis is employed. Statistical inference for the regression parameters is obtained by bootstrap; in the robust version the fast and robust bootstrap procedure is used. The methodology is illustrated with a data set from macroeconomics.
AbstractList The different parts (variables) of a compositional data set cannot be considered independent from each other, since only the ratios between the parts constitute the relevant information to be analysed. Practically, this information can be included in a system of orthonormal coordinates. For the task of regression of one part on other parts, a specific choice of orthonormal coordinates is proposed which allows for an interpretation of the regression parameters in terms of the original parts. In this context, orthogonal regression is appropriate since all compositional parts - also the explanatory variables - are measured with errors. Besides classical (least-squares based) parameter estimation, also robust estimation based on robust principal component analysis is employed. Statistical inference for the regression parameters is obtained by bootstrap; in the robust version the fast and robust bootstrap procedure is used. The methodology is illustrated with a data set from macroeconomics.
Author Hrůzová, K.
Todorov, V.
Filzmoser, P.
Hron, K.
Author_xml – sequence: 1
  givenname: K.
  surname: Hrůzová
  fullname: Hrůzová, K.
  email: klara.hruzova@gmail.com
  organization: Department of Mathematical Analysis and Applications of Mathematics, Palacký University
– sequence: 2
  givenname: V.
  surname: Todorov
  fullname: Todorov, V.
  organization: United Nations Industrial Development Organization (UNIDO), Vienna International Centre
– sequence: 3
  givenname: K.
  surname: Hron
  fullname: Hron, K.
  organization: Department of Mathematical Analysis and Applications of Mathematics, Palacký University
– sequence: 4
  givenname: P.
  surname: Filzmoser
  fullname: Filzmoser, P.
  organization: Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology
BookMark eNp9kE1LAzEQhoNUsFV_grDgeesk2U2yN6X4BUUveg6z2Wzdsk1qklL679219SpzmGF43mF4ZmTivLOE3FCYU1BwB4xzqpSaM6BiTqlgVBRnZEqBVXlRUZiQ6cjkI3RBZjGuAUBwLqfkbdFjjJ3BPkPXZMHXu5gyH9KXX3k3bINdBTsQ3mW1TXtrXbbFkGLm28z4zdbHLnW_ZIMJr8h5i32016d-ST6fHj8WL_ny_fl18bDMDecq5bJoW14XCqSEsqikNRxtZQsQVSVNQbmVtDGqoSWVwEtkrJG1QisEDjMT_JLcHu9ug__e2Zj02u_C8EXUDKDiHIYaqPJImeBjDLbV29BtMBw0BT2q03_q9KhOn9QNuftjrnOtDxvc-9A3OuGh96EN6EwXNf__xA_w1nap
CitedBy_id crossref_primary_10_1007_s11004_020_09895_w
crossref_primary_10_1007_s12561_019_09253_3
crossref_primary_10_1007_s11749_019_00670_6
crossref_primary_10_1007_s11831_021_09696_2
crossref_primary_10_1007_s11831_022_09728_5
crossref_primary_10_3390_ijerph15102248
Cites_doi 10.1007/s11004-009-9238-0
10.1016/S0047-259X(03)00057-5
10.1016/j.csda.2012.02.012
10.1016/j.cageo.2011.06.014
10.1016/j.sigpro.2007.04.004
10.1214/aos/1021379865
10.1007/s11004-007-9141-5
10.1023/A:1021979409012
10.1007/s11004-005-7381-9
10.1002/(SICI)1099-095X(199907/08)10:4<363::AID-ENV362>3.0.CO;2-0
10.1002/0470010940
10.1198/016214506000000096
10.1007/978-94-009-4109-0
10.1198/004017005000000166
10.1080/02331888.2015.1135155
10.1002/9780470316665
10.1093/biomet/76.1.149
10.1007/s11004-011-9333-x
10.1002/cem.2657
10.1016/j.jhydrol.2014.08.028
10.1007/s11749-009-0155-9
10.1080/02664763.2011.644268
10.1002/9781119976462
10.1017/CBO9780511802843
10.1023/A:1023818214614
ContentType Journal Article
Copyright 2016 Informa UK Limited, trading as Taylor & Francis Group 2016
2016 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group 2016
– notice: 2016 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
DOI 10.1080/02331888.2016.1162164
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1029-4910
EndPage 1275
ExternalDocumentID 10_1080_02331888_2016_1162164
1162164
Genre Original Articles
GrantInformation_xml – fundername: COST Action CRoNoS
  grantid: IC1408
– fundername: Internal Grant Agency of the Palacký University in Olomouc
  grantid: IGA_PrF_2015_013
GroupedDBID .7F
.QJ
0BK
0R~
123
29Q
30N
4.4
5VS
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABDBF
ABFIM
ABHAV
ABJVF
ABLIJ
ABPEM
ABPTK
ABQHQ
ABTAI
ABXUL
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EJD
EMK
EPL
EST
ESX
E~A
E~B
F5P
FUNRP
FVPDL
GTTXZ
H13
HF~
HZ~
H~9
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQEST
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUS
TWF
UT5
UU3
V1K
ZGOLN
~S~
07G
1TA
AAIKQ
AAKBW
AAYXX
ABJNI
ABPAQ
ABXYU
ACAGQ
ACGEE
AEUMN
AGCQS
AGLEN
AGROQ
AHDZW
AHMOU
ALCKM
AMXXU
BCCOT
BPLKW
C06
CAG
CITATION
COF
CRFIH
DMQIW
DWIFK
IVXBP
LJTGL
NUSFT
QCRFL
TAQ
TBQAZ
TDBHL
TFMCV
TOXWX
TUROJ
UB9
ULY
UU8
V3K
V4Q
ID FETCH-LOGICAL-c338t-74ff3b4807705497ec3ae9e406997c413e71dc8d1517035a22d7b8ae66aa22263
ISSN 0233-1888
IngestDate Thu Oct 10 21:52:52 EDT 2024
Thu Sep 12 16:58:27 EDT 2024
Tue Jun 13 19:24:56 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-74ff3b4807705497ec3ae9e406997c413e71dc8d1517035a22d7b8ae66aa22263
PQID 2009330303
PQPubID 216163
PageCount 15
ParticipantIDs crossref_primary_10_1080_02331888_2016_1162164
proquest_journals_2009330303
informaworld_taylorfrancis_310_1080_02331888_2016_1162164
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Statistics (Berlin, DDR)
PublicationYear 2016
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0032
CIT0031
CIT0012
CIT0011
CIT0033
Van Aelst S (CIT0030) 2013
Pawlowsky-Glahn V (CIT0003) 2015
Pawlowsky-Glahn V (CIT0014) 2001; 15
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
Eaton ML (CIT0005) 1983
Saikia D (CIT0035) 2011; 6
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
Todorov V (CIT0036) 2009
CIT0002
CIT0024
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – year: 2013
  ident: CIT0030
  publication-title: J Statist Softw
  contributor:
    fullname: Van Aelst S
– ident: CIT0012
  doi: 10.1007/s11004-009-9238-0
– ident: CIT0023
  doi: 10.1016/S0047-259X(03)00057-5
– volume: 6
  start-page: 6766
  year: 2011
  ident: CIT0035
  publication-title: Afr J Agric Res
  contributor:
    fullname: Saikia D
– volume-title: Modeling and analysis of compositional data
  year: 2015
  ident: CIT0003
  contributor:
    fullname: Pawlowsky-Glahn V
– ident: CIT0016
  doi: 10.1016/j.csda.2012.02.012
– volume: 15
  start-page: 384
  year: 2001
  ident: CIT0014
  publication-title: SERRA
  contributor:
    fullname: Pawlowsky-Glahn V
– ident: CIT0007
  doi: 10.1016/j.cageo.2011.06.014
– ident: CIT0018
  doi: 10.1016/j.sigpro.2007.04.004
– ident: CIT0031
  doi: 10.1214/aos/1021379865
– volume-title: Multivariate statistics. A vector space approach
  year: 1983
  ident: CIT0005
  contributor:
    fullname: Eaton ML
– ident: CIT0033
  doi: 10.1007/s11004-007-9141-5
– ident: CIT0021
  doi: 10.1023/A:1021979409012
– ident: CIT0006
  doi: 10.1007/s11004-005-7381-9
– ident: CIT0022
  doi: 10.1002/(SICI)1099-095X(199907/08)10:4<363::AID-ENV362>3.0.CO;2-0
– ident: CIT0026
  doi: 10.1002/0470010940
– ident: CIT0029
  doi: 10.1198/016214506000000096
– ident: CIT0001
  doi: 10.1007/978-94-009-4109-0
– ident: CIT0024
  doi: 10.1198/004017005000000166
– ident: CIT0010
  doi: 10.1080/02331888.2015.1135155
– ident: CIT0017
  doi: 10.1002/9780470316665
– ident: CIT0019
  doi: 10.1093/biomet/76.1.149
– ident: CIT0008
  doi: 10.1007/s11004-011-9333-x
– ident: CIT0032
  doi: 10.1002/cem.2657
– ident: CIT0011
  doi: 10.1016/j.jhydrol.2014.08.028
– ident: CIT0020
  doi: 10.1007/s11749-009-0155-9
– ident: CIT0009
  doi: 10.1080/02664763.2011.644268
– ident: CIT0002
  doi: 10.1002/9781119976462
– year: 2009
  ident: CIT0036
  publication-title: J Statist Softw
  contributor:
    fullname: Todorov V
– ident: CIT0028
  doi: 10.1017/CBO9780511802843
– ident: CIT0015
  doi: 10.1023/A:1023818214614
SSID ssj0006337
Score 2.1280413
Snippet The different parts (variables) of a compositional data set cannot be considered independent from each other, since only the ratios between the parts...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 1261
SubjectTerms bootstrap inference
Compositional data
Economic analysis
isometric log-ratio coordinates
MM-estimates
orthogonal regression
Parameter estimation
Parameter robustness
Principal components analysis
Regression analysis
Robustness (mathematics)
Statistical analysis
Statistical inference
Title Classical and robust orthogonal regression between parts of compositional data
URI https://www.tandfonline.com/doi/abs/10.1080/02331888.2016.1162164
https://www.proquest.com/docview/2009330303
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2F9lIOqC0gSgvaAz0hW7HX8ccxaomiSlQItaLiYq33o0KiMXIcDvkR_c2d2V17HYiAokiW5cRrx_M8M7v75i0h7wo9TrSq8iCPJQ8SOU6CXI95IHMpBOT3TGrD8r1M59fJxc3kZjS6H7CWVm0VivXWupL_sSocA7tilewjLNs3CgdgH-wLW7AwbP_JxmZFy77cv6mr1bJ9jxMx9a0Z4GvUraW5LjwfizeWvYFcckfYwnkaW6LW56mYgzoJZ0hBrSaWcU_nnwdjB_Pm9GxyOp2t659mwj0ybiP0I9eybuArpNKG_hw7z-9_Nvv2fX1XLy12PoXDcYgodQV53l3FjAVRbhfpC5V1p0iuSQpHXHX-1grNOlwNnWcUW112F4hRen6rk3esSLgeXg7peSl4_jSOrB76pqj2L8GupyBGnTaqa6bEZkrXzBOyG4PjAo-5O52ff_3Sx_aUWRXW7r92NWGo1r7tfjaynQ0t3N9iv0lorvbJM9cToVMLqwMyUotD8vRjL-O7PCR7HgbPyWWPNgpooxZt1KONerRRhzZq0EZrTTfQRhFtL8j17MPV2Txwq3EEgrG8DbJEa1ahAkEGaX6RKcG4KhRWTheZgFxIZZEUuYQUEqLIhMexzKqcqzTlsB-n7CXZWdQL9YpQDf1orsWYCxYlUkIQENgNz8DikRC6OiJh99TKH1Z0pfyjvY5IMXy2ZWtGu7RdmqZkfzn3pDNE6d7tJS7OiiN98Hn92Hs5Jnv-9TghO22zUm8gcW2rtw5ND1PxjFs
link.rule.ids 315,783,787,27936,27937,60214,61003
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ5oPVgPPqrGatU9eKXyKo-jMTZVW05t0huBffRgAk2hF3-9Myw0VWM8NFxIYBfYmZ3H8s23AA-hMl0l08AIbJEYrjBdI1BmYohAcI7xvSNUhfKNvNHMfZsP5lu1MASrpBxaaaKIylbT5KbF6AYS94h-BlUxqJBZHk56z8agfx8OPCIAozIOM9pYY8_RvJnYxKA2TRXPX91880_f2Et_WevKBQ1PgDcvr5EnH_11mfb55w9ex92-7hSO6wiVPWmVOoM9mXXgaLKhdy060KYQVTM8n0NU7atJsmb4TLbK03VRMvodlC8ozGcrudBg24zVqDC2RIUtWK4YIdpr2BjeSXDVC5gNX6bPI6PepcHgmN6Whu8q5aRUme5j-Bf6kjuJDCVV1IY-Rx8pfUvwQGBogdZlkNi28NMgkZ6X4LntOZfQyvJMXgFTmF8lipsJdyxXCDQOnNIz37J9i3OVdqHfyCZeajKO2Go4TutRi2nU4nrUuhBuSzAuq1UQpbcsiZ1_2vYaccf1vC5o005aAcLjeoeu7-FwNJ2M4_Fr9H4Dbbqkyxt70CpXa3mLcU6Z3lWK_AWH0e-N
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ5oTUw9-Kgaq1X34JUKLOVxNGpTX8SDTbwR2EcPJrQp9OKvd4aFxmqMh4YLCewCO7Mz3yzfzAJcRdr2tMpCK3RlannS9qxQ26klQykE4nsudcXyjf3R2Ht8HzRswqKmVVIMrU2hiMpW0-SeSd0w4q7RzaAmhhUxy8c577uI-TdhC5GATarO7XhpjH1uymZiE4vaNEk8f3Wz4p5Wipf-MtaVBxruQda8uyGefPQXZdYXnz_KOq71cfuwW-NTdmMU6gA2VN6BnZdlcdeiA20CqKa-8yHE1a6aJGmGj2TzabYoSkY_g6YTAvlsriaGapuzmhPGZqiuBZtqRnz2mjSGdxJZ9QjGw_u325FV79FgCQxuSyvwtOYZ5aUHCP6iQAmeqkhRPm0UCPSQKnCkCCUCC7Qtg9R1ZZCFqfL9FM9dnx9DK5_m6gSYxugq1cJOBXc8KdE0CArOAscNHCF01oV-I5pkZkpxJE5T4bQetYRGLalHrQvRdwEmZbUGos2GJQn_p22vkXZSz-qCtuyk9R88Ttfo-hK2X--GyfND_HQGbbpicht70CrnC3WOIKfMLio1_gKzne46
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classical+and+robust+orthogonal+regression+between+parts+of+compositional+data&rft.jtitle=Statistics+%28Berlin%2C+DDR%29&rft.au=Hr%C5%AFzov%C3%A1%2C+K.&rft.au=Todorov%2C+V.&rft.au=Hron%2C+K.&rft.au=Filzmoser%2C+P.&rft.date=2016-11-01&rft.issn=0233-1888&rft.eissn=1029-4910&rft.volume=50&rft.issue=6&rft.spage=1261&rft.epage=1275&rft_id=info:doi/10.1080%2F02331888.2016.1162164&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02331888_2016_1162164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1888&client=summon