Neural network analysis of internal carotid arterial Doppler signals: predictions of stenosis and occlusion
Doppler ultrasound is a noninvasive technique that allows the examination of the direction, velocity, and volume of blood flow. Doppler ultrasound has proven to be a valuable technique for investigation of artery conditions. Therefore, Doppler ultrasonography is known as reliable technique, which de...
Saved in:
Published in | Expert systems with applications Vol. 25; no. 1; pp. 1 - 13 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2003
|
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 1873-6793 |
DOI | 10.1016/S0957-4174(03)00002-2 |
Cover
Abstract | Doppler ultrasound is a noninvasive technique that allows the examination of the direction, velocity, and volume of blood flow. Doppler ultrasound has proven to be a valuable technique for investigation of artery conditions. Therefore, Doppler ultrasonography is known as reliable technique, which demonstrates the flow characteristics and resistance of internal carotid arteries in stenosis and occlusion conditions. In this study, internal carotid arterial Doppler signals were obtained from 130 subjects, 45 of them had suffered from internal carotid artery stenosis, 44 of them had suffered from internal carotid artery occlusion and the rest of them had been healthy subjects. Multilayer perceptron neural network employing backpropagation training algorithm was used to predict the presence or absence of internal carotid artery stenosis and occlusion. Spectral analysis of internal carotid arterial Doppler signals was done by Burg autoregressive method for determining the neural network inputs. The network was trained, cross validated and tested with subject's internal carotid arterial Doppler signals. Performance indicators and statistical measures were used for evaluating the neural network. By using the network, the classifications of healthy subjects, subjects having internal carotid artery stenosis, and subjects having internal carotid artery occlusion were done with the accuracy of 95.2, 91.3, and 91.7%, respectively. |
---|---|
AbstractList | Doppler ultrasound is a noninvasive technique that allows the examination of the direction, velocity, and volume of blood flow. Doppler ultrasound has proven to be a valuable technique for investigation of artery conditions. Therefore, Doppler ultrasonography is known as reliable technique, which demonstrates the flow characteristics and resistance of internal carotid arteries in stenosis and occlusion conditions, hi this study, internal carotid arterial Doppler signals were obtained from 130 subjects, 45 of them had suffered from internal carotid artery stenosis, 44 of them had suffered from internal carotid artery occlusion and the rest of them had been healthy subjects. Multilayer perceptron neural network employing backpropagation training algorithm was used to predict the presence or absence of internal carotid artery stenosis and occlusion. Spectral analysis of internal carotid arterial Doppler signals was done by Burg autoregressive method for determining the neural network inputs. The network was trained, cross validated and tested with subject's internal carotid arterial Doppler signals. Performance indicators and statistical measures were used for evaluating the neural network. By using the network, the classifications of healthy subjects, subjects having internal carotid artery stenosis, and subjects having internal carotid artery occlusion were done with the accuracy of 95.2, 91.3, and 91.7%, respectively. Doppler ultrasound is a noninvasive technique that allows the examination of the direction, velocity, and volume of blood flow. Doppler ultrasound has proven to be a valuable technique for investigation of artery conditions. Therefore, Doppler ultrasonography is known as reliable technique, which demonstrates the flow characteristics and resistance of internal carotid arteries in stenosis and occlusion conditions. In this study, internal carotid arterial Doppler signals were obtained from 130 subjects, 45 of them had suffered from internal carotid artery stenosis, 44 of them had suffered from internal carotid artery occlusion and the rest of them had been healthy subjects. Multilayer perceptron neural network employing backpropagation training algorithm was used to predict the presence or absence of internal carotid artery stenosis and occlusion. Spectral analysis of internal carotid arterial Doppler signals was done by Burg autoregressive method for determining the neural network inputs. The network was trained, cross validated and tested with subject's internal carotid arterial Doppler signals. Performance indicators and statistical measures were used for evaluating the neural network. By using the network, the classifications of healthy subjects, subjects having internal carotid artery stenosis, and subjects having internal carotid artery occlusion were done with the accuracy of 95.2, 91.3, and 91.7%, respectively. |
Author | Übeyli, Elif Derya Güler, İnan |
Author_xml | – sequence: 1 givenname: E surname: Ubeyli middlename: D fullname: Ubeyli, E D – sequence: 2 givenname: I surname: Guler fullname: Guler, I |
BookMark | eNqFkE1PxCAQhonRxPXjJ5hwMnqoDqVbWj0Ys34mRg_qmSAdDFqhAqvx30t3jQcvzoXMzPu-GZ4Nsuq8Q0J2GBwwYPXhPbRTUVRMVHvA9yFXWZQrZMIawYtatHyVTH4l62QjxhcAJgDEhLze4jyonjpMnz68UuVU_xVtpN5Q6xKG3FOtgk-2oyrkgc2DMz8MPQYa7XPexyM6BOysTta7hTMmdH5MUa6jXut-HvNqi6yZrMbtn3eTPF6cP8yuipu7y-vZ6U2hOW9SUSszrUBzUILni5uSMa1Ng0bUrKsbAYw10BoOXauejClLZNOnpqt41RkwXPNNsrvMHYJ_n2NM8s1GjX2vHPp5lKVoWtG2ZRYeL4U6-BgDGqltUuMvUlC2lwzkCFguAMuRngQuF4Dl6J7-cQ_Bvqnw9a_vZOnDzODDYpBRW3Q6Ewyok-y8_SfhG4meltw |
CitedBy_id | crossref_primary_10_1111_j_1468_0394_2007_00418_x crossref_primary_10_1016_j_eswa_2005_09_017 crossref_primary_10_1016_j_cmpb_2010_07_001 crossref_primary_10_1016_j_compbiomed_2006_01_008 crossref_primary_10_1007_s10916_006_9034_z crossref_primary_10_1016_j_artmed_2007_02_001 crossref_primary_10_1109_ACCESS_2024_3387071 crossref_primary_10_1016_j_cmpb_2007_01_006 crossref_primary_10_1016_j_compbiomed_2004_06_006 crossref_primary_10_1016_j_eswa_2011_01_114 crossref_primary_10_1142_S021951941000354X crossref_primary_10_1016_j_artmed_2008_05_003 crossref_primary_10_1016_j_eswa_2006_08_005 crossref_primary_10_1016_j_medengphy_2004_06_007 crossref_primary_10_1016_j_compbiomed_2007_07_004 crossref_primary_10_1016_j_eswa_2007_08_067 crossref_primary_10_1111_j_1468_0394_2008_00448_x crossref_primary_10_1016_j_eswa_2010_12_084 crossref_primary_10_1016_j_compbiomed_2004_03_006 crossref_primary_10_1016_j_compbiomed_2005_08_005 crossref_primary_10_3390_s18072322 crossref_primary_10_1016_j_eswa_2005_09_006 crossref_primary_10_1016_j_dsp_2007_02_002 crossref_primary_10_1016_j_engappai_2004_10_002 crossref_primary_10_1007_s10916_010_9498_8 crossref_primary_10_1016_j_compbiomed_2008_02_003 crossref_primary_10_1016_j_eswa_2005_09_064 crossref_primary_10_1016_j_compbiomed_2004_04_001 crossref_primary_10_1016_j_measurement_2014_12_010 crossref_primary_10_1111_j_1468_0394_2005_00295_x crossref_primary_10_1016_j_compbiomed_2003_09_001 crossref_primary_10_1016_j_compbiomed_2009_10_003 crossref_primary_10_1016_j_eswa_2004_05_001 crossref_primary_10_1016_j_patrec_2006_03_001 crossref_primary_10_1016_j_eswa_2006_05_028 crossref_primary_10_1016_j_ultrasmedbio_2009_05_005 crossref_primary_10_1016_j_eswa_2007_10_025 crossref_primary_10_1016_j_jneumeth_2005_04_013 crossref_primary_10_1016_j_engappai_2005_05_004 crossref_primary_10_1016_j_knosys_2013_08_007 crossref_primary_10_1016_j_compbiomed_2004_05_004 |
Cites_doi | 10.1016/S0301-5629(97)00011-2 10.1016/0010-4825(95)00024-X 10.1007/BF02414891 10.1016/S0167-7012(00)00201-3 10.1016/S0010-4825(01)00005-1 10.1108/02602289710163355 10.1148/radiology.192.3.7914706 10.1007/BF02915843 10.1016/S0140-6736(95)91804-3 10.1016/S0890-6955(00)00073-0 10.1016/S0933-3657(99)00040-8 10.1007/BF02457822 10.1162/neco.1990.2.4.480 10.1016/1350-4533(95)95713-K 10.1016/S0301-5629(99)00011-3 10.7326/0003-4819-115-11-843 10.1093/clinchem/39.4.561 10.1038/323533a0 10.1016/S0010-4825(96)00018-2 10.1016/S0301-5629(99)00015-0 10.1006/cbmr.1996.0022 10.1142/S0218488595000219 10.1016/1350-4533(95)00032-1 10.1016/0301-2115(95)02256-2 10.1016/0735-1097(95)00385-1 10.1016/0169-2607(95)01702-X |
ContentType | Journal Article |
Copyright | 2003 Elsevier Science Ltd |
Copyright_xml | – notice: 2003 Elsevier Science Ltd |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/S0957-4174(03)00002-2 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
EndPage | 13 |
ExternalDocumentID | 10_1016_S0957_4174_03_00002_2 S0957417403000022 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c338t-6af540c30a734178211ccf8ef761d687011809f30d9abff22e15b8d434df0f3c3 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Fri Sep 05 12:17:31 EDT 2025 Tue Jul 01 01:03:59 EDT 2025 Thu Apr 24 23:08:14 EDT 2025 Fri Feb 23 02:27:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Backpropagation Multilayer perceptron neural network Doppler ultrasound Pattern classification Internal carotid artery Spectral analysis |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c338t-6af540c30a734178211ccf8ef761d687011809f30d9abff22e15b8d434df0f3c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 27897992 |
PQPubID | 23500 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_27897992 crossref_citationtrail_10_1016_S0957_4174_03_00002_2 crossref_primary_10_1016_S0957_4174_03_00002_2 elsevier_sciencedirect_doi_10_1016_S0957_4174_03_00002_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2003-07-01 |
PublicationDateYYYYMMDD | 2003-07-01 |
PublicationDate_xml | – month: 07 year: 2003 text: 2003-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2003 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chen, Lin, Wu, McCallum (BIB11) 1995; 17 Güler, Hardalaç, Müldür (BIB15) 2001; 31 Pham, Sagiroglu (BIB25) 2001; 41 Baxt (BIB7) 1991; 115 Smith, Graham, Taylor (BIB30) 1996; 13 Wright, Gough (BIB31) 1999; 24 Abel, Zacharia, Forster, Farrow (BIB1) 1996; 18 Güler, Kıymık, Güler (BIB17) 1995; 25 Baxt (BIB6) 1990; 2 Güler, Kara, Güler, Kıymık (BIB16) 1996; 49 Ortiz, Ghefter, Silva, Sabbatini (BIB24) 1995; 26 Edenbrant, Heden, Pahlm (BIB12) 1993; 26 Fausett (BIB14) 1994 Haykin (BIB19) 1994 Miller, Blott, Hames (BIB22) 1992; 30 Ronco, Fernandez (BIB27) 1999; 25 Wright, Gough, Rakebrandt, Wahab, Woodcock (BIB32) 1997; 23 Evans, McDicken, Skidmore, Woodcock (BIB13) 1989 Güler, Kıymık, Güler (BIB18) 1995; 21 Beksaç, Başaran, Eskiizmirliler, Erkmen, Yörükan (BIB10) 1996; 64 Siebler, Rose, Sitzer, Bender, Steinmetz (BIB29) 1994; 192 Rumelhart, Hinton, Williams (BIB28) 1986; 323 Keeton, Schlindwein (BIB21) 1997; 17 Baker (BIB4) 1985 Mobley, Schechter, Moore, McKee, Eichner (BIB23) 2000; 18 Baxt (BIB8) 1995; 346 Baykal, Reggia, Yalabık, Erkmen, Beksaç (BIB9) 1996; 26 Akay (BIB3) 1992; 67 Prahadan, Sadasivan, Arunodaya (BIB26) 1996; 29 Zweig, Campbell (BIB33) 1993; 39 Hilera, Martinez, Mazo (BIB20) 1995; 3 Adams (BIB2) 1993 Basheer, Hajmeer (BIB5) 2000; 43 Mobley (10.1016/S0957-4174(03)00002-2_BIB23) 2000; 18 Wright (10.1016/S0957-4174(03)00002-2_BIB32) 1997; 23 Edenbrant (10.1016/S0957-4174(03)00002-2_BIB12) 1993; 26 Güler (10.1016/S0957-4174(03)00002-2_BIB17) 1995; 25 Prahadan (10.1016/S0957-4174(03)00002-2_BIB26) 1996; 29 Ortiz (10.1016/S0957-4174(03)00002-2_BIB24) 1995; 26 Ronco (10.1016/S0957-4174(03)00002-2_BIB27) 1999; 25 Smith (10.1016/S0957-4174(03)00002-2_BIB30) 1996; 13 Evans (10.1016/S0957-4174(03)00002-2_BIB13) 1989 Güler (10.1016/S0957-4174(03)00002-2_BIB15) 2001; 31 Hilera (10.1016/S0957-4174(03)00002-2_BIB20) 1995; 3 Abel (10.1016/S0957-4174(03)00002-2_BIB1) 1996; 18 Basheer (10.1016/S0957-4174(03)00002-2_BIB5) 2000; 43 Zweig (10.1016/S0957-4174(03)00002-2_BIB33) 1993; 39 Miller (10.1016/S0957-4174(03)00002-2_BIB22) 1992; 30 Haykin (10.1016/S0957-4174(03)00002-2_BIB19) 1994 Baker (10.1016/S0957-4174(03)00002-2_BIB4) 1985 Keeton (10.1016/S0957-4174(03)00002-2_BIB21) 1997; 17 Chen (10.1016/S0957-4174(03)00002-2_BIB11) 1995; 17 Pham (10.1016/S0957-4174(03)00002-2_BIB25) 2001; 41 Baxt (10.1016/S0957-4174(03)00002-2_BIB6) 1990; 2 Akay (10.1016/S0957-4174(03)00002-2_BIB3) 1992; 67 Siebler (10.1016/S0957-4174(03)00002-2_BIB29) 1994; 192 Fausett (10.1016/S0957-4174(03)00002-2_BIB14) 1994 Baykal (10.1016/S0957-4174(03)00002-2_BIB9) 1996; 26 Wright (10.1016/S0957-4174(03)00002-2_BIB31) 1999; 24 Adams (10.1016/S0957-4174(03)00002-2_BIB2) 1993 Güler (10.1016/S0957-4174(03)00002-2_BIB16) 1996; 49 Güler (10.1016/S0957-4174(03)00002-2_BIB18) 1995; 21 Baxt (10.1016/S0957-4174(03)00002-2_BIB7) 1991; 115 Baxt (10.1016/S0957-4174(03)00002-2_BIB8) 1995; 346 Beksaç (10.1016/S0957-4174(03)00002-2_BIB10) 1996; 64 Rumelhart (10.1016/S0957-4174(03)00002-2_BIB28) 1986; 323 |
References_xml | – volume: 26 start-page: 1586 year: 1995 end-page: 1593 ident: BIB24 article-title: One-year mortality prognosis in heart failure: A neural network approach based on echocardiographic data publication-title: Journal of the American College of Cardiology – volume: 67 start-page: 361 year: 1992 end-page: 367 ident: BIB3 article-title: Non-invasive diagnosis of coronary artery disease using a neural network algorithm publication-title: Biological Cybernetics – volume: 24 start-page: 735 year: 1999 end-page: 743 ident: BIB31 article-title: Artificial neural network analysis of common femoral artery Doppler shift signals: Classification of proximal disease publication-title: Ultrasound in Medicine and Biology – volume: 43 start-page: 3 year: 2000 end-page: 31 ident: BIB5 article-title: Artificial neural networks: Fundamentals, computing, design, and application publication-title: Journal of Microbiological Methods – volume: 346 start-page: 1135 year: 1995 end-page: 1138 ident: BIB8 article-title: Application of artificial neural networks to clinical medicine publication-title: Lancet – volume: 26 start-page: 451 year: 1996 end-page: 462 ident: BIB9 article-title: Feature discovery and classification of Doppler umbilical artery blood flow velocity waveforms publication-title: Computers in Biology and Medicine – volume: 192 start-page: 739 year: 1994 end-page: 742 ident: BIB29 article-title: Real-time identification of cerebral microemboli with ultrasound feature detection by a neural network publication-title: Radiology – year: 1985 ident: BIB4 publication-title: Diagnosis and treatment of carotid artery disease – volume: 17 start-page: 219 year: 1995 end-page: 225 ident: BIB11 article-title: Non-invasive identification of gastric contractions from surface electrogastrogram using backpropagation neural networks publication-title: Medical Engineering and Physics – volume: 25 start-page: 383 year: 1995 end-page: 391 ident: BIB17 article-title: Comparison of FFT and AR-based sonogram outputs of 20 publication-title: Computers in Biology and Medicine – volume: 2 start-page: 480 year: 1990 end-page: 489 ident: BIB6 article-title: Use of an artificial neural network for data analysis in clinical decision making: The diagnosis of acute coronary occlusion publication-title: Neural Computation – volume: 31 start-page: 229 year: 2001 end-page: 238 ident: BIB15 article-title: Determination of aorta failure with the application of FFT, AR and wavelet methods to Doppler technique publication-title: Computers in Biology and Medicine – volume: 29 start-page: 303 year: 1996 end-page: 313 ident: BIB26 article-title: Detection of seizure activity in EEG by an artificial neural network: A preliminary study publication-title: Computers and Biomedical Research – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: BIB28 article-title: Learning representations by back-propagating errors publication-title: Nature – year: 1993 ident: BIB2 publication-title: Handbook of cerebrovascular diseases – year: 1989 ident: BIB13 publication-title: Doppler ultrasound: physics instrumentation and clinical applications – volume: 30 start-page: 449 year: 1992 end-page: 464 ident: BIB22 article-title: Review of neural network applications in medical imaging and signal processing publication-title: Medical and Biological Engineering and Computing – volume: 17 start-page: 38 year: 1997 end-page: 45 ident: BIB21 article-title: Application of wavelets in Doppler ultrasound publication-title: Sensor Review – volume: 39 start-page: 561 year: 1993 end-page: 577 ident: BIB33 article-title: Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine publication-title: Clinical Chemistry – volume: 41 start-page: 419 year: 2001 end-page: 430 ident: BIB25 article-title: Training multilayered perceptrons for pattern recognition: A comparative study of four training algorithms publication-title: International Journal of Machine Tools and Manufacture – volume: 25 start-page: 729 year: 1999 end-page: 733 ident: BIB27 article-title: Improving ultrasonographic diagnosis of prostate cancer with neural networks publication-title: Ultrasound in Medicine and Biology – volume: 49 start-page: 29 year: 1996 end-page: 36 ident: BIB16 article-title: Application of autoregressive and fast Fourier transform spectral analysis to tricuspid and mitral valve stenosis publication-title: Computer Methods and Programs in Biomedicine – volume: 13 start-page: 85 year: 1996 end-page: 91 ident: BIB30 article-title: The application of an artificial neural network to Doppler ultrasound waveforms for the classification of arterial disease publication-title: International Journal of Clinical Monitoring and Computing – volume: 64 start-page: 37 year: 1996 end-page: 42 ident: BIB10 article-title: A computerized diagnostic system for the interpretation of umbilical artery blood flow velocity waveforms publication-title: European Journal of Obstetrics and Gynecology and Reproductive Biology – volume: 18 start-page: 12 year: 1996 end-page: 17 ident: BIB1 article-title: Neural network analysis of the EMG interference pattern publication-title: Medical Engineering and Physics – volume: 26 start-page: 66 year: 1993 end-page: 73 ident: BIB12 article-title: Neural networks for analysis of ECG complexes publication-title: Journal of Electrocardiology – volume: 23 start-page: 683 year: 1997 end-page: 690 ident: BIB32 article-title: Neural network analysis of Doppler ultrasound blood flow signals: A pilot study publication-title: Ultrasound in Medicine and Biology – year: 1994 ident: BIB14 publication-title: Fundamentals of neural networks architectures, algorithms, and applications – volume: 21 start-page: 105 year: 1995 end-page: 110 ident: BIB18 article-title: Autoregressive-based sonogram output of 20 publication-title: Medical Progress Through Technology – year: 1994 ident: BIB19 publication-title: Neural networks: A comprehensive foundation – volume: 18 start-page: 187 year: 2000 end-page: 203 ident: BIB23 article-title: Predictions of coronary artery stenosis by artificial neural network publication-title: Artificial Intelligence in Medicine – volume: 115 start-page: 843 year: 1991 end-page: 848 ident: BIB7 article-title: Use of an artificial neural network for the diagnosis of myocardial infarction publication-title: Annals of Internal Medicine – volume: 3 start-page: 419 year: 1995 end-page: 430 ident: BIB20 article-title: ECG signal processing with neural networks publication-title: International Journal of Uncertainty Fuzziness and Knowledge-Based Systems – volume: 23 start-page: 683 issue: 5 year: 1997 ident: 10.1016/S0957-4174(03)00002-2_BIB32 article-title: Neural network analysis of Doppler ultrasound blood flow signals: A pilot study publication-title: Ultrasound in Medicine and Biology doi: 10.1016/S0301-5629(97)00011-2 – volume: 25 start-page: 383 year: 1995 ident: 10.1016/S0957-4174(03)00002-2_BIB17 article-title: Comparison of FFT and AR-based sonogram outputs of 20MHz pulsed Doppler data in real time publication-title: Computers in Biology and Medicine doi: 10.1016/0010-4825(95)00024-X – volume: 67 start-page: 361 year: 1992 ident: 10.1016/S0957-4174(03)00002-2_BIB3 article-title: Non-invasive diagnosis of coronary artery disease using a neural network algorithm publication-title: Biological Cybernetics doi: 10.1007/BF02414891 – volume: 43 start-page: 3 year: 2000 ident: 10.1016/S0957-4174(03)00002-2_BIB5 article-title: Artificial neural networks: Fundamentals, computing, design, and application publication-title: Journal of Microbiological Methods doi: 10.1016/S0167-7012(00)00201-3 – volume: 31 start-page: 229 year: 2001 ident: 10.1016/S0957-4174(03)00002-2_BIB15 article-title: Determination of aorta failure with the application of FFT, AR and wavelet methods to Doppler technique publication-title: Computers in Biology and Medicine doi: 10.1016/S0010-4825(01)00005-1 – volume: 17 start-page: 38 issue: 1 year: 1997 ident: 10.1016/S0957-4174(03)00002-2_BIB21 article-title: Application of wavelets in Doppler ultrasound publication-title: Sensor Review doi: 10.1108/02602289710163355 – volume: 192 start-page: 739 year: 1994 ident: 10.1016/S0957-4174(03)00002-2_BIB29 article-title: Real-time identification of cerebral microemboli with ultrasound feature detection by a neural network publication-title: Radiology doi: 10.1148/radiology.192.3.7914706 – year: 1985 ident: 10.1016/S0957-4174(03)00002-2_BIB4 – volume: 13 start-page: 85 year: 1996 ident: 10.1016/S0957-4174(03)00002-2_BIB30 article-title: The application of an artificial neural network to Doppler ultrasound waveforms for the classification of arterial disease publication-title: International Journal of Clinical Monitoring and Computing doi: 10.1007/BF02915843 – volume: 346 start-page: 1135 year: 1995 ident: 10.1016/S0957-4174(03)00002-2_BIB8 article-title: Application of artificial neural networks to clinical medicine publication-title: Lancet doi: 10.1016/S0140-6736(95)91804-3 – volume: 41 start-page: 419 year: 2001 ident: 10.1016/S0957-4174(03)00002-2_BIB25 article-title: Training multilayered perceptrons for pattern recognition: A comparative study of four training algorithms publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/S0890-6955(00)00073-0 – volume: 18 start-page: 187 year: 2000 ident: 10.1016/S0957-4174(03)00002-2_BIB23 article-title: Predictions of coronary artery stenosis by artificial neural network publication-title: Artificial Intelligence in Medicine doi: 10.1016/S0933-3657(99)00040-8 – volume: 30 start-page: 449 year: 1992 ident: 10.1016/S0957-4174(03)00002-2_BIB22 article-title: Review of neural network applications in medical imaging and signal processing publication-title: Medical and Biological Engineering and Computing doi: 10.1007/BF02457822 – volume: 2 start-page: 480 year: 1990 ident: 10.1016/S0957-4174(03)00002-2_BIB6 article-title: Use of an artificial neural network for data analysis in clinical decision making: The diagnosis of acute coronary occlusion publication-title: Neural Computation doi: 10.1162/neco.1990.2.4.480 – volume: 17 start-page: 219 issue: 3 year: 1995 ident: 10.1016/S0957-4174(03)00002-2_BIB11 article-title: Non-invasive identification of gastric contractions from surface electrogastrogram using backpropagation neural networks publication-title: Medical Engineering and Physics doi: 10.1016/1350-4533(95)95713-K – volume: 25 start-page: 729 issue: 5 year: 1999 ident: 10.1016/S0957-4174(03)00002-2_BIB27 article-title: Improving ultrasonographic diagnosis of prostate cancer with neural networks publication-title: Ultrasound in Medicine and Biology doi: 10.1016/S0301-5629(99)00011-3 – volume: 115 start-page: 843 year: 1991 ident: 10.1016/S0957-4174(03)00002-2_BIB7 article-title: Use of an artificial neural network for the diagnosis of myocardial infarction publication-title: Annals of Internal Medicine doi: 10.7326/0003-4819-115-11-843 – volume: 39 start-page: 561 issue: 4 year: 1993 ident: 10.1016/S0957-4174(03)00002-2_BIB33 article-title: Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine publication-title: Clinical Chemistry doi: 10.1093/clinchem/39.4.561 – volume: 26 start-page: 66 year: 1993 ident: 10.1016/S0957-4174(03)00002-2_BIB12 article-title: Neural networks for analysis of ECG complexes publication-title: Journal of Electrocardiology – volume: 323 start-page: 533 year: 1986 ident: 10.1016/S0957-4174(03)00002-2_BIB28 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 26 start-page: 451 issue: 6 year: 1996 ident: 10.1016/S0957-4174(03)00002-2_BIB9 article-title: Feature discovery and classification of Doppler umbilical artery blood flow velocity waveforms publication-title: Computers in Biology and Medicine doi: 10.1016/S0010-4825(96)00018-2 – volume: 21 start-page: 105 year: 1995 ident: 10.1016/S0957-4174(03)00002-2_BIB18 article-title: Autoregressive-based sonogram output of 20MHz pulsed Doppler data publication-title: Medical Progress Through Technology – volume: 24 start-page: 735 issue: 5 year: 1999 ident: 10.1016/S0957-4174(03)00002-2_BIB31 article-title: Artificial neural network analysis of common femoral artery Doppler shift signals: Classification of proximal disease publication-title: Ultrasound in Medicine and Biology doi: 10.1016/S0301-5629(99)00015-0 – year: 1989 ident: 10.1016/S0957-4174(03)00002-2_BIB13 – volume: 29 start-page: 303 issue: 4 year: 1996 ident: 10.1016/S0957-4174(03)00002-2_BIB26 article-title: Detection of seizure activity in EEG by an artificial neural network: A preliminary study publication-title: Computers and Biomedical Research doi: 10.1006/cbmr.1996.0022 – volume: 3 start-page: 419 issue: 4 year: 1995 ident: 10.1016/S0957-4174(03)00002-2_BIB20 article-title: ECG signal processing with neural networks publication-title: International Journal of Uncertainty Fuzziness and Knowledge-Based Systems doi: 10.1142/S0218488595000219 – year: 1994 ident: 10.1016/S0957-4174(03)00002-2_BIB14 – year: 1993 ident: 10.1016/S0957-4174(03)00002-2_BIB2 – volume: 18 start-page: 12 issue: 1 year: 1996 ident: 10.1016/S0957-4174(03)00002-2_BIB1 article-title: Neural network analysis of the EMG interference pattern publication-title: Medical Engineering and Physics doi: 10.1016/1350-4533(95)00032-1 – volume: 64 start-page: 37 year: 1996 ident: 10.1016/S0957-4174(03)00002-2_BIB10 article-title: A computerized diagnostic system for the interpretation of umbilical artery blood flow velocity waveforms publication-title: European Journal of Obstetrics and Gynecology and Reproductive Biology doi: 10.1016/0301-2115(95)02256-2 – year: 1994 ident: 10.1016/S0957-4174(03)00002-2_BIB19 – volume: 26 start-page: 1586 year: 1995 ident: 10.1016/S0957-4174(03)00002-2_BIB24 article-title: One-year mortality prognosis in heart failure: A neural network approach based on echocardiographic data publication-title: Journal of the American College of Cardiology doi: 10.1016/0735-1097(95)00385-1 – volume: 49 start-page: 29 year: 1996 ident: 10.1016/S0957-4174(03)00002-2_BIB16 article-title: Application of autoregressive and fast Fourier transform spectral analysis to tricuspid and mitral valve stenosis publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/0169-2607(95)01702-X |
SSID | ssj0017007 |
Score | 1.9779053 |
Snippet | Doppler ultrasound is a noninvasive technique that allows the examination of the direction, velocity, and volume of blood flow. Doppler ultrasound has proven... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Backpropagation Doppler ultrasound Internal carotid artery Multilayer perceptron neural network Pattern classification Spectral analysis |
Title | Neural network analysis of internal carotid arterial Doppler signals: predictions of stenosis and occlusion |
URI | https://dx.doi.org/10.1016/S0957-4174(03)00002-2 https://www.proquest.com/docview/27897992 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWVh4I954YIDBNImdOGGrgKqAYIFKbJbjxFJElVQlXfnt3DlJK5AQEquTO0Xnz76LffcdIecWXBw8CRn4npSJKLBMJ2HKtB9lUehLnWRYnPz0HI3G4uEtfFshN10tDKZVtnt_s6e73bod6bfW7E-Lov8CwQG4QykApo7GBSvYhUSsX30u0jyQfk42fHuS4dvLKp5Ggxu88PilU8KC3_zTj53auZ_hJllv40Y6aD5ti6zk5TbZ6Hoy0HaJ7pB3ZNuAF8smvZvqlnSEVpYWzenfhGKvnrrIqMvnBADS2wqCUVCD2RyAx2s6neEFjsMkSgIUygq16DKjlTGTOR6y7ZLx8O71ZsTahgrMwJ9ozSJtIUAz3NMSnBfEBr5vjI1zKyM_i2DlIh9cYrmXJTq1NghyP0zjTHCRWc9yw_dIr6zKfJ_QPDbapGnixzEXkdVaBKnVICy5hhjLPyCiM6MyLds4Nr2YqGVaGVhfofWVx5WzvgoOyNVCbNrQbfwlEHdzpL7hRoFL-Ev0rJtTBWsKL0p0mVfzD4XVwTJJgsP_Kz8iay7tzyX2HpNePZvnJxC-1Ompw-cpWR3cP46evwAeFurD |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DLDwRpSnBwYYTJPYiRM2xEMF2i4Uic1ynFiqqJKqtCu_nTsnaQUSQmJ1cqfofPZd7O--I-TcQoiDJyGD2JMyEQWW6SRMmfajLAp9qZMMi5N7_ajzKp7ewrclctvUwiCsst77qz3d7db1SLu2Zns8HLZfIDmAcCgFuKmjcVkmqyLkEnF9V59znAfyz8mKcE8yfH1RxlOpcIMXHr90WljwW4D6sVW7-POwRTbqxJHeVN-2TZbyYodsNk0ZaL1Gd8k70m3Ai0WF76a6Zh2hpaXD6vhvRLFZz3SYUQfoBA-kdyVko6AG4RzgkNd0PMEbHOeUKAm-UJSoRRcZLY0ZzfCUbY-8PtwPbjus7qjADPyKTlmkLWRohntaQvSC5MD3jbFxbmXkZxEsXSSESyz3skSn1gZB7odpnAkuMutZbvg-WSnKIj8gNI-NNmma-HHMRWS1FkFqNQhLriHJ8ltENGZUpqYbx64XI7XAlYH1FVpfeVw566ugRa7mYuOKb-MvgbiZI_XNcRTEhL9Ez5o5VbCo8KZEF3k5-1BYHiyTJDj8v_IzstYZ9Lqq-9h_PiLrDgPoUL7HZGU6meUnkMtM01Pnq1-XeOxW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+analysis+of+internal+carotid+arterial+Doppler+signals%3A+predictions+of+stenosis+and+occlusion&rft.jtitle=Expert+systems+with+applications&rft.au=Ubeyli%2C+E+D&rft.au=Guler%2C+I&rft.date=2003-07-01&rft.issn=0957-4174&rft.volume=25&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1016%2FS0957-4174%2803%2900002-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |