Bayesian Deep Net GLM and GLMM

Deep feedforward neural networks (DFNNs) are a powerful tool for functional approximation. We describe flexible versions of generalized linear and generalized linear mixed models incorporating basis functions formed by a DFNN. The consideration of neural networks with random effects is not widely us...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and graphical statistics Vol. 29; no. 1; pp. 97 - 113
Main Authors Tran, M.-N., Nguyen, N., Nott, D., Kohn, R.
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 02.01.2020
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep feedforward neural networks (DFNNs) are a powerful tool for functional approximation. We describe flexible versions of generalized linear and generalized linear mixed models incorporating basis functions formed by a DFNN. The consideration of neural networks with random effects is not widely used in the literature, perhaps because of the computational challenges of incorporating subject specific parameters into already complex models. Efficient computational methods for high-dimensional Bayesian inference are developed using Gaussian variational approximation, with a parsimonious but flexible factor parameterization of the covariance matrix. We implement natural gradient methods for the optimization, exploiting the factor structure of the variational covariance matrix in computation of the natural gradient. Our flexible DFNN models and Bayesian inference approach lead to a regression and classification method that has a high prediction accuracy, and is able to quantify the prediction uncertainty in a principled and convenient way. We also describe how to perform variable selection in our deep learning method. The proposed methods are illustrated in a wide range of simulated and real-data examples, and compare favorably to a state of the art flexible regression and classification method in the statistical literature, the Bayesian additive regression trees (BART) method. User-friendly software packages in Matlab, R, and Python implementing the proposed methods are available at https://github.com/VBayesLab .
AbstractList Deep feedforward neural networks (DFNNs) are a powerful tool for functional approximation. We describe flexible versions of generalized linear and generalized linear mixed models incorporating basis functions formed by a DFNN. The consideration of neural networks with random effects is not widely used in the literature, perhaps because of the computational challenges of incorporating subject specific parameters into already complex models. Efficient computational methods for high-dimensional Bayesian inference are developed using Gaussian variational approximation, with a parsimonious but flexible factor parameterization of the covariance matrix. We implement natural gradient methods for the optimization, exploiting the factor structure of the variational covariance matrix in computation of the natural gradient. Our flexible DFNN models and Bayesian inference approach lead to a regression and classification method that has a high prediction accuracy, and is able to quantify the prediction uncertainty in a principled and convenient way. We also describe how to perform variable selection in our deep learning method. The proposed methods are illustrated in a wide range of simulated and real-data examples, and compare favorably to a state of the art flexible regression and classification method in the statistical literature, the Bayesian additive regression trees (BART) method. User-friendly software packages in Matlab, R, and Python implementing the proposed methods are available at https://github.com/VBayesLab.
Deep feedforward neural networks (DFNNs) are a powerful tool for functional approximation. We describe flexible versions of generalized linear and generalized linear mixed models incorporating basis functions formed by a DFNN. The consideration of neural networks with random effects is not widely used in the literature, perhaps because of the computational challenges of incorporating subject specific parameters into already complex models. Efficient computational methods for high-dimensional Bayesian inference are developed using Gaussian variational approximation, with a parsimonious but flexible factor parameterization of the covariance matrix. We implement natural gradient methods for the optimization, exploiting the factor structure of the variational covariance matrix in computation of the natural gradient. Our flexible DFNN models and Bayesian inference approach lead to a regression and classification method that has a high prediction accuracy, and is able to quantify the prediction uncertainty in a principled and convenient way. We also describe how to perform variable selection in our deep learning method. The proposed methods are illustrated in a wide range of simulated and real-data examples, and compare favorably to a state of the art flexible regression and classification method in the statistical literature, the Bayesian additive regression trees (BART) method. User-friendly software packages in Matlab, R, and Python implementing the proposed methods are available at https://github.com/VBayesLab .
Author Nguyen, N.
Tran, M.-N.
Kohn, R.
Nott, D.
Author_xml – sequence: 1
  givenname: M.-N.
  surname: Tran
  fullname: Tran, M.-N.
  email: minh-ngoc.tran@sydney.edu.au
  organization: Discipline of Business Analytics, The University of Sydney Business School and ACEMS
– sequence: 2
  givenname: N.
  surname: Nguyen
  fullname: Nguyen, N.
  organization: Discipline of Business Analytics, The University of Sydney Business School and ACEMS
– sequence: 3
  givenname: D.
  surname: Nott
  fullname: Nott, D.
  organization: Department of Statistics and Applied Probability, National University of Singapore
– sequence: 4
  givenname: R.
  surname: Kohn
  fullname: Kohn, R.
  organization: School of Economics, UNSW Business School and ACEMS
BookMark eNqFkDFPwzAUhC1UJNrCTwBVYk55L3ZsRyxAgYLUwgKzZRxbSpXaxU6F-u9J1LIwwHRvuO_e6UZk4IO3hJwjTBEkXCFwlBxgmgOWU-RUCCaOyBALKrJcYDHo7s6T9aYTMkppBQDISzEkF3d6Z1Ot_eTe2s3kxbaT-WI50b7qdXlKjp1ukj076Ji8Pz68zZ6yxev8eXa7yAylss0EA23LD-DSUmY0NbZAUXFddb2Y4RUis5QyVuZSSNfV4w5yNE5C5Spgho7J5T53E8Pn1qZWrcI2-u6lymmJWBZUis51vXeZGFKK1ilTt7qtg2-jrhuFoPpB1M8gqh9EHQbp6OIXvYn1Wsfdv9zNnqu9C3Gtv0JsKtXqXROii9qbOin6d8Q3uQl01A
CitedBy_id crossref_primary_10_1109_TPAMI_2023_3234291
crossref_primary_10_3390_app132011512
crossref_primary_10_1093_biomtc_ujae016
crossref_primary_10_1093_jrsssb_qkaf001
crossref_primary_10_1214_22_BA1331
crossref_primary_10_1016_j_dsp_2021_103137
crossref_primary_10_1080_00031305_2022_2164054
crossref_primary_10_1007_s13253_019_00361_7
crossref_primary_10_1016_j_spasta_2020_100408
crossref_primary_10_1080_10618600_2020_1807996
crossref_primary_10_1080_10618600_2021_1880921
crossref_primary_10_1146_annurev_statistics_033021_112628
crossref_primary_10_1214_22_AOAS1693
crossref_primary_10_1002_wics_1647
crossref_primary_10_1080_02331888_2024_2364688
crossref_primary_10_1080_19475705_2023_2206512
crossref_primary_10_1093_jrsssb_qkad078
crossref_primary_10_1214_22_AOAS1634
crossref_primary_10_29220_CSAM_2024_31_2_213
crossref_primary_10_1007_s11222_021_10047_1
crossref_primary_10_1007_s11222_024_10488_4
crossref_primary_10_1080_08982112_2022_2044049
crossref_primary_10_1080_10618600_2023_2262080
crossref_primary_10_1007_s13385_024_00388_2
crossref_primary_10_3390_axioms11060280
crossref_primary_10_1002_sta4_382
crossref_primary_10_1080_10618600_2023_2276122
crossref_primary_10_1111_insr_12360
crossref_primary_10_1080_03461238_2022_2081816
crossref_primary_10_51387_24_NEJSDS71
crossref_primary_10_1007_s42081_024_00270_1
crossref_primary_10_1080_01621459_2024_2392904
crossref_primary_10_1093_biomtc_ujae057
crossref_primary_10_1177_1471082X241258261
Cites_doi 10.1016/j.neunet.2014.09.003
10.1111/j.1467-9868.2005.00532.x
10.1214/10-BA607
10.1007/s10928-005-9000-2
10.1214/17-BA1082
10.1016/0041-5553(64)90137-5
10.1093/rfs/9.2.557
10.1007/978-1-4899-3242-6
10.1016/j.csda.2018.07.008
10.1162/089976698300017746
10.1214/aoms/1177729586
10.1080/10618600.2017.1390472
10.1007/s10463-013-0429-6
10.1111/j.2517-6161.1974.tb00989.x
10.1007/978-3-642-68874-4_21
10.1002/9781119970583
10.1007/s11222-017-9729-7
10.1214/13-BA858
10.1093/biostatistics/2.4.485
10.1080/01621459.2017.1285773
10.1007/s11222-017-9773-3
10.1093/biomet/asq017
10.1007/978-3-642-35289-8_26
10.1002/jae.3950030206
10.1007/978-1-4614-0406-4
10.1080/10618600.2015.1012293
10.1080/10618600.2017.1330205
10.1214/09-AOAS285
10.1162/089976601750265045
ContentType Journal Article
Copyright 2019 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2019
2019 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Copyright_xml – notice: 2019 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2019
– notice: 2019 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
DBID AAYXX
CITATION
JQ2
DOI 10.1080/10618600.2019.1637747
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 113
ExternalDocumentID 10_1080_10618600_2019_1637747
1637747
Genre Article
GrantInformation_xml – fundername: Australian Research Council Center of Excellence
  grantid: CE140100049
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
30N
4.4
5GY
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IAO
IEA
IGG
IGS
IOF
IPNFZ
J.P
JAA
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
UT5
UU3
WZA
XWC
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADXHL
ADYSH
AFRVT
AMPGV
AMVHM
CITATION
JQ2
TASJS
ID FETCH-LOGICAL-c338t-740ae9b068e34ca3ce517d6ad1864c6d114e334492878f7746f021cf80dfd04c3
ISSN 1061-8600
IngestDate Wed Aug 13 07:49:56 EDT 2025
Tue Jul 01 02:05:30 EDT 2025
Thu Apr 24 23:07:19 EDT 2025
Wed Dec 25 09:08:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-740ae9b068e34ca3ce517d6ad1864c6d114e334492878f7746f021cf80dfd04c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2391195387
PQPubID 29738
PageCount 17
ParticipantIDs proquest_journals_2391195387
crossref_citationtrail_10_1080_10618600_2019_1637747
informaworld_taylorfrancis_310_1080_10618600_2019_1637747
crossref_primary_10_1080_10618600_2019_1637747
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-02
PublicationDateYYYYMMDD 2020-01-02
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-02
  day: 02
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of computational and graphical statistics
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Martens J. (CIT0026) 2010
CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
Rao C. R. (CIT0036) 1945; 37
CIT0035
CIT0037
Goodfellow I. (CIT0015) 2016
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
CIT0044
Stroup W. W. (CIT0045) 2012
Hoffman M. D. (CIT0018) 2013; 14
CIT0002
CIT0046
CIT0005
Titsias M. (CIT0047) 2014
CIT0049
CIT0004
CIT0048
CIT0007
CIT0009
CIT0008
CIT0050
CIT0052
CIT0051
CIT0010
Baltagi B. (CIT0003) 2013
CIT0053
CIT0011
CIT0013
CIT0016
CIT0017
Rezende D. J. (CIT0038) 2014
Honkela A. (CIT0019) 2010; 11
CIT0021
Kucukelbir A. (CIT0022) 2017; 18
CIT0020
CIT0023
Glorot X. (CIT0014) 2010; 9
Fan K. (CIT0012) 2015; 28
CIT0025
CIT0024
CIT0027
Bishop C. M. (CIT0006) 2006
CIT0029
CIT0028
References_xml – ident: CIT0040
– ident: CIT0043
  doi: 10.1016/j.neunet.2014.09.003
– ident: CIT0052
  doi: 10.1111/j.1467-9868.2005.00532.x
– ident: CIT0021
– volume: 37
  start-page: 81
  year: 1945
  ident: CIT0036
  publication-title: Bulletin of the Calcutta Mathematical Society
– ident: CIT0023
  doi: 10.1214/10-BA607
– ident: CIT0024
  doi: 10.1007/s10928-005-9000-2
– ident: CIT0048
– volume: 9
  start-page: 249
  volume-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, PMLR
  year: 2010
  ident: CIT0014
– volume: 14
  start-page: 1303
  year: 2013
  ident: CIT0018
  publication-title: Journal of Machine Learning Research
– ident: CIT0033
  doi: 10.1214/17-BA1082
– ident: CIT0035
– ident: CIT0016
– ident: CIT0034
  doi: 10.1016/0041-5553(64)90137-5
– ident: CIT0037
– ident: CIT0013
  doi: 10.1093/rfs/9.2.557
– volume: 11
  start-page: 3235
  year: 2010
  ident: CIT0019
  publication-title: Journal of Machine Learning Research
– volume-title: Econometric Analysis of Panel Data
  year: 2013
  ident: CIT0003
– volume: 18
  start-page: 1
  year: 2017
  ident: CIT0022
  publication-title: Journal of Machine Learning Research
– ident: CIT0028
  doi: 10.1007/978-1-4899-3242-6
– ident: CIT0030
  doi: 10.1016/j.csda.2018.07.008
– volume-title: “Deep Learning via Hessian-Free Optimization,” in 27th International Conference on Machine Learning
  year: 2010
  ident: CIT0026
– ident: CIT0053
– ident: CIT0032
– ident: CIT0001
  doi: 10.1162/089976698300017746
– ident: CIT0039
  doi: 10.1214/aoms/1177729586
– ident: CIT0029
  doi: 10.1080/10618600.2017.1390472
– ident: CIT0025
  doi: 10.1007/s10463-013-0429-6
– ident: CIT0002
  doi: 10.1111/j.2517-6161.1974.tb00989.x
– ident: CIT0044
  doi: 10.1007/978-3-642-68874-4_21
– ident: CIT0004
  doi: 10.1002/9781119970583
– ident: CIT0017
– start-page: 1971
  volume-title: in
  year: 2014
  ident: CIT0047
– volume-title: Deep Learning
  year: 2016
  ident: CIT0015
– ident: CIT0027
– ident: CIT0046
  doi: 10.1007/s11222-017-9729-7
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: CIT0006
– ident: CIT0041
  doi: 10.1214/13-BA858
– ident: CIT0009
  doi: 10.1093/biostatistics/2.4.485
– ident: CIT0007
  doi: 10.1080/01621459.2017.1285773
– ident: CIT0031
  doi: 10.1007/s11222-017-9773-3
– ident: CIT0008
  doi: 10.1093/biomet/asq017
– ident: CIT0005
  doi: 10.1007/978-3-642-35289-8_26
– ident: CIT0011
  doi: 10.1002/jae.3950030206
– ident: CIT0020
  doi: 10.1007/978-1-4614-0406-4
– ident: CIT0050
  doi: 10.1080/10618600.2015.1012293
– ident: CIT0051
– ident: CIT0049
  doi: 10.1080/10618600.2017.1330205
– volume-title: Generalized Linear Mixed Models: Modern Concepts, Methods and Applications
  year: 2012
  ident: CIT0045
– ident: CIT0010
  doi: 10.1214/09-AOAS285
– volume: 28
  start-page: 1387
  volume-title: Advances in Neural Information Processing Systems
  year: 2015
  ident: CIT0012
– start-page: 1278
  volume-title: in
  year: 2014
  ident: CIT0038
– ident: CIT0042
  doi: 10.1162/089976601750265045
SSID ssj0001697
Score 2.5014722
Snippet Deep feedforward neural networks (DFNNs) are a powerful tool for functional approximation. We describe flexible versions of generalized linear and generalized...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 97
SubjectTerms Approximation
Artificial neural networks
Basis functions
Bayesian analysis
Classification
Computer simulation
Covariance matrix
Deep learning
Factor models
Machine learning
Methods
Neural networks
Optimization
Parameterization
Regression analysis
Reparameterization gradient
Statistical analysis
Statistical inference
Statistical models
Stochastic optimization
Variable selection
Variational approximation
Title Bayesian Deep Net GLM and GLMM
URI https://www.tandfonline.com/doi/abs/10.1080/10618600.2019.1637747
https://www.proquest.com/docview/2391195387
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXMqhggKipVQ5cENenNhxnCOPPoQ2y4GstDcriW0uaKloeii_nvEzW22hlEuyctbrjb_xzHg8D4TeaA1KRcc6rArNMeuowjUrFDYEtGVBKc-NtUM2C36-ZJ9X5WqqiuqiS8Z-Nvy6Na7kf1CFNsDVRsneA9n0o9AAnwFfuALCcP0njD9019oFQX7S-sLG7r49mzfuOADuzR_0zsHVcYg2QPtll7Tah0fadpe5OQGBnR-AFWnJbvzt6tozq3SMswhuH8l92EbSTO6IwapQEGdVmPag7VaBjw0vI8snQQ3AghN_pKIj76xwUfnozMhcgzljk4g8p_ReuUHm5j4edYude_9HO5gdyzri1TNQIEFlrSb5Fc_sF1_k6XI-l-3Jqn2IHhWwb7AlLShZJNGch2o78d_HkC5B3t06yA1l5UYq2y3R7fSR9gnaC4Bm7z1VPEUP9HofPW5SFt7LfbT7NcH5DB1HYskssWRALBkQSQb423vzHC1PT9qP5zgUx8ADpWLEFSOdrntYUJqyoaODLvNK8U7BW7CBK9jnakoZq2FLLAy8DDegzg1GEGUUYQN9gXbWP9b6JcpMVQtVispwRhg8FSVXtOppYXrBNSsPEIuzIIeQOd4WMPku85BgNk6etJMnw-QdoFnqduFTp9zVod6cYjk6IjSe_iS9o-9RxEOGFXopC1rbjIZUVId_f_wK7U6L4AjtjD-v9GtQNsf-2BHQb0Q8cFY
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LU8IwEN5RPIgHH6gjitiD12Jp0jQ9-kJUyglmuGXaPC46yEg56K83S1sGdBwOnHrobJpukt1vdzbfAlxrbUFFQhNX-Zq5NCHKjaivXONZtMwJYW2Deci4z7pD-jIKRkt3YbCsEmNokxNFzG01Hm5MRpclcTcYxnDrqbEyK2pZRGExTLgNO0HEQuxiQLz-whq3iwYrVsRFmfIWz3_DrPinFfbSP9Z67oI6ByDLyeeVJ2-tWZa25PcvXsfN_u4Q9guE6tzmW-oItvS4Bnvxgt51WoMqQtSc4fkYmnfJl8armM6D1hOnrzPnqRc79vv4jE9g2Hkc3HfdouuCK224mrkh9RIdpXalNKEyIVIH7VCxRNlJUcmUDaA0IZRGNtbixs6NGYsTpOGeMsqjkpxCZfwx1mfgmDDiKuChYdSj9i0PmCJhSnyTcqZpUAda6lrIgpIcO2O8i3bBXFrqQqAuRKGLOrQWYpOck2OdQLS8kCKbJ0NM3rlEkDWyjXLVRXG8p8InEVLlER6ebzD0Fex2B3FP9J77rxdQ9TGSx-SO34BK9jnTlxbuZGlzvp9_AGn56wo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1BkVAZ-CggCqVkYHVIY8dxRqCUAk3EQCU2K4ntBVQqmg7w67ETp6IgxNApQ3SOc7bv3p3O7wDOpdSgIiUpEr6kiKRYoIj4AilPo2WGMe0pk4eMEzock_vnoK4mnNmyShNDq4ooorTV5nBPhaor4i5MFMO0ozaFWZGrAYWGMOE6bFBDHm5ucXjJwhj3bH8VLYKMTH2J569hltzTEnnpL2NdeqDBDmT13KvCkxd3XmRu_vmD1nGln9uFbYtPnctqQ-3Bmpy0YCtekLvOWtA0ALXid96H7lX6Ic1FTKcv5dRJZOHcjmJHf9484wMYD26erofI9lxAuQ5WCxQSL5VRptdJYpKnOJdBLxQ0FXpSJKdCh08SY0IiHWkxpedGlUYJuWKeUMIjOT6ExuRtIo_AUWHERMBCRYlH9FsWUIHDDPsqY1SSoA2kVjXPLSG56YvxynuWt7TWBTe64FYXbXAXYtOKkeM_gej7OvKiTIWoqm8Jx__IdupF5_Zwz7iPI0OUh1l4vMLQZ7D52B_w0V3ycAJN34TxJrPjd6BRvM_lqcY6RdYtd_MXe27prg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Deep+Net+GLM+and+GLMM&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=M-N%2C+Tran&rft.au=Nguyen%2C+N&rft.au=Nott%2C+D&rft.au=Kohn%2C+R&rft.date=2020-01-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=29&rft.issue=1&rft.spage=97&rft.epage=113&rft_id=info:doi/10.1080%2F10618600.2019.1637747&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon