Exploring the antimicrobial potential of chitosan nanoparticles: synthesis, characterization and impact on Pseudomonas aeruginosa virulence factors

The escalating antibiotic resistance observed in bacteria poses a significant threat to society, with the global prevalence of resistant strains of on the rise. Addressing this challenge necessitates exploring strategies that would complement existing antimicrobial agents, by substances mitigating b...

Full description

Saved in:
Bibliographic Details
Published inNanoscale advances Vol. 6; no. 12; pp. 3093 - 3105
Main Authors Maršík, Dominik, Maťátková, Olga, Kolková, Anna, Masák, Jan
Format Journal Article
LanguageEnglish
Published England RSC 11.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The escalating antibiotic resistance observed in bacteria poses a significant threat to society, with the global prevalence of resistant strains of on the rise. Addressing this challenge necessitates exploring strategies that would complement existing antimicrobial agents, by substances mitigating bacterial virulence without eliciting selective pressure for resistance emergence. In this respect, free-form chitosan has demonstrated promising efficacy, prompting our investigation into reinforcing its effects through nanoparticle formulations. Our study focuses on the preparation of chitosan nanoparticles under suitable conditions while emphasizing the challenges associated with stability that can affect biological activity. These challenges are mitigated by introducing quaternized chitosan, which ensures colloidal stability in the culture media. Our approach led to the production of trimethylchitosan nanoparticles with a median size of 103 nm, circularity of 0.967, and a charge of 14.9 ± 3.1 mV, stable within a one-month period in a water stock solution, showing promising attributes for further valorization. Furthermore, the study delves into the antimicrobial activity of trimethylchitosan nanoparticles on and confirms the benefits of both nanoformulation and modification of chitosan, as our prepared nanoparticles inhibit 50% of the bacterial population at concentration ≥160 mg L within tested strains. Additionally, we identified a concentration of 5 mg L that no longer impedes bacterial growth, allowing reliable verification of the effect of the prepared nanoparticles on virulence factors, including motility, protease activity, hemolytic activity, rhamnolipids, pyocyanin, and biofilm production. Although trimethylchitosan nanoparticles exhibit promise as an effective antibiofilm agent (reducing biofilm development by 50% at concentrations ranging from 80 to 160 mg L ) their impact on virulence manifestation is likely not directly associated with quorum sensing. Instead, it can probably be attributed to non-specific interactions with the bacterial surface. This exploration provides valuable insights into the potential of quaternized chitosan nanoparticles in addressing infections and underscores the multifaceted nature of their antimicrobial effects.
AbstractList The escalating antibiotic resistance observed in bacteria poses a significant threat to society, with the global prevalence of resistant strains of on the rise. Addressing this challenge necessitates exploring strategies that would complement existing antimicrobial agents, by substances mitigating bacterial virulence without eliciting selective pressure for resistance emergence. In this respect, free-form chitosan has demonstrated promising efficacy, prompting our investigation into reinforcing its effects through nanoparticle formulations. Our study focuses on the preparation of chitosan nanoparticles under suitable conditions while emphasizing the challenges associated with stability that can affect biological activity. These challenges are mitigated by introducing quaternized chitosan, which ensures colloidal stability in the culture media. Our approach led to the production of trimethylchitosan nanoparticles with a median size of 103 nm, circularity of 0.967, and a charge of 14.9 ± 3.1 mV, stable within a one-month period in a water stock solution, showing promising attributes for further valorization. Furthermore, the study delves into the antimicrobial activity of trimethylchitosan nanoparticles on and confirms the benefits of both nanoformulation and modification of chitosan, as our prepared nanoparticles inhibit 50% of the bacterial population at concentration ≥160 mg L within tested strains. Additionally, we identified a concentration of 5 mg L that no longer impedes bacterial growth, allowing reliable verification of the effect of the prepared nanoparticles on virulence factors, including motility, protease activity, hemolytic activity, rhamnolipids, pyocyanin, and biofilm production. Although trimethylchitosan nanoparticles exhibit promise as an effective antibiofilm agent (reducing biofilm development by 50% at concentrations ranging from 80 to 160 mg L ) their impact on virulence manifestation is likely not directly associated with quorum sensing. Instead, it can probably be attributed to non-specific interactions with the bacterial surface. This exploration provides valuable insights into the potential of quaternized chitosan nanoparticles in addressing infections and underscores the multifaceted nature of their antimicrobial effects.
The escalating antibiotic resistance observed in bacteria poses a significant threat to society, with the global prevalence of resistant strains of Pseudomonas aeruginosa on the rise. Addressing this challenge necessitates exploring strategies that would complement existing antimicrobial agents, e.g. by substances mitigating bacterial virulence without eliciting selective pressure for resistance emergence. In this respect, free-form chitosan has demonstrated promising efficacy, prompting our investigation into reinforcing its effects through nanoparticle formulations. Our study focuses on the preparation of chitosan nanoparticles under suitable conditions while emphasizing the challenges associated with stability that can affect biological activity. These challenges are mitigated by introducing quaternized chitosan, which ensures colloidal stability in the culture media. Our approach led to the production of trimethylchitosan nanoparticles with a median size of 103 nm, circularity of 0.967, and a charge of 14.9 ± 3.1 mV, stable within a one-month period in a water stock solution, showing promising attributes for further valorization. Furthermore, the study delves into the antimicrobial activity of trimethylchitosan nanoparticles on Pseudomonas aeruginosa and confirms the benefits of both nanoformulation and modification of chitosan, as our prepared nanoparticles inhibit 50% of the bacterial population at concentration ≥160 mg L-1 within tested strains. Additionally, we identified a concentration of 5 mg L-1 that no longer impedes bacterial growth, allowing reliable verification of the effect of the prepared nanoparticles on Pseudomonas aeruginosa virulence factors, including motility, protease activity, hemolytic activity, rhamnolipids, pyocyanin, and biofilm production. Although trimethylchitosan nanoparticles exhibit promise as an effective antibiofilm agent (reducing biofilm development by 50% at concentrations ranging from 80 to 160 mg L-1) their impact on virulence manifestation is likely not directly associated with quorum sensing. Instead, it can probably be attributed to non-specific interactions with the bacterial surface. This exploration provides valuable insights into the potential of quaternized chitosan nanoparticles in addressing Pseudomonas aeruginosa infections and underscores the multifaceted nature of their antimicrobial effects.The escalating antibiotic resistance observed in bacteria poses a significant threat to society, with the global prevalence of resistant strains of Pseudomonas aeruginosa on the rise. Addressing this challenge necessitates exploring strategies that would complement existing antimicrobial agents, e.g. by substances mitigating bacterial virulence without eliciting selective pressure for resistance emergence. In this respect, free-form chitosan has demonstrated promising efficacy, prompting our investigation into reinforcing its effects through nanoparticle formulations. Our study focuses on the preparation of chitosan nanoparticles under suitable conditions while emphasizing the challenges associated with stability that can affect biological activity. These challenges are mitigated by introducing quaternized chitosan, which ensures colloidal stability in the culture media. Our approach led to the production of trimethylchitosan nanoparticles with a median size of 103 nm, circularity of 0.967, and a charge of 14.9 ± 3.1 mV, stable within a one-month period in a water stock solution, showing promising attributes for further valorization. Furthermore, the study delves into the antimicrobial activity of trimethylchitosan nanoparticles on Pseudomonas aeruginosa and confirms the benefits of both nanoformulation and modification of chitosan, as our prepared nanoparticles inhibit 50% of the bacterial population at concentration ≥160 mg L-1 within tested strains. Additionally, we identified a concentration of 5 mg L-1 that no longer impedes bacterial growth, allowing reliable verification of the effect of the prepared nanoparticles on Pseudomonas aeruginosa virulence factors, including motility, protease activity, hemolytic activity, rhamnolipids, pyocyanin, and biofilm production. Although trimethylchitosan nanoparticles exhibit promise as an effective antibiofilm agent (reducing biofilm development by 50% at concentrations ranging from 80 to 160 mg L-1) their impact on virulence manifestation is likely not directly associated with quorum sensing. Instead, it can probably be attributed to non-specific interactions with the bacterial surface. This exploration provides valuable insights into the potential of quaternized chitosan nanoparticles in addressing Pseudomonas aeruginosa infections and underscores the multifaceted nature of their antimicrobial effects.
The escalating antibiotic resistance observed in bacteria poses a significant threat to society, with the global prevalence of resistant strains of Pseudomonas aeruginosa on the rise. Addressing this challenge necessitates exploring strategies that would complement existing antimicrobial agents, e.g. by substances mitigating bacterial virulence without eliciting selective pressure for resistance emergence. In this respect, free-form chitosan has demonstrated promising efficacy, prompting our investigation into reinforcing its effects through nanoparticle formulations. Our study focuses on the preparation of chitosan nanoparticles under suitable conditions while emphasizing the challenges associated with stability that can affect biological activity. These challenges are mitigated by introducing quaternized chitosan, which ensures colloidal stability in the culture media. Our approach led to the production of trimethylchitosan nanoparticles with a median size of 103 nm, circularity of 0.967, and a charge of 14.9 ± 3.1 mV, stable within a one-month period in a water stock solution, showing promising attributes for further valorization. Furthermore, the study delves into the antimicrobial activity of trimethylchitosan nanoparticles on Pseudomonas aeruginosa and confirms the benefits of both nanoformulation and modification of chitosan, as our prepared nanoparticles inhibit 50% of the bacterial population at concentration ≥160 mg L −1 within tested strains. Additionally, we identified a concentration of 5 mg L −1 that no longer impedes bacterial growth, allowing reliable verification of the effect of the prepared nanoparticles on Pseudomonas aeruginosa virulence factors, including motility, protease activity, hemolytic activity, rhamnolipids, pyocyanin, and biofilm production. Although trimethylchitosan nanoparticles exhibit promise as an effective antibiofilm agent (reducing biofilm development by 50% at concentrations ranging from 80 to 160 mg L −1 ) their impact on virulence manifestation is likely not directly associated with quorum sensing. Instead, it can probably be attributed to non-specific interactions with the bacterial surface. This exploration provides valuable insights into the potential of quaternized chitosan nanoparticles in addressing Pseudomonas aeruginosa infections and underscores the multifaceted nature of their antimicrobial effects. The escalating antibiotic resistance observed in bacteria poses a significant threat to society, with the global prevalence of resistant strains of Pseudomonas aeruginosa on the rise.
The escalating antibiotic resistance observed in bacteria poses a significant threat to society, with the global prevalence of resistant strains of Pseudomonas aeruginosa on the rise. Addressing this challenge necessitates exploring strategies that would complement existing antimicrobial agents, e.g. by substances mitigating bacterial virulence without eliciting selective pressure for resistance emergence. In this respect, free-form chitosan has demonstrated promising efficacy, prompting our investigation into reinforcing its effects through nanoparticle formulations. Our study focuses on the preparation of chitosan nanoparticles under suitable conditions while emphasizing the challenges associated with stability that can affect biological activity. These challenges are mitigated by introducing quaternized chitosan, which ensures colloidal stability in the culture media. Our approach led to the production of trimethylchitosan nanoparticles with a median size of 103 nm, circularity of 0.967, and a charge of 14.9 ± 3.1 mV, stable within a one-month period in a water stock solution, showing promising attributes for further valorization. Furthermore, the study delves into the antimicrobial activity of trimethylchitosan nanoparticles on Pseudomonas aeruginosa and confirms the benefits of both nanoformulation and modification of chitosan, as our prepared nanoparticles inhibit 50% of the bacterial population at concentration ≥160 mg L −1 within tested strains. Additionally, we identified a concentration of 5 mg L −1 that no longer impedes bacterial growth, allowing reliable verification of the effect of the prepared nanoparticles on Pseudomonas aeruginosa virulence factors, including motility, protease activity, hemolytic activity, rhamnolipids, pyocyanin, and biofilm production. Although trimethylchitosan nanoparticles exhibit promise as an effective antibiofilm agent (reducing biofilm development by 50% at concentrations ranging from 80 to 160 mg L −1 ) their impact on virulence manifestation is likely not directly associated with quorum sensing. Instead, it can probably be attributed to non-specific interactions with the bacterial surface. This exploration provides valuable insights into the potential of quaternized chitosan nanoparticles in addressing Pseudomonas aeruginosa infections and underscores the multifaceted nature of their antimicrobial effects.
Author Maršík, Dominik
Masák, Jan
Maťátková, Olga
Kolková, Anna
Author_xml – sequence: 1
  givenname: Dominik
  orcidid: 0000-0002-7250-7762
  surname: Maršík
  fullname: Maršík, Dominik
  email: marsikd@vscht.cz
  organization: Department of Biotechnology, University of Chemistry and Technology Technická 5, Prague 6 Prague 166 28 Czechia marsikd@vscht.cz
– sequence: 2
  givenname: Olga
  orcidid: 0000-0002-3646-9738
  surname: Maťátková
  fullname: Maťátková, Olga
  email: marsikd@vscht.cz
  organization: Department of Biotechnology, University of Chemistry and Technology Technická 5, Prague 6 Prague 166 28 Czechia marsikd@vscht.cz
– sequence: 3
  givenname: Anna
  surname: Kolková
  fullname: Kolková, Anna
  email: marsikd@vscht.cz
  organization: Department of Biotechnology, University of Chemistry and Technology Technická 5, Prague 6 Prague 166 28 Czechia marsikd@vscht.cz
– sequence: 4
  givenname: Jan
  surname: Masák
  fullname: Masák, Jan
  email: marsikd@vscht.cz
  organization: Department of Biotechnology, University of Chemistry and Technology Technická 5, Prague 6 Prague 166 28 Czechia marsikd@vscht.cz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38868829$$D View this record in MEDLINE/PubMed
BookMark eNpVkctu3CAUhlGVqrlu-gAVy6rKtGCwDd1Uo9waKWqzaNfoDD6eobLBBRwleY2-cEhzUbLicPj4uPy7ZMsHj4S85-wzZ0J_6aQHxlgj4Q3ZqWreLFgl2NaLepscpPSnMBWXUrb6HdkWSjVKVXqH_Du5noYQnV_TvEEKPrvR2RhWDgY6hYylUarQU7txOSTw1IMPE8Ts7IDpK003vuxMLh0WBCLYjNHdQnbBF11H3TiVHi2zy4RzF8bgIVHAOK-dL0J65eI8oLdI-wKGmPbJ2x6GhAeP4x75fXry6-j74uLn2fnR8mJhhVB50bSCg9aq6VbQqg40gx57wXQrKg11pTqlJCirZa9rwA5arnjNsK9qUQu-Envk24N3mlcjdra8NcJgpuhGiDcmgDOvV7zbmHW4MpzzpuG8LoaPj4YY_s6YshldsjgM4DHMyQjWtJpzWeuCfnpAy-emFLF_Poczc5-kOZY_lv-TXBb4w8ubPaNPuYk7kPygBA
Cites_doi 10.1093/clinids/3.6.1127
10.3390/pr8091173
10.1038/srep23347
10.1128/JB.00117-19
10.1016/j.resmic.2018.02.001
10.1016/S0141-8130(97)01165-3
10.1016/j.jfoodeng.2005.01.047
10.1016/j.microc.2009.02.001
10.3390/toxins8080236
10.3390/ijms22073337
10.1128/CMR.00031-19
10.1016/j.carbpol.2017.12.011
10.1111/j.1365-3091.2007.00892.x
10.1016/j.ijbiomac.2020.02.019
10.1088/2057-1976/aac9f8
10.3389/fcimb.2022.993029
10.2147/DDDT.S99651
10.1016/j.jconrel.2015.10.006
10.1038/s41598-018-23064-4
10.3390/plants11030443
10.3389/fcimb.2013.00075
10.1007/s13238-014-0100-x
10.1016/j.ijbiomac.2020.05.109
10.1016/j.scp.2020.100300
10.1021/mp300162j
10.3934/microbiol.2021025
10.1038/nprot.2010.110
10.1093/femspd/ftz009
10.1038/s41598-023-41333-9
10.1016/j.drudis.2021.02.026
10.1046/j.1365-2958.1998.01062.x
10.1002/pat.1306
10.1016/j.ijmm.2010.08.005
10.1016/j.jconrel.2016.06.017
10.1016/j.biomaterials.2003.12.036
10.1016/j.carbpol.2017.02.001
10.1016/j.ijpharm.2007.07.035
10.3390/antibiotics9090551
10.1007/s00396-012-2604-3
10.3390/ijms20246297
10.1016/j.mimet.2023.106676
10.1016/j.polymer.2007.03.063
10.1016/j.colsurfb.2011.09.042
10.1016/j.bpj.2017.02.019
10.1016/j.ijbiomac.2017.08.146
10.3390/microorganisms10071272
10.1371/journal.pone.0058299
10.1038/nature24624
10.1007/s12649-023-02220-6
10.1016/j.jcis.2004.08.186
10.1016/j.jconrel.2005.01.001
10.3109/17435390.2012.724724
10.1016/j.ijbiomac.2018.08.130
10.7150/ijbs.5.153
10.3389/fimmu.2018.01675
10.1186/1471-2164-11-587
10.3389/fcimb.2021.656984
10.1080/14787210.2020.1750951
10.1128/JB.01623-06
10.1371/journal.pone.0272844
10.1016/j.colsurfb.2017.05.055
10.1016/j.ijbiomac.2024.129264
10.1021/acsbiomaterials.5b00502
10.1073/pnas.2101759118
10.1016/j.carbpol.2018.11.015
10.1007/s00289-023-04755-z
10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4
10.1016/j.jconrel.2008.08.020
10.1016/j.micpath.2019.01.033
10.1016/j.ijpharm.2008.06.029
10.1128/jb.152.1.239-245.1982
10.1371/journal.pone.0138209
10.1016/j.ijantimicag.2007.12.005
10.1016/j.biopha.2021.111970
10.1007/s13233-010-1004-0
10.1038/nature06279
10.1128/iai.55.7.1728-1730.1987
10.1016/j.bbamem.2007.04.024
10.1016/j.ijpharm.2020.119119
10.1128/JB.187.21.7351-7361.2005
10.1007/s10876-013-0583-2
10.1016/B978-0-12-397169-2.00041-X
10.3389/fcimb.2021.816356
10.1128/JB.01620-07
10.1007/s12272-011-0408-5
10.1099/mic.0.2008/018622-0
10.3390/pharmaceutics9040053
10.1016/j.chemosphere.2022.135950
10.3390/molecules26237136
10.1128/JB.182.21.5990-5996.2000
10.1016/S0169-409X(01)00231-9
10.1016/j.addr.2013.07.011
10.1038/s41598-018-30813-y
10.15171/apb.2019.023
10.3390/microorganisms9050912
10.1007/978-1-4939-0473-0_7
10.1016/0049-3848(88)90115-6
10.3389/fphar.2022.880377
10.1016/j.micpath.2017.11.011
10.1164/rccm.201103-0374OC
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
This journal is © The Royal Society of Chemistry 2024 RSC
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: This journal is © The Royal Society of Chemistry 2024 RSC
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1039/d4na00064a
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2516-0230
EndPage 3105
ExternalDocumentID 10_1039_D4NA00064A
38868829
Genre Journal Article
GroupedDBID AAFWJ
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ANUXI
BCNDV
C6K
EBS
GROUPED_DOAJ
H13
M~E
NPM
OK1
RPM
SMJ
AAYXX
CITATION
EJD
7X8
5PM
ID FETCH-LOGICAL-c338t-6731a9986dba78da90afef3097329a528d884a8c94f95aeda718150ef253531b3
IEDL.DBID RPM
ISSN 2516-0230
IngestDate Tue Sep 17 21:28:47 EDT 2024
Sat Aug 17 04:46:25 EDT 2024
Fri Aug 23 01:06:23 EDT 2024
Wed Oct 02 05:17:47 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-6731a9986dba78da90afef3097329a528d884a8c94f95aeda718150ef253531b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3646-9738
0000-0002-7250-7762
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166115/
PMID 38868829
PQID 3067911459
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11166115
proquest_miscellaneous_3067911459
crossref_primary_10_1039_D4NA00064A
pubmed_primary_38868829
PublicationCentury 2000
PublicationDate 2024-06-11
PublicationDateYYYYMMDD 2024-06-11
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-11
  day: 11
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanoscale advances
PublicationTitleAlternate Nanoscale Adv
PublicationYear 2024
Publisher RSC
Publisher_xml – name: RSC
References Frigaard (D4NA00064A/cit1/1) 2022; 13
Coutinho (D4NA00064A/cit89/1) 1988; 51
Sayın (D4NA00064A/cit40/1) 2008; 363
Lee (D4NA00064A/cit46/1) 2015; 6
Karthick Raja Namasivayam (D4NA00064A/cit7/1) 2018; 120
Hickey (D4NA00064A/cit58/1) 2015; 219
Muslim (D4NA00064A/cit14/1) 2018; 107
Overhage (D4NA00064A/cit75/1) 2007; 189
Lo (D4NA00064A/cit97/1) 2018; 169
Piewngam (D4NA00064A/cit13/1) 2020; 18
Kiang (D4NA00064A/cit38/1) 2004; 25
Wang (D4NA00064A/cit84/1) 2018; 8
Cornelis (D4NA00064A/cit92/1) 2013; 3
Hall (D4NA00064A/cit91/1) 2016; 8
Ziuzina (D4NA00064A/cit106/1) 2015; 10
Rivera Aguayo (D4NA00064A/cit18/1) 2020; 9
Sreekumar (D4NA00064A/cit28/1) 2018; 8
Kean (D4NA00064A/cit57/1) 2005; 103
Piras (D4NA00064A/cit62/1) 2019; 20
Yang (D4NA00064A/cit74/1) 2017; 112
Mateu-Borrás (D4NA00064A/cit81/1) 2022; 11
Horcajada (D4NA00064A/cit12/1) 2019; 32
Yang (D4NA00064A/cit95/1) 2018; 84
Badawy (D4NA00064A/cit66/1) 2020; 149
Garg (D4NA00064A/cit4/1) 2019; 9
Mohammed (D4NA00064A/cit3/1) 2017; 9
Zhu (D4NA00064A/cit70/1) 2019; 201
Calvo (D4NA00064A/cit20/1) 1997; 63
Bullen (D4NA00064A/cit93/1) 1981; 3
Yang (D4NA00064A/cit29/1) 2009; 92
Berk (D4NA00064A/cit88/1) 1987; 55
Liu (D4NA00064A/cit24/1) 2009; 20
Ahmed (D4NA00064A/cit19/1) 2016; 10
Berka (D4NA00064A/cit86/1) 1982; 152
Rivera Aguayo (D4NA00064A/cit64/1) 2020; 9
Hu (D4NA00064A/cit48/1) 2007; 48
Thaya (D4NA00064A/cit67/1) 2018; 114
Songsurang (D4NA00064A/cit21/1) 2011; 34
Thanou (D4NA00064A/cit33/1) 2001; 52
Kašparová (D4NA00064A/cit104/1) 2022; 12
Das (D4NA00064A/cit96/1) 2013; 8
Miškovská (D4NA00064A/cit99/1) 2022; 17
Montes (D4NA00064A/cit87/1) 2007; 1768
Pelgrift (D4NA00064A/cit2/1) 2013; 65
Cho (D4NA00064A/cit34/1) 2006; 74
Melake (D4NA00064A/cit53/1) 2012; 6
Verlee (D4NA00064A/cit9/1) 2017; 164
Rubini (D4NA00064A/cit65/1) 2019; 77
Salis (D4NA00064A/cit54/1) 2016; 2
Whiteley (D4NA00064A/cit15/1) 2017; 551
Boks (D4NA00064A/cit94/1) 2008; 154
Maisetta (D4NA00064A/cit52/1) 2021; 9
Vaezifar (D4NA00064A/cit25/1) 2013; 24
Kulišová (D4NA00064A/cit101/1) 2023; 205
Geçer (D4NA00064A/cit39/1) 2010; 18
Bleves (D4NA00064A/cit79/1) 2010; 300
Karthick Raja Namasivayam (D4NA00064A/cit6/1) 2022; 308
Koukaras (D4NA00064A/cit26/1) 2012; 9
Diggle (D4NA00064A/cit83/1) 2007; 450
Tommonaro (D4NA00064A/cit16/1) 2019
Fattah (D4NA00064A/cit10/1) 2021; 7
Wu (D4NA00064A/cit71/1) 2015
Khan (D4NA00064A/cit63/1) 2019; 128
Caiazza (D4NA00064A/cit76/1) 2005; 187
Bhattacharjee (D4NA00064A/cit37/1) 2016; 235
Llanos (D4NA00064A/cit80/1) 2023; 13
Rathinam (D4NA00064A/cit51/1) 2020; 160
BLOTT (D4NA00064A/cit98/1) 2008; 55
Sánchez-Clemente (D4NA00064A/cit31/1) 2018; 2
Fan (D4NA00064A/cit30/1) 2012; 90
Lin (D4NA00064A/cit22/1) 2008; 132
Wargo (D4NA00064A/cit90/1) 2011; 184
Ozturk (D4NA00064A/cit32/1) 2020; 578
Murray (D4NA00064A/cit77/1) 2008; 190
Martins (D4NA00064A/cit55/1) 2018; 181
Chandrasekaran (D4NA00064A/cit60/1) 2020; 8
Dilnawaz (D4NA00064A/cit59/1) 2024; 81
Köhler (D4NA00064A/cit78/1) 2000; 182
Yan (D4NA00064A/cit61/1) 2021; 26
Tremblay (D4NA00064A/cit73/1) 2010; 11
Di Santo (D4NA00064A/cit23/1) 2021; 142
Raja Namasivayam (D4NA00064A/cit8/1) 2020; 17
Namasivayam (D4NA00064A/cit5/1) 2024; 259
Bastaert (D4NA00064A/cit82/1) 2018; 9
Everett (D4NA00064A/cit85/1) 2021; 26
Banik (D4NA00064A/cit41/1) 2016; 8
Rauscher (D4NA00064A/cit42/1) 2013; 7
Ikono (D4NA00064A/cit11/1) 2018; 4
López-León (D4NA00064A/cit44/1) 2005; 283
Maťátková (D4NA00064A/cit103/1) 2022; 10
Ha (D4NA00064A/cit68/1) 2014
Saeki (D4NA00064A/cit102/1) 2021; 11
Chen (D4NA00064A/cit56/1) 2008; 349
Sawtarie (D4NA00064A/cit36/1) 2017; 157
Jonassen (D4NA00064A/cit27/1) 2012; 290
Das (D4NA00064A/cit105/1) 2016; 6
Boudouaia (D4NA00064A/cit47/1) 2023; 15
Müsken (D4NA00064A/cit43/1) 2010; 5
Tré-Hardy (D4NA00064A/cit45/1) 2008; 31
Bouteiller (D4NA00064A/cit69/1) 2021; 22
Liu (D4NA00064A/cit50/1) 2019; 206
O'Toole (D4NA00064A/cit17/1) 1998; 30
Tsaih (D4NA00064A/cit35/1) 1997; 20
Tin (D4NA00064A/cit49/1) 2009; 5
Michailidu (D4NA00064A/cit100/1) 2022; 11
Kühn (D4NA00064A/cit72/1) 2021; 118
References_xml – volume: 3
  start-page: 1127
  year: 1981
  ident: D4NA00064A/cit93/1
  publication-title: Rev. Infect. Dis.
  doi: 10.1093/clinids/3.6.1127
  contributor:
    fullname: Bullen
– volume: 8
  start-page: 1173
  issue: 9
  year: 2020
  ident: D4NA00064A/cit60/1
  publication-title: Processes
  doi: 10.3390/pr8091173
  contributor:
    fullname: Chandrasekaran
– volume: 6
  start-page: 23347
  year: 2016
  ident: D4NA00064A/cit105/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep23347
  contributor:
    fullname: Das
– volume: 201
  start-page: e00117
  issue: 13
  year: 2019
  ident: D4NA00064A/cit70/1
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00117-19
  contributor:
    fullname: Zhu
– volume: 169
  start-page: 135
  year: 2018
  ident: D4NA00064A/cit97/1
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2018.02.001
  contributor:
    fullname: Lo
– volume: 20
  start-page: 233
  year: 1997
  ident: D4NA00064A/cit35/1
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/S0141-8130(97)01165-3
  contributor:
    fullname: Tsaih
– volume: 74
  start-page: 500
  year: 2006
  ident: D4NA00064A/cit34/1
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2005.01.047
  contributor:
    fullname: Cho
– volume: 92
  start-page: 87
  year: 2009
  ident: D4NA00064A/cit29/1
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2009.02.001
  contributor:
    fullname: Yang
– volume: 8
  start-page: 271
  year: 2016
  ident: D4NA00064A/cit41/1
  publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.
  contributor:
    fullname: Banik
– volume: 8
  start-page: 236
  issue: 8
  year: 2016
  ident: D4NA00064A/cit91/1
  publication-title: Toxins
  doi: 10.3390/toxins8080236
  contributor:
    fullname: Hall
– volume: 22
  start-page: 3337
  issue: 7
  year: 2021
  ident: D4NA00064A/cit69/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22073337
  contributor:
    fullname: Bouteiller
– volume: 32
  start-page: e00031
  issue: 4
  year: 2019
  ident: D4NA00064A/cit12/1
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.00031-19
  contributor:
    fullname: Horcajada
– volume: 181
  start-page: 1213
  year: 2018
  ident: D4NA00064A/cit55/1
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.12.011
  contributor:
    fullname: Martins
– volume: 55
  start-page: 31
  year: 2008
  ident: D4NA00064A/cit98/1
  publication-title: Sedimentology
  doi: 10.1111/j.1365-3091.2007.00892.x
  contributor:
    fullname: BLOTT
– volume: 149
  start-page: 1109
  year: 2020
  ident: D4NA00064A/cit66/1
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.02.019
  contributor:
    fullname: Badawy
– volume: 4
  start-page: 045026
  year: 2018
  ident: D4NA00064A/cit11/1
  publication-title: Biomed. Phys. Eng. Express
  doi: 10.1088/2057-1976/aac9f8
  contributor:
    fullname: Ikono
– volume: 12
  start-page: 993029
  year: 2022
  ident: D4NA00064A/cit104/1
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2022.993029
  contributor:
    fullname: Kašparová
– volume: 10
  start-page: 483
  year: 2016
  ident: D4NA00064A/cit19/1
  publication-title: Drug Des., Dev. Ther.
  doi: 10.2147/DDDT.S99651
  contributor:
    fullname: Ahmed
– volume: 219
  start-page: 536
  year: 2015
  ident: D4NA00064A/cit58/1
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2015.10.006
  contributor:
    fullname: Hickey
– volume: 8
  start-page: 4695
  year: 2018
  ident: D4NA00064A/cit28/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-23064-4
  contributor:
    fullname: Sreekumar
– volume: 11
  start-page: 443
  issue: 3
  year: 2022
  ident: D4NA00064A/cit100/1
  publication-title: Plants
  doi: 10.3390/plants11030443
  contributor:
    fullname: Michailidu
– volume: 3
  start-page: 75
  year: 2013
  ident: D4NA00064A/cit92/1
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2013.00075
  contributor:
    fullname: Cornelis
– volume: 6
  start-page: 26
  year: 2015
  ident: D4NA00064A/cit46/1
  publication-title: Protein Cell
  doi: 10.1007/s13238-014-0100-x
  contributor:
    fullname: Lee
– volume: 160
  start-page: 548
  year: 2020
  ident: D4NA00064A/cit51/1
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.05.109
  contributor:
    fullname: Rathinam
– volume: 17
  start-page: 100300
  year: 2020
  ident: D4NA00064A/cit8/1
  publication-title: Sustainable Chem. Pharm.
  doi: 10.1016/j.scp.2020.100300
  contributor:
    fullname: Raja Namasivayam
– volume: 9
  start-page: 2856
  year: 2012
  ident: D4NA00064A/cit26/1
  publication-title: Mol. Pharm.
  doi: 10.1021/mp300162j
  contributor:
    fullname: Koukaras
– volume: 7
  start-page: 415
  year: 2021
  ident: D4NA00064A/cit10/1
  publication-title: AIMS Microbiol.
  doi: 10.3934/microbiol.2021025
  contributor:
    fullname: Fattah
– volume: 5
  start-page: 1460
  year: 2010
  ident: D4NA00064A/cit43/1
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2010.110
  contributor:
    fullname: Müsken
– volume: 77
  start-page: ftz009
  year: 2019
  ident: D4NA00064A/cit65/1
  publication-title: Pathog. Dis.
  doi: 10.1093/femspd/ftz009
  contributor:
    fullname: Rubini
– volume: 13
  start-page: 14208
  year: 2023
  ident: D4NA00064A/cit80/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-41333-9
  contributor:
    fullname: Llanos
– volume: 26
  start-page: 2108
  year: 2021
  ident: D4NA00064A/cit85/1
  publication-title: Drug Discovery Today
  doi: 10.1016/j.drudis.2021.02.026
  contributor:
    fullname: Everett
– volume: 30
  start-page: 295
  year: 1998
  ident: D4NA00064A/cit17/1
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1998.01062.x
  contributor:
    fullname: O'Toole
– volume: 20
  start-page: 613
  year: 2009
  ident: D4NA00064A/cit24/1
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.1306
  contributor:
    fullname: Liu
– volume: 300
  start-page: 534
  year: 2010
  ident: D4NA00064A/cit79/1
  publication-title: Int. J. Med. Microbiol.
  doi: 10.1016/j.ijmm.2010.08.005
  contributor:
    fullname: Bleves
– volume: 235
  start-page: 337
  year: 2016
  ident: D4NA00064A/cit37/1
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2016.06.017
  contributor:
    fullname: Bhattacharjee
– volume: 25
  start-page: 5293
  year: 2004
  ident: D4NA00064A/cit38/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2003.12.036
  contributor:
    fullname: Kiang
– volume: 164
  start-page: 268
  year: 2017
  ident: D4NA00064A/cit9/1
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.02.001
  contributor:
    fullname: Verlee
– volume: 349
  start-page: 226
  year: 2008
  ident: D4NA00064A/cit56/1
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2007.07.035
  contributor:
    fullname: Chen
– volume: 9
  start-page: 551
  year: 2020
  ident: D4NA00064A/cit64/1
  publication-title: Antibiotics
  doi: 10.3390/antibiotics9090551
  contributor:
    fullname: Rivera Aguayo
– volume: 290
  start-page: 919
  year: 2012
  ident: D4NA00064A/cit27/1
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/s00396-012-2604-3
  contributor:
    fullname: Jonassen
– volume: 20
  start-page: 6297
  year: 2019
  ident: D4NA00064A/cit62/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20246297
  contributor:
    fullname: Piras
– volume: 205
  start-page: 106676
  year: 2023
  ident: D4NA00064A/cit101/1
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2023.106676
  contributor:
    fullname: Kulišová
– volume: 48
  start-page: 3098
  year: 2007
  ident: D4NA00064A/cit48/1
  publication-title: Polymer
  doi: 10.1016/j.polymer.2007.03.063
  contributor:
    fullname: Hu
– volume: 90
  start-page: 21
  year: 2012
  ident: D4NA00064A/cit30/1
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2011.09.042
  contributor:
    fullname: Fan
– volume: 112
  start-page: 1462
  year: 2017
  ident: D4NA00064A/cit74/1
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2017.02.019
  contributor:
    fullname: Yang
– volume: 107
  start-page: 52
  year: 2018
  ident: D4NA00064A/cit14/1
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.08.146
  contributor:
    fullname: Muslim
– volume: 10
  start-page: 1272
  year: 2022
  ident: D4NA00064A/cit103/1
  publication-title: Microorganisms
  doi: 10.3390/microorganisms10071272
  contributor:
    fullname: Maťátková
– volume: 6
  start-page: 5387
  year: 2012
  ident: D4NA00064A/cit53/1
  publication-title: Afr. J. Microbiol. Res.
  contributor:
    fullname: Melake
– volume: 8
  start-page: e58299
  year: 2013
  ident: D4NA00064A/cit96/1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0058299
  contributor:
    fullname: Das
– volume: 9
  start-page: 551
  issue: 9
  year: 2020
  ident: D4NA00064A/cit18/1
  publication-title: Antibiotics
  doi: 10.3390/antibiotics9090551
  contributor:
    fullname: Rivera Aguayo
– volume: 551
  start-page: 313
  year: 2017
  ident: D4NA00064A/cit15/1
  publication-title: Nature
  doi: 10.1038/nature24624
  contributor:
    fullname: Whiteley
– volume: 15
  start-page: 1267
  year: 2023
  ident: D4NA00064A/cit47/1
  publication-title: Waste Biomass Valorization
  doi: 10.1007/s12649-023-02220-6
  contributor:
    fullname: Boudouaia
– volume: 283
  start-page: 344
  year: 2005
  ident: D4NA00064A/cit44/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.08.186
  contributor:
    fullname: López-León
– volume: 103
  start-page: 643
  year: 2005
  ident: D4NA00064A/cit57/1
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2005.01.001
  contributor:
    fullname: Kean
– volume: 7
  start-page: 1195
  year: 2013
  ident: D4NA00064A/cit42/1
  publication-title: Nanotoxicology
  doi: 10.3109/17435390.2012.724724
  contributor:
    fullname: Rauscher
– volume: 120
  start-page: 921
  year: 2018
  ident: D4NA00064A/cit7/1
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.08.130
  contributor:
    fullname: Karthick Raja Namasivayam
– volume: 5
  start-page: 153
  year: 2009
  ident: D4NA00064A/cit49/1
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.5.153
  contributor:
    fullname: Tin
– volume: 9
  start-page: 1675
  year: 2018
  ident: D4NA00064A/cit82/1
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.01675
  contributor:
    fullname: Bastaert
– volume: 11
  start-page: 587
  year: 2010
  ident: D4NA00064A/cit73/1
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-587
  contributor:
    fullname: Tremblay
– volume: 11
  start-page: 656984
  year: 2021
  ident: D4NA00064A/cit102/1
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2021.656984
  contributor:
    fullname: Saeki
– volume: 18
  start-page: 499
  year: 2020
  ident: D4NA00064A/cit13/1
  publication-title: Expert Rev. Anti-Infect. Ther.
  doi: 10.1080/14787210.2020.1750951
  contributor:
    fullname: Piewngam
– volume: 189
  start-page: 2164
  year: 2007
  ident: D4NA00064A/cit75/1
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01623-06
  contributor:
    fullname: Overhage
– volume: 17
  start-page: e0272844
  year: 2022
  ident: D4NA00064A/cit99/1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0272844
  contributor:
    fullname: Miškovská
– volume: 157
  start-page: 110
  year: 2017
  ident: D4NA00064A/cit36/1
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2017.05.055
  contributor:
    fullname: Sawtarie
– volume: 259
  start-page: 129264
  year: 2024
  ident: D4NA00064A/cit5/1
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2024.129264
  contributor:
    fullname: Namasivayam
– volume: 2
  start-page: 741
  year: 2016
  ident: D4NA00064A/cit54/1
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.5b00502
  contributor:
    fullname: Salis
– volume: 118
  start-page: e2101759118
  year: 2021
  ident: D4NA00064A/cit72/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2101759118
  contributor:
    fullname: Kühn
– volume: 84
  start-page: e00700
  year: 2018
  ident: D4NA00064A/cit95/1
  publication-title: Appl. Environ. Microbiol.
  contributor:
    fullname: Yang
– volume: 206
  start-page: 412
  year: 2019
  ident: D4NA00064A/cit50/1
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.11.015
  contributor:
    fullname: Liu
– volume: 81
  start-page: 1071
  year: 2024
  ident: D4NA00064A/cit59/1
  publication-title: Polym. Bull.
  doi: 10.1007/s00289-023-04755-z
  contributor:
    fullname: Dilnawaz
– volume: 63
  start-page: 125
  year: 1997
  ident: D4NA00064A/cit20/1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4
  contributor:
    fullname: Calvo
– volume: 132
  start-page: 141
  year: 2008
  ident: D4NA00064A/cit22/1
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2008.08.020
  contributor:
    fullname: Lin
– volume: 128
  start-page: 363
  year: 2019
  ident: D4NA00064A/cit63/1
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2019.01.033
  contributor:
    fullname: Khan
– volume: 363
  start-page: 139
  year: 2008
  ident: D4NA00064A/cit40/1
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2008.06.029
  contributor:
    fullname: Sayın
– volume: 152
  start-page: 239
  year: 1982
  ident: D4NA00064A/cit86/1
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.152.1.239-245.1982
  contributor:
    fullname: Berka
– volume: 10
  start-page: e0138209
  year: 2015
  ident: D4NA00064A/cit106/1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0138209
  contributor:
    fullname: Ziuzina
– volume: 31
  start-page: 329
  year: 2008
  ident: D4NA00064A/cit45/1
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/j.ijantimicag.2007.12.005
  contributor:
    fullname: Tré-Hardy
– volume: 142
  start-page: 111970
  year: 2021
  ident: D4NA00064A/cit23/1
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2021.111970
  contributor:
    fullname: Di Santo
– volume: 18
  start-page: 986
  year: 2010
  ident: D4NA00064A/cit39/1
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-010-1004-0
  contributor:
    fullname: Geçer
– volume: 450
  start-page: 411
  year: 2007
  ident: D4NA00064A/cit83/1
  publication-title: Nature
  doi: 10.1038/nature06279
  contributor:
    fullname: Diggle
– volume: 55
  start-page: 1728
  year: 1987
  ident: D4NA00064A/cit88/1
  publication-title: Infect. Immun.
  doi: 10.1128/iai.55.7.1728-1730.1987
  contributor:
    fullname: Berk
– volume-title: Quorum Sensing: Molecular Mechanism and Biotechnological Application
  year: 2019
  ident: D4NA00064A/cit16/1
  contributor:
    fullname: Tommonaro
– volume: 1768
  start-page: 2365
  year: 2007
  ident: D4NA00064A/cit87/1
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2007.04.024
  contributor:
    fullname: Montes
– volume: 578
  start-page: 119119
  year: 2020
  ident: D4NA00064A/cit32/1
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2020.119119
  contributor:
    fullname: Ozturk
– volume: 187
  start-page: 7351
  year: 2005
  ident: D4NA00064A/cit76/1
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.187.21.7351-7361.2005
  contributor:
    fullname: Caiazza
– volume: 24
  start-page: 891
  year: 2013
  ident: D4NA00064A/cit25/1
  publication-title: J. Cluster Sci.
  doi: 10.1007/s10876-013-0583-2
  contributor:
    fullname: Vaezifar
– start-page: 753
  volume-title: Molecular Medical Microbiology
  year: 2015
  ident: D4NA00064A/cit71/1
  doi: 10.1016/B978-0-12-397169-2.00041-X
  contributor:
    fullname: Wu
– volume: 11
  start-page: 816356
  year: 2022
  ident: D4NA00064A/cit81/1
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2021.816356
  contributor:
    fullname: Mateu-Borrás
– volume: 190
  start-page: 2700
  year: 2008
  ident: D4NA00064A/cit77/1
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01620-07
  contributor:
    fullname: Murray
– volume: 34
  start-page: 583
  year: 2011
  ident: D4NA00064A/cit21/1
  publication-title: Arch. Pharmacal Res.
  doi: 10.1007/s12272-011-0408-5
  contributor:
    fullname: Songsurang
– volume: 154
  start-page: 3122
  year: 2008
  ident: D4NA00064A/cit94/1
  publication-title: Microbiology
  doi: 10.1099/mic.0.2008/018622-0
  contributor:
    fullname: Boks
– volume: 9
  start-page: 53
  issue: 4
  year: 2017
  ident: D4NA00064A/cit3/1
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics9040053
  contributor:
    fullname: Mohammed
– volume: 308
  start-page: 135950
  year: 2022
  ident: D4NA00064A/cit6/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.135950
  contributor:
    fullname: Karthick Raja Namasivayam
– volume: 26
  start-page: 7136
  issue: 23
  year: 2021
  ident: D4NA00064A/cit61/1
  publication-title: Molecules
  doi: 10.3390/molecules26237136
  contributor:
    fullname: Yan
– volume: 182
  start-page: 5990
  year: 2000
  ident: D4NA00064A/cit78/1
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.182.21.5990-5996.2000
  contributor:
    fullname: Köhler
– volume: 52
  start-page: 117
  year: 2001
  ident: D4NA00064A/cit33/1
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/S0169-409X(01)00231-9
  contributor:
    fullname: Thanou
– volume: 65
  start-page: 1803
  year: 2013
  ident: D4NA00064A/cit2/1
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2013.07.011
  contributor:
    fullname: Pelgrift
– volume: 8
  start-page: 13344
  year: 2018
  ident: D4NA00064A/cit84/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30813-y
  contributor:
    fullname: Wang
– volume: 9
  start-page: 195
  year: 2019
  ident: D4NA00064A/cit4/1
  publication-title: Adv. Pharm. Bull.
  doi: 10.15171/apb.2019.023
  contributor:
    fullname: Garg
– volume: 9
  start-page: 912
  issue: 5
  year: 2021
  ident: D4NA00064A/cit52/1
  publication-title: Microorganisms
  doi: 10.3390/microorganisms9050912
  contributor:
    fullname: Maisetta
– start-page: 59
  volume-title: Pseudomonas Methods and Protocols
  year: 2014
  ident: D4NA00064A/cit68/1
  doi: 10.1007/978-1-4939-0473-0_7
  contributor:
    fullname: Ha
– volume: 51
  start-page: 495
  year: 1988
  ident: D4NA00064A/cit89/1
  publication-title: Thromb. Res.
  doi: 10.1016/0049-3848(88)90115-6
  contributor:
    fullname: Coutinho
– volume: 13
  start-page: 880377
  year: 2022
  ident: D4NA00064A/cit1/1
  publication-title: Front. Pharmacol
  doi: 10.3389/fphar.2022.880377
  contributor:
    fullname: Frigaard
– volume: 114
  start-page: 17
  year: 2018
  ident: D4NA00064A/cit67/1
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2017.11.011
  contributor:
    fullname: Thaya
– volume: 2
  start-page: 1297
  year: 2018
  ident: D4NA00064A/cit31/1
  publication-title: Proceedings
  contributor:
    fullname: Sánchez-Clemente
– volume: 184
  start-page: 345
  year: 2011
  ident: D4NA00064A/cit90/1
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201103-0374OC
  contributor:
    fullname: Wargo
SSID ssj0002144479
Score 2.3008118
Snippet The escalating antibiotic resistance observed in bacteria poses a significant threat to society, with the global prevalence of resistant strains of on the...
The escalating antibiotic resistance observed in bacteria poses a significant threat to society, with the global prevalence of resistant strains of Pseudomonas...
The escalating antibiotic resistance observed in bacteria poses a significant threat to society, with the global prevalence of resistant strains of Pseudomonas...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 3093
SubjectTerms Chemistry
Title Exploring the antimicrobial potential of chitosan nanoparticles: synthesis, characterization and impact on Pseudomonas aeruginosa virulence factors
URI https://www.ncbi.nlm.nih.gov/pubmed/38868829
https://www.proquest.com/docview/3067911459/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC11166115
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB21PUAvqHxvWyojOJLuru0kdm-rhapCatUDlXqLJrYDkVhntdkg9Xfwhxk7m1UXbtwSJbYSzzjzJn7zDPBRa16VGTcJGpEl0phJQnFdJjzPsbS24mX8dXF9k13dya_36f0eZEMtTCTtm7I-9z8X577-EbmVy4UZDzyx8e31nOYnhZVpOt6H_VyIRzl6-P4GETCZ60GLVOixlR5j8MVDeCKUyghW6t1A9A-6_Jsk-SjqXB7Bsw1cZLP-sZ7DnvMv4Ol82KXtJfzekugYQTlG41Qv6iiuRM2WzTqQgeioqVhYMGha9Myjp0x586IXrH3w1LKt20_MbNWb--JM6s6yvo6S0dlt6zrbkN9iy9Ctuu-1pw7Zr3rVxdIlttm85xXcXX75Nr9KNhstJIYy1HWg_0-R8q7Mlpgri3qClatEVPLRmHJllZKojJaVTtFZpIBGQNJVPBU0h0vxGg58491bYELmJSdQInIlZZVPlHWOZwQLM1SpEtkIPgyjXix7PY0iroMLXXyWN7NoptkI3g8GKWg8wxoGetd0bREyHPo-y1SP4E1voG0_g2VHoHZMt70hSGnvXiEPi5Lag0cd_3_TEzjkBHgCjWw6PYWD9apz7wiwrMuzmOifRS_9A4-E8Ws
link.rule.ids 230,315,733,786,790,870,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VItFeWl6lS3kYwZHsw3YSm9tqoVqgu-qhFb1Fju2ICNZZbRIk-Bv9w504m1W3nOCWKLETZ2zPN_E3nwHeSUmzNKI6UJpFAdd6GKBf5wGNY5Uak9HU_7qYzaPpJf9yFV7tQNTlwnjSvk7zvvu56Lv8u-dWLhd60PHEBuezCY5PdCujcHAP7uOApfGtKL2ZgRsZMB7LTo2UyYHhTnn3q_bhARMiQmApt13RX_jyLk3ylt85PYRv3Ru3dJMf_bpK-_rPHTHHf2_SQzhYQ1Eybq8_gh3rHsPepNsB7glcbwh6BGEiQRvki9wLN2GxZVE1RCM8KjLSLEYUpXLEKYdR-PqJH0j522HJMi_fE71Rhm4TP7E6Q9ocTYJn56WtTYFjQpVE2VWNzcMKya98Vfu0KLLeGOgpXJ5-uphMg_UmDoHG6LdqUgtGCmO6yKQqFkbJocpsxrxKkFQhFUYIroSWPJOhskahs0SQajMaMpwfUnYEu65w9hgI43FKEfCwWHCexUNhrKURQs5IiVCwqAdvO3smy1arI_Fr7EwmH_l87DvAuAdvOlMn-D2b9RHlbFGXSRM94dzPQ9mDZ63pN_V0faYHYqtTbG5oZLq3r6CpvVx3Z9rn_1_0NexNL2Znydnn-dcT2KcIrBq62mj0AnarVW1fIjCq0ld-FNwAU1ESpA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7BIi174b1QnkZwJE1rO4nNrepSLY-temCllThEju2ICOpUTYIEf4M_zMRJqu1y21ui2E6csTPfxN98BngrJc2zmOpAaRYHXOtJgH6dBzRJVGZMTjP_6-JsGZ-e808X0UXPqqx6WqXTWTF2P9djV3z33MrNWocDTyxcnc1xfqJbmUbhxuThTbiFk5bKS5F6-xVupcB4IgdFUiZDw53yLlgdwSETIkZwKffd0X8Y8ypV8pLvWdyFb8NTd5STH-Omzsb6zxVBx-t16x7c6SEpmXVl7sMN6x7A7fmwE9xD-Lsj6hGEiwRtUawLL-CE1TZl3RKO8KjMSbsoUVbKEaccRuP9Xd-T6rfDmlVRvSN6pxDdJYBic4Z0uZoEz1aVbUyJc0NVRNltg13EBsmvYtv49CjSbxD0CM4XH77OT4N-M4dAYxRctykGU4WxXWwylQij5ETlNmdeLUiqiAojBFdCS57LSFmj0GkiWLU5jRh-JzJ2DAeudPYJEMaTjCLwYYngPE8mwlhLY4SesRKRYPEI3gw2TTedZkfq19qZTE_4cuYHwWwErwdzp_g-23US5WzZVGkbRaEP4JEcwePO_Lt2hnEzArE3MHYFWrnu_Stobi_bPZj36fWrvoLD1cki_fJx-fkZHFHEVy1rbTp9Dgf1trEvEB_V2Us_Ef4Byk0VJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+antimicrobial+potential+of+chitosan+nanoparticles%3A+synthesis%2C+characterization+and+impact+on+Pseudomonas+aeruginosa+virulence+factors&rft.jtitle=Nanoscale+advances&rft.au=Mar%C5%A1%C3%ADk%2C+Dominik&rft.au=Ma%C5%A5%C3%A1tkov%C3%A1%2C+Olga&rft.au=Kolkov%C3%A1%2C+Anna&rft.au=Mas%C3%A1k%2C+Jan&rft.date=2024-06-11&rft.eissn=2516-0230&rft.volume=6&rft.issue=12&rft.spage=3093&rft_id=info:doi/10.1039%2Fd4na00064a&rft_id=info%3Apmid%2F38868829&rft.externalDocID=38868829
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2516-0230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2516-0230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2516-0230&client=summon