Neural network analysis of internal carotid arterial Doppler signals: predictions of stenosis and occlusion

Doppler ultrasound is a noninvasive technique that allows the examination of the direction, velocity, and volume of blood flow. Doppler ultrasound has proven to be a valuable technique for investigation of artery conditions. Therefore, Doppler ultrasonography is known as reliable technique, which de...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 25; no. 1; pp. 1 - 13
Main Authors Ubeyli, E D, Guler, I
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2003
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/S0957-4174(03)00002-2

Cover

Abstract Doppler ultrasound is a noninvasive technique that allows the examination of the direction, velocity, and volume of blood flow. Doppler ultrasound has proven to be a valuable technique for investigation of artery conditions. Therefore, Doppler ultrasonography is known as reliable technique, which demonstrates the flow characteristics and resistance of internal carotid arteries in stenosis and occlusion conditions. In this study, internal carotid arterial Doppler signals were obtained from 130 subjects, 45 of them had suffered from internal carotid artery stenosis, 44 of them had suffered from internal carotid artery occlusion and the rest of them had been healthy subjects. Multilayer perceptron neural network employing backpropagation training algorithm was used to predict the presence or absence of internal carotid artery stenosis and occlusion. Spectral analysis of internal carotid arterial Doppler signals was done by Burg autoregressive method for determining the neural network inputs. The network was trained, cross validated and tested with subject's internal carotid arterial Doppler signals. Performance indicators and statistical measures were used for evaluating the neural network. By using the network, the classifications of healthy subjects, subjects having internal carotid artery stenosis, and subjects having internal carotid artery occlusion were done with the accuracy of 95.2, 91.3, and 91.7%, respectively.
AbstractList Doppler ultrasound is a noninvasive technique that allows the examination of the direction, velocity, and volume of blood flow. Doppler ultrasound has proven to be a valuable technique for investigation of artery conditions. Therefore, Doppler ultrasonography is known as reliable technique, which demonstrates the flow characteristics and resistance of internal carotid arteries in stenosis and occlusion conditions, hi this study, internal carotid arterial Doppler signals were obtained from 130 subjects, 45 of them had suffered from internal carotid artery stenosis, 44 of them had suffered from internal carotid artery occlusion and the rest of them had been healthy subjects. Multilayer perceptron neural network employing backpropagation training algorithm was used to predict the presence or absence of internal carotid artery stenosis and occlusion. Spectral analysis of internal carotid arterial Doppler signals was done by Burg autoregressive method for determining the neural network inputs. The network was trained, cross validated and tested with subject's internal carotid arterial Doppler signals. Performance indicators and statistical measures were used for evaluating the neural network. By using the network, the classifications of healthy subjects, subjects having internal carotid artery stenosis, and subjects having internal carotid artery occlusion were done with the accuracy of 95.2, 91.3, and 91.7%, respectively.
Doppler ultrasound is a noninvasive technique that allows the examination of the direction, velocity, and volume of blood flow. Doppler ultrasound has proven to be a valuable technique for investigation of artery conditions. Therefore, Doppler ultrasonography is known as reliable technique, which demonstrates the flow characteristics and resistance of internal carotid arteries in stenosis and occlusion conditions. In this study, internal carotid arterial Doppler signals were obtained from 130 subjects, 45 of them had suffered from internal carotid artery stenosis, 44 of them had suffered from internal carotid artery occlusion and the rest of them had been healthy subjects. Multilayer perceptron neural network employing backpropagation training algorithm was used to predict the presence or absence of internal carotid artery stenosis and occlusion. Spectral analysis of internal carotid arterial Doppler signals was done by Burg autoregressive method for determining the neural network inputs. The network was trained, cross validated and tested with subject's internal carotid arterial Doppler signals. Performance indicators and statistical measures were used for evaluating the neural network. By using the network, the classifications of healthy subjects, subjects having internal carotid artery stenosis, and subjects having internal carotid artery occlusion were done with the accuracy of 95.2, 91.3, and 91.7%, respectively.
Author Übeyli, Elif Derya
Güler, İnan
Author_xml – sequence: 1
  givenname: E
  surname: Ubeyli
  middlename: D
  fullname: Ubeyli, E D
– sequence: 2
  givenname: I
  surname: Guler
  fullname: Guler, I
BookMark eNqFkE1PxCAQhonRxPXjJ5hwMnqoDqVbWj0Ys34mRg_qmSAdDFqhAqvx30t3jQcvzoXMzPu-GZ4Nsuq8Q0J2GBwwYPXhPbRTUVRMVHvA9yFXWZQrZMIawYtatHyVTH4l62QjxhcAJgDEhLze4jyonjpMnz68UuVU_xVtpN5Q6xKG3FOtgk-2oyrkgc2DMz8MPQYa7XPexyM6BOysTta7hTMmdH5MUa6jXut-HvNqi6yZrMbtn3eTPF6cP8yuipu7y-vZ6U2hOW9SUSszrUBzUILni5uSMa1Ng0bUrKsbAYw10BoOXauejClLZNOnpqt41RkwXPNNsrvMHYJ_n2NM8s1GjX2vHPp5lKVoWtG2ZRYeL4U6-BgDGqltUuMvUlC2lwzkCFguAMuRngQuF4Dl6J7-cQ_Bvqnw9a_vZOnDzODDYpBRW3Q6Ewyok-y8_SfhG4meltw
CitedBy_id crossref_primary_10_1111_j_1468_0394_2007_00418_x
crossref_primary_10_1016_j_eswa_2005_09_017
crossref_primary_10_1016_j_cmpb_2010_07_001
crossref_primary_10_1016_j_compbiomed_2006_01_008
crossref_primary_10_1007_s10916_006_9034_z
crossref_primary_10_1016_j_artmed_2007_02_001
crossref_primary_10_1109_ACCESS_2024_3387071
crossref_primary_10_1016_j_cmpb_2007_01_006
crossref_primary_10_1016_j_compbiomed_2004_06_006
crossref_primary_10_1016_j_eswa_2011_01_114
crossref_primary_10_1142_S021951941000354X
crossref_primary_10_1016_j_artmed_2008_05_003
crossref_primary_10_1016_j_eswa_2006_08_005
crossref_primary_10_1016_j_medengphy_2004_06_007
crossref_primary_10_1016_j_compbiomed_2007_07_004
crossref_primary_10_1016_j_eswa_2007_08_067
crossref_primary_10_1111_j_1468_0394_2008_00448_x
crossref_primary_10_1016_j_eswa_2010_12_084
crossref_primary_10_1016_j_compbiomed_2004_03_006
crossref_primary_10_1016_j_compbiomed_2005_08_005
crossref_primary_10_3390_s18072322
crossref_primary_10_1016_j_eswa_2005_09_006
crossref_primary_10_1016_j_dsp_2007_02_002
crossref_primary_10_1016_j_engappai_2004_10_002
crossref_primary_10_1007_s10916_010_9498_8
crossref_primary_10_1016_j_compbiomed_2008_02_003
crossref_primary_10_1016_j_eswa_2005_09_064
crossref_primary_10_1016_j_compbiomed_2004_04_001
crossref_primary_10_1016_j_measurement_2014_12_010
crossref_primary_10_1111_j_1468_0394_2005_00295_x
crossref_primary_10_1016_j_compbiomed_2003_09_001
crossref_primary_10_1016_j_compbiomed_2009_10_003
crossref_primary_10_1016_j_eswa_2004_05_001
crossref_primary_10_1016_j_patrec_2006_03_001
crossref_primary_10_1016_j_eswa_2006_05_028
crossref_primary_10_1016_j_ultrasmedbio_2009_05_005
crossref_primary_10_1016_j_eswa_2007_10_025
crossref_primary_10_1016_j_jneumeth_2005_04_013
crossref_primary_10_1016_j_engappai_2005_05_004
crossref_primary_10_1016_j_knosys_2013_08_007
crossref_primary_10_1016_j_compbiomed_2004_05_004
Cites_doi 10.1016/S0301-5629(97)00011-2
10.1016/0010-4825(95)00024-X
10.1007/BF02414891
10.1016/S0167-7012(00)00201-3
10.1016/S0010-4825(01)00005-1
10.1108/02602289710163355
10.1148/radiology.192.3.7914706
10.1007/BF02915843
10.1016/S0140-6736(95)91804-3
10.1016/S0890-6955(00)00073-0
10.1016/S0933-3657(99)00040-8
10.1007/BF02457822
10.1162/neco.1990.2.4.480
10.1016/1350-4533(95)95713-K
10.1016/S0301-5629(99)00011-3
10.7326/0003-4819-115-11-843
10.1093/clinchem/39.4.561
10.1038/323533a0
10.1016/S0010-4825(96)00018-2
10.1016/S0301-5629(99)00015-0
10.1006/cbmr.1996.0022
10.1142/S0218488595000219
10.1016/1350-4533(95)00032-1
10.1016/0301-2115(95)02256-2
10.1016/0735-1097(95)00385-1
10.1016/0169-2607(95)01702-X
ContentType Journal Article
Copyright 2003 Elsevier Science Ltd
Copyright_xml – notice: 2003 Elsevier Science Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/S0957-4174(03)00002-2
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 13
ExternalDocumentID 10_1016_S0957_4174_03_00002_2
S0957417403000022
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-6af540c30a734178211ccf8ef761d687011809f30d9abff22e15b8d434df0f3c3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Sep 05 12:17:31 EDT 2025
Tue Jul 01 01:03:59 EDT 2025
Thu Apr 24 23:08:14 EDT 2025
Fri Feb 23 02:27:38 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Backpropagation
Multilayer perceptron neural network
Doppler ultrasound
Pattern classification
Internal carotid artery
Spectral analysis
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-6af540c30a734178211ccf8ef761d687011809f30d9abff22e15b8d434df0f3c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 27897992
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_27897992
crossref_citationtrail_10_1016_S0957_4174_03_00002_2
crossref_primary_10_1016_S0957_4174_03_00002_2
elsevier_sciencedirect_doi_10_1016_S0957_4174_03_00002_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-07-01
PublicationDateYYYYMMDD 2003-07-01
PublicationDate_xml – month: 07
  year: 2003
  text: 2003-07-01
  day: 01
PublicationDecade 2000
PublicationTitle Expert systems with applications
PublicationYear 2003
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Lin, Wu, McCallum (BIB11) 1995; 17
Güler, Hardalaç, Müldür (BIB15) 2001; 31
Pham, Sagiroglu (BIB25) 2001; 41
Baxt (BIB7) 1991; 115
Smith, Graham, Taylor (BIB30) 1996; 13
Wright, Gough (BIB31) 1999; 24
Abel, Zacharia, Forster, Farrow (BIB1) 1996; 18
Güler, Kıymık, Güler (BIB17) 1995; 25
Baxt (BIB6) 1990; 2
Güler, Kara, Güler, Kıymık (BIB16) 1996; 49
Ortiz, Ghefter, Silva, Sabbatini (BIB24) 1995; 26
Edenbrant, Heden, Pahlm (BIB12) 1993; 26
Fausett (BIB14) 1994
Haykin (BIB19) 1994
Miller, Blott, Hames (BIB22) 1992; 30
Ronco, Fernandez (BIB27) 1999; 25
Wright, Gough, Rakebrandt, Wahab, Woodcock (BIB32) 1997; 23
Evans, McDicken, Skidmore, Woodcock (BIB13) 1989
Güler, Kıymık, Güler (BIB18) 1995; 21
Beksaç, Başaran, Eskiizmirliler, Erkmen, Yörükan (BIB10) 1996; 64
Siebler, Rose, Sitzer, Bender, Steinmetz (BIB29) 1994; 192
Rumelhart, Hinton, Williams (BIB28) 1986; 323
Keeton, Schlindwein (BIB21) 1997; 17
Baker (BIB4) 1985
Mobley, Schechter, Moore, McKee, Eichner (BIB23) 2000; 18
Baxt (BIB8) 1995; 346
Baykal, Reggia, Yalabık, Erkmen, Beksaç (BIB9) 1996; 26
Akay (BIB3) 1992; 67
Prahadan, Sadasivan, Arunodaya (BIB26) 1996; 29
Zweig, Campbell (BIB33) 1993; 39
Hilera, Martinez, Mazo (BIB20) 1995; 3
Adams (BIB2) 1993
Basheer, Hajmeer (BIB5) 2000; 43
Mobley (10.1016/S0957-4174(03)00002-2_BIB23) 2000; 18
Wright (10.1016/S0957-4174(03)00002-2_BIB32) 1997; 23
Edenbrant (10.1016/S0957-4174(03)00002-2_BIB12) 1993; 26
Güler (10.1016/S0957-4174(03)00002-2_BIB17) 1995; 25
Prahadan (10.1016/S0957-4174(03)00002-2_BIB26) 1996; 29
Ortiz (10.1016/S0957-4174(03)00002-2_BIB24) 1995; 26
Ronco (10.1016/S0957-4174(03)00002-2_BIB27) 1999; 25
Smith (10.1016/S0957-4174(03)00002-2_BIB30) 1996; 13
Evans (10.1016/S0957-4174(03)00002-2_BIB13) 1989
Güler (10.1016/S0957-4174(03)00002-2_BIB15) 2001; 31
Hilera (10.1016/S0957-4174(03)00002-2_BIB20) 1995; 3
Abel (10.1016/S0957-4174(03)00002-2_BIB1) 1996; 18
Basheer (10.1016/S0957-4174(03)00002-2_BIB5) 2000; 43
Zweig (10.1016/S0957-4174(03)00002-2_BIB33) 1993; 39
Miller (10.1016/S0957-4174(03)00002-2_BIB22) 1992; 30
Haykin (10.1016/S0957-4174(03)00002-2_BIB19) 1994
Baker (10.1016/S0957-4174(03)00002-2_BIB4) 1985
Keeton (10.1016/S0957-4174(03)00002-2_BIB21) 1997; 17
Chen (10.1016/S0957-4174(03)00002-2_BIB11) 1995; 17
Pham (10.1016/S0957-4174(03)00002-2_BIB25) 2001; 41
Baxt (10.1016/S0957-4174(03)00002-2_BIB6) 1990; 2
Akay (10.1016/S0957-4174(03)00002-2_BIB3) 1992; 67
Siebler (10.1016/S0957-4174(03)00002-2_BIB29) 1994; 192
Fausett (10.1016/S0957-4174(03)00002-2_BIB14) 1994
Baykal (10.1016/S0957-4174(03)00002-2_BIB9) 1996; 26
Wright (10.1016/S0957-4174(03)00002-2_BIB31) 1999; 24
Adams (10.1016/S0957-4174(03)00002-2_BIB2) 1993
Güler (10.1016/S0957-4174(03)00002-2_BIB16) 1996; 49
Güler (10.1016/S0957-4174(03)00002-2_BIB18) 1995; 21
Baxt (10.1016/S0957-4174(03)00002-2_BIB7) 1991; 115
Baxt (10.1016/S0957-4174(03)00002-2_BIB8) 1995; 346
Beksaç (10.1016/S0957-4174(03)00002-2_BIB10) 1996; 64
Rumelhart (10.1016/S0957-4174(03)00002-2_BIB28) 1986; 323
References_xml – volume: 26
  start-page: 1586
  year: 1995
  end-page: 1593
  ident: BIB24
  article-title: One-year mortality prognosis in heart failure: A neural network approach based on echocardiographic data
  publication-title: Journal of the American College of Cardiology
– volume: 67
  start-page: 361
  year: 1992
  end-page: 367
  ident: BIB3
  article-title: Non-invasive diagnosis of coronary artery disease using a neural network algorithm
  publication-title: Biological Cybernetics
– volume: 24
  start-page: 735
  year: 1999
  end-page: 743
  ident: BIB31
  article-title: Artificial neural network analysis of common femoral artery Doppler shift signals: Classification of proximal disease
  publication-title: Ultrasound in Medicine and Biology
– volume: 43
  start-page: 3
  year: 2000
  end-page: 31
  ident: BIB5
  article-title: Artificial neural networks: Fundamentals, computing, design, and application
  publication-title: Journal of Microbiological Methods
– volume: 346
  start-page: 1135
  year: 1995
  end-page: 1138
  ident: BIB8
  article-title: Application of artificial neural networks to clinical medicine
  publication-title: Lancet
– volume: 26
  start-page: 451
  year: 1996
  end-page: 462
  ident: BIB9
  article-title: Feature discovery and classification of Doppler umbilical artery blood flow velocity waveforms
  publication-title: Computers in Biology and Medicine
– volume: 192
  start-page: 739
  year: 1994
  end-page: 742
  ident: BIB29
  article-title: Real-time identification of cerebral microemboli with ultrasound feature detection by a neural network
  publication-title: Radiology
– year: 1985
  ident: BIB4
  publication-title: Diagnosis and treatment of carotid artery disease
– volume: 17
  start-page: 219
  year: 1995
  end-page: 225
  ident: BIB11
  article-title: Non-invasive identification of gastric contractions from surface electrogastrogram using backpropagation neural networks
  publication-title: Medical Engineering and Physics
– volume: 25
  start-page: 383
  year: 1995
  end-page: 391
  ident: BIB17
  article-title: Comparison of FFT and AR-based sonogram outputs of 20
  publication-title: Computers in Biology and Medicine
– volume: 2
  start-page: 480
  year: 1990
  end-page: 489
  ident: BIB6
  article-title: Use of an artificial neural network for data analysis in clinical decision making: The diagnosis of acute coronary occlusion
  publication-title: Neural Computation
– volume: 31
  start-page: 229
  year: 2001
  end-page: 238
  ident: BIB15
  article-title: Determination of aorta failure with the application of FFT, AR and wavelet methods to Doppler technique
  publication-title: Computers in Biology and Medicine
– volume: 29
  start-page: 303
  year: 1996
  end-page: 313
  ident: BIB26
  article-title: Detection of seizure activity in EEG by an artificial neural network: A preliminary study
  publication-title: Computers and Biomedical Research
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: BIB28
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– year: 1993
  ident: BIB2
  publication-title: Handbook of cerebrovascular diseases
– year: 1989
  ident: BIB13
  publication-title: Doppler ultrasound: physics instrumentation and clinical applications
– volume: 30
  start-page: 449
  year: 1992
  end-page: 464
  ident: BIB22
  article-title: Review of neural network applications in medical imaging and signal processing
  publication-title: Medical and Biological Engineering and Computing
– volume: 17
  start-page: 38
  year: 1997
  end-page: 45
  ident: BIB21
  article-title: Application of wavelets in Doppler ultrasound
  publication-title: Sensor Review
– volume: 39
  start-page: 561
  year: 1993
  end-page: 577
  ident: BIB33
  article-title: Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine
  publication-title: Clinical Chemistry
– volume: 41
  start-page: 419
  year: 2001
  end-page: 430
  ident: BIB25
  article-title: Training multilayered perceptrons for pattern recognition: A comparative study of four training algorithms
  publication-title: International Journal of Machine Tools and Manufacture
– volume: 25
  start-page: 729
  year: 1999
  end-page: 733
  ident: BIB27
  article-title: Improving ultrasonographic diagnosis of prostate cancer with neural networks
  publication-title: Ultrasound in Medicine and Biology
– volume: 49
  start-page: 29
  year: 1996
  end-page: 36
  ident: BIB16
  article-title: Application of autoregressive and fast Fourier transform spectral analysis to tricuspid and mitral valve stenosis
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 13
  start-page: 85
  year: 1996
  end-page: 91
  ident: BIB30
  article-title: The application of an artificial neural network to Doppler ultrasound waveforms for the classification of arterial disease
  publication-title: International Journal of Clinical Monitoring and Computing
– volume: 64
  start-page: 37
  year: 1996
  end-page: 42
  ident: BIB10
  article-title: A computerized diagnostic system for the interpretation of umbilical artery blood flow velocity waveforms
  publication-title: European Journal of Obstetrics and Gynecology and Reproductive Biology
– volume: 18
  start-page: 12
  year: 1996
  end-page: 17
  ident: BIB1
  article-title: Neural network analysis of the EMG interference pattern
  publication-title: Medical Engineering and Physics
– volume: 26
  start-page: 66
  year: 1993
  end-page: 73
  ident: BIB12
  article-title: Neural networks for analysis of ECG complexes
  publication-title: Journal of Electrocardiology
– volume: 23
  start-page: 683
  year: 1997
  end-page: 690
  ident: BIB32
  article-title: Neural network analysis of Doppler ultrasound blood flow signals: A pilot study
  publication-title: Ultrasound in Medicine and Biology
– year: 1994
  ident: BIB14
  publication-title: Fundamentals of neural networks architectures, algorithms, and applications
– volume: 21
  start-page: 105
  year: 1995
  end-page: 110
  ident: BIB18
  article-title: Autoregressive-based sonogram output of 20
  publication-title: Medical Progress Through Technology
– year: 1994
  ident: BIB19
  publication-title: Neural networks: A comprehensive foundation
– volume: 18
  start-page: 187
  year: 2000
  end-page: 203
  ident: BIB23
  article-title: Predictions of coronary artery stenosis by artificial neural network
  publication-title: Artificial Intelligence in Medicine
– volume: 115
  start-page: 843
  year: 1991
  end-page: 848
  ident: BIB7
  article-title: Use of an artificial neural network for the diagnosis of myocardial infarction
  publication-title: Annals of Internal Medicine
– volume: 3
  start-page: 419
  year: 1995
  end-page: 430
  ident: BIB20
  article-title: ECG signal processing with neural networks
  publication-title: International Journal of Uncertainty Fuzziness and Knowledge-Based Systems
– volume: 23
  start-page: 683
  issue: 5
  year: 1997
  ident: 10.1016/S0957-4174(03)00002-2_BIB32
  article-title: Neural network analysis of Doppler ultrasound blood flow signals: A pilot study
  publication-title: Ultrasound in Medicine and Biology
  doi: 10.1016/S0301-5629(97)00011-2
– volume: 25
  start-page: 383
  year: 1995
  ident: 10.1016/S0957-4174(03)00002-2_BIB17
  article-title: Comparison of FFT and AR-based sonogram outputs of 20MHz pulsed Doppler data in real time
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/0010-4825(95)00024-X
– volume: 67
  start-page: 361
  year: 1992
  ident: 10.1016/S0957-4174(03)00002-2_BIB3
  article-title: Non-invasive diagnosis of coronary artery disease using a neural network algorithm
  publication-title: Biological Cybernetics
  doi: 10.1007/BF02414891
– volume: 43
  start-page: 3
  year: 2000
  ident: 10.1016/S0957-4174(03)00002-2_BIB5
  article-title: Artificial neural networks: Fundamentals, computing, design, and application
  publication-title: Journal of Microbiological Methods
  doi: 10.1016/S0167-7012(00)00201-3
– volume: 31
  start-page: 229
  year: 2001
  ident: 10.1016/S0957-4174(03)00002-2_BIB15
  article-title: Determination of aorta failure with the application of FFT, AR and wavelet methods to Doppler technique
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/S0010-4825(01)00005-1
– volume: 17
  start-page: 38
  issue: 1
  year: 1997
  ident: 10.1016/S0957-4174(03)00002-2_BIB21
  article-title: Application of wavelets in Doppler ultrasound
  publication-title: Sensor Review
  doi: 10.1108/02602289710163355
– volume: 192
  start-page: 739
  year: 1994
  ident: 10.1016/S0957-4174(03)00002-2_BIB29
  article-title: Real-time identification of cerebral microemboli with ultrasound feature detection by a neural network
  publication-title: Radiology
  doi: 10.1148/radiology.192.3.7914706
– year: 1985
  ident: 10.1016/S0957-4174(03)00002-2_BIB4
– volume: 13
  start-page: 85
  year: 1996
  ident: 10.1016/S0957-4174(03)00002-2_BIB30
  article-title: The application of an artificial neural network to Doppler ultrasound waveforms for the classification of arterial disease
  publication-title: International Journal of Clinical Monitoring and Computing
  doi: 10.1007/BF02915843
– volume: 346
  start-page: 1135
  year: 1995
  ident: 10.1016/S0957-4174(03)00002-2_BIB8
  article-title: Application of artificial neural networks to clinical medicine
  publication-title: Lancet
  doi: 10.1016/S0140-6736(95)91804-3
– volume: 41
  start-page: 419
  year: 2001
  ident: 10.1016/S0957-4174(03)00002-2_BIB25
  article-title: Training multilayered perceptrons for pattern recognition: A comparative study of four training algorithms
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/S0890-6955(00)00073-0
– volume: 18
  start-page: 187
  year: 2000
  ident: 10.1016/S0957-4174(03)00002-2_BIB23
  article-title: Predictions of coronary artery stenosis by artificial neural network
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/S0933-3657(99)00040-8
– volume: 30
  start-page: 449
  year: 1992
  ident: 10.1016/S0957-4174(03)00002-2_BIB22
  article-title: Review of neural network applications in medical imaging and signal processing
  publication-title: Medical and Biological Engineering and Computing
  doi: 10.1007/BF02457822
– volume: 2
  start-page: 480
  year: 1990
  ident: 10.1016/S0957-4174(03)00002-2_BIB6
  article-title: Use of an artificial neural network for data analysis in clinical decision making: The diagnosis of acute coronary occlusion
  publication-title: Neural Computation
  doi: 10.1162/neco.1990.2.4.480
– volume: 17
  start-page: 219
  issue: 3
  year: 1995
  ident: 10.1016/S0957-4174(03)00002-2_BIB11
  article-title: Non-invasive identification of gastric contractions from surface electrogastrogram using backpropagation neural networks
  publication-title: Medical Engineering and Physics
  doi: 10.1016/1350-4533(95)95713-K
– volume: 25
  start-page: 729
  issue: 5
  year: 1999
  ident: 10.1016/S0957-4174(03)00002-2_BIB27
  article-title: Improving ultrasonographic diagnosis of prostate cancer with neural networks
  publication-title: Ultrasound in Medicine and Biology
  doi: 10.1016/S0301-5629(99)00011-3
– volume: 115
  start-page: 843
  year: 1991
  ident: 10.1016/S0957-4174(03)00002-2_BIB7
  article-title: Use of an artificial neural network for the diagnosis of myocardial infarction
  publication-title: Annals of Internal Medicine
  doi: 10.7326/0003-4819-115-11-843
– volume: 39
  start-page: 561
  issue: 4
  year: 1993
  ident: 10.1016/S0957-4174(03)00002-2_BIB33
  article-title: Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine
  publication-title: Clinical Chemistry
  doi: 10.1093/clinchem/39.4.561
– volume: 26
  start-page: 66
  year: 1993
  ident: 10.1016/S0957-4174(03)00002-2_BIB12
  article-title: Neural networks for analysis of ECG complexes
  publication-title: Journal of Electrocardiology
– volume: 323
  start-page: 533
  year: 1986
  ident: 10.1016/S0957-4174(03)00002-2_BIB28
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 26
  start-page: 451
  issue: 6
  year: 1996
  ident: 10.1016/S0957-4174(03)00002-2_BIB9
  article-title: Feature discovery and classification of Doppler umbilical artery blood flow velocity waveforms
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/S0010-4825(96)00018-2
– volume: 21
  start-page: 105
  year: 1995
  ident: 10.1016/S0957-4174(03)00002-2_BIB18
  article-title: Autoregressive-based sonogram output of 20MHz pulsed Doppler data
  publication-title: Medical Progress Through Technology
– volume: 24
  start-page: 735
  issue: 5
  year: 1999
  ident: 10.1016/S0957-4174(03)00002-2_BIB31
  article-title: Artificial neural network analysis of common femoral artery Doppler shift signals: Classification of proximal disease
  publication-title: Ultrasound in Medicine and Biology
  doi: 10.1016/S0301-5629(99)00015-0
– year: 1989
  ident: 10.1016/S0957-4174(03)00002-2_BIB13
– volume: 29
  start-page: 303
  issue: 4
  year: 1996
  ident: 10.1016/S0957-4174(03)00002-2_BIB26
  article-title: Detection of seizure activity in EEG by an artificial neural network: A preliminary study
  publication-title: Computers and Biomedical Research
  doi: 10.1006/cbmr.1996.0022
– volume: 3
  start-page: 419
  issue: 4
  year: 1995
  ident: 10.1016/S0957-4174(03)00002-2_BIB20
  article-title: ECG signal processing with neural networks
  publication-title: International Journal of Uncertainty Fuzziness and Knowledge-Based Systems
  doi: 10.1142/S0218488595000219
– year: 1994
  ident: 10.1016/S0957-4174(03)00002-2_BIB14
– year: 1993
  ident: 10.1016/S0957-4174(03)00002-2_BIB2
– volume: 18
  start-page: 12
  issue: 1
  year: 1996
  ident: 10.1016/S0957-4174(03)00002-2_BIB1
  article-title: Neural network analysis of the EMG interference pattern
  publication-title: Medical Engineering and Physics
  doi: 10.1016/1350-4533(95)00032-1
– volume: 64
  start-page: 37
  year: 1996
  ident: 10.1016/S0957-4174(03)00002-2_BIB10
  article-title: A computerized diagnostic system for the interpretation of umbilical artery blood flow velocity waveforms
  publication-title: European Journal of Obstetrics and Gynecology and Reproductive Biology
  doi: 10.1016/0301-2115(95)02256-2
– year: 1994
  ident: 10.1016/S0957-4174(03)00002-2_BIB19
– volume: 26
  start-page: 1586
  year: 1995
  ident: 10.1016/S0957-4174(03)00002-2_BIB24
  article-title: One-year mortality prognosis in heart failure: A neural network approach based on echocardiographic data
  publication-title: Journal of the American College of Cardiology
  doi: 10.1016/0735-1097(95)00385-1
– volume: 49
  start-page: 29
  year: 1996
  ident: 10.1016/S0957-4174(03)00002-2_BIB16
  article-title: Application of autoregressive and fast Fourier transform spectral analysis to tricuspid and mitral valve stenosis
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/0169-2607(95)01702-X
SSID ssj0017007
Score 1.9779053
Snippet Doppler ultrasound is a noninvasive technique that allows the examination of the direction, velocity, and volume of blood flow. Doppler ultrasound has proven...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Backpropagation
Doppler ultrasound
Internal carotid artery
Multilayer perceptron neural network
Pattern classification
Spectral analysis
Title Neural network analysis of internal carotid arterial Doppler signals: predictions of stenosis and occlusion
URI https://dx.doi.org/10.1016/S0957-4174(03)00002-2
https://www.proquest.com/docview/27897992
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWVh4I954YIDBNImdOGGrgKqAYIFKbJbjxFJElVQlXfnt3DlJK5AQEquTO0Xnz76LffcdIecWXBw8CRn4npSJKLBMJ2HKtB9lUehLnWRYnPz0HI3G4uEtfFshN10tDKZVtnt_s6e73bod6bfW7E-Lov8CwQG4QykApo7GBSvYhUSsX30u0jyQfk42fHuS4dvLKp5Ggxu88PilU8KC3_zTj53auZ_hJllv40Y6aD5ti6zk5TbZ6Hoy0HaJ7pB3ZNuAF8smvZvqlnSEVpYWzenfhGKvnrrIqMvnBADS2wqCUVCD2RyAx2s6neEFjsMkSgIUygq16DKjlTGTOR6y7ZLx8O71ZsTahgrMwJ9ozSJtIUAz3NMSnBfEBr5vjI1zKyM_i2DlIh9cYrmXJTq1NghyP0zjTHCRWc9yw_dIr6zKfJ_QPDbapGnixzEXkdVaBKnVICy5hhjLPyCiM6MyLds4Nr2YqGVaGVhfofWVx5WzvgoOyNVCbNrQbfwlEHdzpL7hRoFL-Ev0rJtTBWsKL0p0mVfzD4XVwTJJgsP_Kz8iay7tzyX2HpNePZvnJxC-1Ompw-cpWR3cP46evwAeFurD
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DLDwRpSnBwYYTJPYiRM2xEMF2i4Uic1ynFiqqJKqtCu_nTsnaQUSQmJ1cqfofPZd7O--I-TcQoiDJyGD2JMyEQWW6SRMmfajLAp9qZMMi5N7_ajzKp7ewrclctvUwiCsst77qz3d7db1SLu2Zns8HLZfIDmAcCgFuKmjcVkmqyLkEnF9V59znAfyz8mKcE8yfH1RxlOpcIMXHr90WljwW4D6sVW7-POwRTbqxJHeVN-2TZbyYodsNk0ZaL1Gd8k70m3Ai0WF76a6Zh2hpaXD6vhvRLFZz3SYUQfoBA-kdyVko6AG4RzgkNd0PMEbHOeUKAm-UJSoRRcZLY0ZzfCUbY-8PtwPbjus7qjADPyKTlmkLWRohntaQvSC5MD3jbFxbmXkZxEsXSSESyz3skSn1gZB7odpnAkuMutZbvg-WSnKIj8gNI-NNmma-HHMRWS1FkFqNQhLriHJ8ltENGZUpqYbx64XI7XAlYH1FVpfeVw566ugRa7mYuOKb-MvgbiZI_XNcRTEhL9Ez5o5VbCo8KZEF3k5-1BYHiyTJDj8v_IzstYZ9Lqq-9h_PiLrDgPoUL7HZGU6meUnkMtM01Pnq1-XeOxW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+analysis+of+internal+carotid+arterial+Doppler+signals%3A+predictions+of+stenosis+and+occlusion&rft.jtitle=Expert+systems+with+applications&rft.au=Ubeyli%2C+E+D&rft.au=Guler%2C+I&rft.date=2003-07-01&rft.issn=0957-4174&rft.volume=25&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1016%2FS0957-4174%2803%2900002-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon