Challenging the skin pigmentation bias in tissue oximetry via time-domain near-infrared spectroscopy
Recently, skin pigmentation has been shown to affect the performance of pulse oximeters and other light-based techniques like photo-acoustic imaging, tissue oximetry, and continuous wave near-infrared spectroscopy. Evaluating the robustness to changes in skin pigmentation is therefore essential for...
Saved in:
Published in | Biomedical optics express Vol. 16; no. 2; pp. 690 - 708 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Optica Publishing Group
01.02.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, skin pigmentation has been shown to affect the performance of pulse oximeters and other light-based techniques like photo-acoustic imaging, tissue oximetry, and continuous wave near-infrared spectroscopy. Evaluating the robustness to changes in skin pigmentation is therefore essential for the proper use of optical technologies in the clinical scenario. We conducted systematic time-domain near-infrared spectroscopy measurements on calibrated tissue phantoms and in vivo on volunteers during static and dynamic (i.e., arterial occlusion) measurements. To simulate varying melanosome volume fractions in the skin, we inserted, between the target sample and the measurement probe, thin tissue phantoms made of silicone and nigrosine (skin phantoms). Additionally, we conducted an extensive measurement campaign on a large cohort of pediatric subjects, covering the full spectrum of skin pigmentation. Our findings consistently demonstrate that skin pigmentation has a negligible effect on time-domain near-infrared spectroscopy results, underscoring the reliability and potential of this emerging technology in diverse clinical settings. |
---|---|
AbstractList | Recently, skin pigmentation has been shown to affect the performance of pulse oximeters and other light-based techniques like photo-acoustic imaging, tissue oximetry, and continuous wave near-infrared spectroscopy. Evaluating the robustness to changes in skin pigmentation is therefore essential for the proper use of optical technologies in the clinical scenario. We conducted systematic time-domain near-infrared spectroscopy measurements on calibrated tissue phantoms and in vivo on volunteers during static and dynamic (i.e., arterial occlusion) measurements. To simulate varying melanosome volume fractions in the skin, we inserted, between the target sample and the measurement probe, thin tissue phantoms made of silicone and nigrosine (skin phantoms). Additionally, we conducted an extensive measurement campaign on a large cohort of pediatric subjects, covering the full spectrum of skin pigmentation. Our findings consistently demonstrate that skin pigmentation has a negligible effect on time-domain near-infrared spectroscopy results, underscoring the reliability and potential of this emerging technology in diverse clinical settings. Recently, skin pigmentation has been shown to affect the performance of pulse oximeters and other light-based techniques like photo-acoustic imaging, tissue oximetry, and continuous wave near-infrared spectroscopy. Evaluating the robustness to changes in skin pigmentation is therefore essential for the proper use of optical technologies in the clinical scenario. We conducted systematic time-domain near-infrared spectroscopy measurements on calibrated tissue phantoms and in vivo on volunteers during static and dynamic (i.e., arterial occlusion) measurements. To simulate varying melanosome volume fractions in the skin, we inserted, between the target sample and the measurement probe, thin tissue phantoms made of silicone and nigrosine (skin phantoms). Additionally, we conducted an extensive measurement campaign on a large cohort of pediatric subjects, covering the full spectrum of skin pigmentation. Our findings consistently demonstrate that skin pigmentation has a negligible effect on time-domain near-infrared spectroscopy results, underscoring the reliability and potential of this emerging technology in diverse clinical settings.Recently, skin pigmentation has been shown to affect the performance of pulse oximeters and other light-based techniques like photo-acoustic imaging, tissue oximetry, and continuous wave near-infrared spectroscopy. Evaluating the robustness to changes in skin pigmentation is therefore essential for the proper use of optical technologies in the clinical scenario. We conducted systematic time-domain near-infrared spectroscopy measurements on calibrated tissue phantoms and in vivo on volunteers during static and dynamic (i.e., arterial occlusion) measurements. To simulate varying melanosome volume fractions in the skin, we inserted, between the target sample and the measurement probe, thin tissue phantoms made of silicone and nigrosine (skin phantoms). Additionally, we conducted an extensive measurement campaign on a large cohort of pediatric subjects, covering the full spectrum of skin pigmentation. Our findings consistently demonstrate that skin pigmentation has a negligible effect on time-domain near-infrared spectroscopy results, underscoring the reliability and potential of this emerging technology in diverse clinical settings. |
Author | Bossi, Alessandro Torricelli, Alessandro Lacerenza, Michele Zuccotti, Gianvincenzo Rossi, Virginia Amendola, Caterina Buttafava, Mauro Negretti, Fabio Contini, Davide Damagatla, Vamshi Zanelli, Sara Calcaterra, Valeria Spinelli, Lorenzo Bargigia, Ilaria |
Author_xml | – sequence: 1 givenname: Michele surname: Lacerenza fullname: Lacerenza, Michele – sequence: 2 givenname: Caterina surname: Amendola fullname: Amendola, Caterina – sequence: 3 givenname: Ilaria surname: Bargigia fullname: Bargigia, Ilaria – sequence: 4 givenname: Alessandro orcidid: 0009-0004-9232-5124 surname: Bossi fullname: Bossi, Alessandro – sequence: 5 givenname: Mauro orcidid: 0000-0002-5446-8026 surname: Buttafava fullname: Buttafava, Mauro – sequence: 6 givenname: Valeria surname: Calcaterra fullname: Calcaterra, Valeria – sequence: 7 givenname: Davide orcidid: 0000-0003-1209-9397 surname: Contini fullname: Contini, Davide – sequence: 8 givenname: Vamshi orcidid: 0000-0003-4140-387X surname: Damagatla fullname: Damagatla, Vamshi – sequence: 9 givenname: Fabio orcidid: 0009-0003-0620-2703 surname: Negretti fullname: Negretti, Fabio – sequence: 10 givenname: Virginia surname: Rossi fullname: Rossi, Virginia – sequence: 11 givenname: Lorenzo orcidid: 0000-0002-4414-4351 surname: Spinelli fullname: Spinelli, Lorenzo – sequence: 12 givenname: Sara surname: Zanelli fullname: Zanelli, Sara – sequence: 13 givenname: Gianvincenzo surname: Zuccotti fullname: Zuccotti, Gianvincenzo – sequence: 14 givenname: Alessandro orcidid: 0000-0002-6878-8936 surname: Torricelli fullname: Torricelli, Alessandro |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39958842$$D View this record in MEDLINE/PubMed |
BookMark | eNpVUU1P3DAQtRBV-SgXfgDKsaoU6s_Ye0JlBS0SEhc4WxNnsuuS2MHOou6_x2gpgrnM6M3Te5p5R2Q_xICEnDJ6zkQjf17eXZ0rybhY7JFDzlRTa2rU_of5gJzk_JeWklJTYb6SA7FYKGMkPyTdcg3DgGHlw6qa11jlRx-qya9GDDPMPoaq9ZCrAs4-5w1W8Z8fcU7b6tlDwUasuzhC2QeEVPvQJ0jYVXlCN6eYXZy238iXHoaMJ2_9mDxcX90v_9S3d79vlr9uayeEmeuGYqtbAy3tgQFVrlHG6aYXQDWXhqsOKSyAd9Sh6I0UqDoFXEsUukPpxDG52OlOm3bEzpUTEgx2Sn6EtLURvP28CX5tV_HZMma4kdIUhe9vCik-bTDPdvTZ4TBAwLjJVrBGa840bQr17KPZu8v_3xbCjx3BlTfkhP07hVH7mp0t2dldduIFd2uN5Q |
Cites_doi | 10.1038/srep27057 10.1001/archderm.1988.01670060015008 10.7759/cureus.46078 10.1097/CCE.0000000000001049 10.1152/japplphysiol.00166.2018 10.1117/1.JBO.27.7.074716 10.1002/jbio.201400103 10.4236/ajac.2015.612086 10.1117/1.JBO.29.S1.S11506 10.1364/BOE.454020 10.1364/AO.44.002104 10.3399/bjgp22X718769 10.1111/j.1553-2712.1998.tb02772.x 10.1117/1.JBO.27.7.074713 10.1016/j.ejrad.2020.109067 10.1186/s13054-022-04295-4 10.1007/s10877-005-1655-0 10.1088/0031-9155/47/23/301 10.1117/1.JBO.21.9.091311 10.1038/s41551-016-0008 10.1088/0031-9155/58/11/R37 10.1117/1.JBO.21.9.091310 10.1364/BOE.507294 10.1364/BOE.501950 10.1016/j.bja.2024.01.023 10.1038/s43856-024-00550-7 10.1016/S0924-2031(01)00144-8 10.1366/11-06461 10.1109/JSTQE.2015.2506613 10.1097/00000542-200504000-00004 10.1117/1.2085149 10.1177/0310057X18811962 10.1001/jamanetworkopen.2023.30856 10.1117/1.NPh.9.S2.S24001 10.1117/1.NPh.10.1.013502 10.1364/AO.28.002331 10.1117/1.NPh.8.1.012101 10.1093/bja/aeu335 10.1016/j.neuroimage.2013.05.106 10.1007/s40279-023-01987-x 10.1364/AO.36.004587 10.1038/s41598-022-05863-y 10.1016/j.jaad.2021.02.048 |
ContentType | Journal Article |
Copyright | 2025 Optica Publishing Group. 2025 Optica Publishing Group 2025 Optica Publishing Group |
Copyright_xml | – notice: 2025 Optica Publishing Group. – notice: 2025 Optica Publishing Group 2025 Optica Publishing Group |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1364/BOE.541239 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 2156-7085 |
EndPage | 708 |
ExternalDocumentID | PMC11828448 39958842 10_1364_BOE_541239 |
Genre | Journal Article |
GrantInformation_xml | – fundername: HORIZON EUROPE European Innovation Council grantid: 101099093; Prometeus – fundername: Ministero dell'Università e della Ricerca grantid: 2020477RW5PRIN; Trajector-AGE – fundername: Horizon 2020 Framework Programme grantid: 860185; PHAST-ETN; 863087; PLS – fundername: NextGenerationEU grantid: I-PHOQS IR0000016, ID D2B8D520, CUPB53C22001750006; Int. infra. init. in Photonic & Quantum Sciences; PE0000015 (DD 1557 11.10.2022); Age-IT |
GroupedDBID | 4.4 53G 8SL AAFWJ AAWJZ AAYXX ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS AOIJS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION DIK DSZJF E3Z EBS GROUPED_DOAJ GX1 HYE KQ8 LPK M~E O5R O5S OFLFD OK1 OPJBK ROL ROS RPM TR6 NPM ROP 7X8 5PM |
ID | FETCH-LOGICAL-c338t-60eb7b8ab0fa1a05c658c76f3a0724825de0a9a2d0ce3f843e5d5a274e37de4c3 |
ISSN | 2156-7085 |
IngestDate | Thu Aug 21 18:28:46 EDT 2025 Thu Jul 10 18:54:39 EDT 2025 Wed Feb 19 01:28:50 EST 2025 Tue Jul 01 01:36:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | 2025 Optica Publishing Group. 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement https://doi.org/10.1364/OA_License_v2#VOR-OA |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-60eb7b8ab0fa1a05c658c76f3a0724825de0a9a2d0ce3f843e5d5a274e37de4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6878-8936 0000-0003-1209-9397 0009-0003-0620-2703 0009-0004-9232-5124 0000-0003-4140-387X 0000-0002-4414-4351 0000-0002-5446-8026 |
OpenAccessLink | http://dx.doi.org/10.1364/BOE.541239 |
PMID | 39958842 |
PQID | 3167721706 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11828448 proquest_miscellaneous_3167721706 pubmed_primary_39958842 crossref_primary_10_1364_BOE_541239 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biomedical optics express |
PublicationTitleAlternate | Biomed Opt Express |
PublicationYear | 2025 |
Publisher | Optica Publishing Group |
Publisher_xml | – name: Optica Publishing Group |
References | Bickler (boe-16-2-690-R15) 2005; 102 Fawzy (boe-16-2-690-R22) 2023; 6 Sun (boe-16-2-690-R18) 2015; 114 Aoki (boe-16-2-690-R21) 2023; 15 Ayaz (boe-16-2-690-R6) 2022; 9 Zhao (boe-16-2-690-R49) 2022; 27 Martelli (boe-16-2-690-R34) 2016; 6 Austin (boe-16-2-690-R2) 2021; 84 Lanka (boe-16-2-690-R48) 2022; 27 Vogt (boe-16-2-690-R26) 2023; 14 Martelli (boe-16-2-690-R4) 2023 Yücel (boe-16-2-690-R5) 2021; 8 Quaresima (boe-16-2-690-R25) 2023; 27 Seddone (boe-16-2-690-R50) 2022; 12 Matas (boe-16-2-690-R16) 2002; 28 Zhu (boe-16-2-690-R10) 2020; 129 Yun (boe-16-2-690-R1) 2017; 1 Vasudevan (boe-16-2-690-R36) 2024; 4 Martelli (boe-16-2-690-R51) 2024; 15 Afshari (boe-16-2-690-R28) 2022; 13 Barstow (boe-16-2-690-R7) 2019; 126 Konugolu Venkata Sekar (boe-16-2-690-R38) 2016; 22 Adler (boe-16-2-690-R14) 1998; 5 Torricelli (boe-16-2-690-R32) 2014; 85 Jacques (boe-16-2-690-R3) 2013; 58 Patterson (boe-16-2-690-R31) 1989; 28 Zhou (boe-16-2-690-R11) 2022; 10 Wassenaar (boe-16-2-690-R17) 2005; 19 Martin (boe-16-2-690-R23) 2024; 132 Contini (boe-16-2-690-R44) 1997; 36 Pifferi (boe-16-2-690-R47) 2005; 44 Couch (boe-16-2-690-R19) 2015; 06 Jacques (boe-16-2-690-R35) 2015; 8 Silverston (boe-16-2-690-R20) 2022; 72 Fitzpatrick (boe-16-2-690-R12) 1988; 124 Perrey (boe-16-2-690-R8) 2024; 54 Bargigia (boe-16-2-690-R37) 2012; 66 Grosenick (boe-16-2-690-R9) 2016; 21 Else (boe-16-2-690-R27) 2023; 29 Del Bianco (boe-16-2-690-R52) 2002; 47 Patel (boe-16-2-690-R29) 2024; 6 Pifferi (boe-16-2-690-R33) 2016; 21 LacerenzaPfefer (boe-16-2-690-R40) 2022 Eyeington (boe-16-2-690-R42) 2019; 47 van Veen (boe-16-2-690-R45) 2005; 10 |
References_xml | – volume: 6 start-page: 27057 year: 2016 ident: boe-16-2-690-R34 publication-title: Sci. Rep. doi: 10.1038/srep27057 – volume: 124 start-page: 869 year: 1988 ident: boe-16-2-690-R12 publication-title: Arch. Dermatol. doi: 10.1001/archderm.1988.01670060015008 – volume: 15 start-page: e46078 year: 2023 ident: boe-16-2-690-R21 publication-title: Cureus doi: 10.7759/cureus.46078 – volume: 6 start-page: e1049 year: 2024 ident: boe-16-2-690-R29 publication-title: Crit. Care Explor. doi: 10.1097/CCE.0000000000001049 – volume: 126 start-page: 1360 year: 2019 ident: boe-16-2-690-R7 publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00166.2018 – volume: 27 start-page: 074716 year: 2022 ident: boe-16-2-690-R48 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.27.7.074716 – volume: 8 start-page: 309 year: 2015 ident: boe-16-2-690-R35 publication-title: J. Biophotonics doi: 10.1002/jbio.201400103 – volume: 06 start-page: 911 year: 2015 ident: boe-16-2-690-R19 publication-title: Am. J. Analyt. Chem. doi: 10.4236/ajac.2015.612086 – volume: 29 start-page: S11506 year: 2023 ident: boe-16-2-690-R27 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.29.S1.S11506 – volume: 13 start-page: 2909 year: 2022 ident: boe-16-2-690-R28 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.454020 – volume: 44 start-page: 2104 year: 2005 ident: boe-16-2-690-R47 publication-title: Appl. Opt. doi: 10.1364/AO.44.002104 – volume: 72 start-page: 132 year: 2022 ident: boe-16-2-690-R20 publication-title: Br. J. Gen. Pract. doi: 10.3399/bjgp22X718769 – volume: 5 start-page: 965 year: 1998 ident: boe-16-2-690-R14 publication-title: Acad. Emerg. Med. doi: 10.1111/j.1553-2712.1998.tb02772.x – year: 2023 ident: boe-16-2-690-R4 – volume: 27 start-page: 074713 year: 2022 ident: boe-16-2-690-R49 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.27.7.074713 – volume: 129 start-page: 109067 year: 2020 ident: boe-16-2-690-R10 publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2020.109067 – volume: 27 start-page: 10 year: 2023 ident: boe-16-2-690-R25 publication-title: Crit. Care doi: 10.1186/s13054-022-04295-4 – volume: 19 start-page: 195 year: 2005 ident: boe-16-2-690-R17 publication-title: J. Clin. Monit. Comput. doi: 10.1007/s10877-005-1655-0 – volume: 47 start-page: 4131 year: 2002 ident: boe-16-2-690-R52 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/47/23/301 – volume: 21 start-page: 091311 year: 2016 ident: boe-16-2-690-R9 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.21.9.091311 – volume: 1 start-page: 0008 year: 2017 ident: boe-16-2-690-R1 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-016-0008 – volume: 58 start-page: R37 year: 2013 ident: boe-16-2-690-R3 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/11/R37 – volume: 21 start-page: 091310 year: 2016 ident: boe-16-2-690-R33 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.21.9.091310 – volume: 15 start-page: 1163 year: 2024 ident: boe-16-2-690-R51 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.507294 – volume: 14 start-page: 5735 year: 2023 ident: boe-16-2-690-R26 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.501950 – volume: 132 start-page: 945 year: 2024 ident: boe-16-2-690-R23 publication-title: Br. J. Anaesth. doi: 10.1016/j.bja.2024.01.023 – volume: 4 start-page: 138 year: 2024 ident: boe-16-2-690-R36 publication-title: Nat. Commun. Med. doi: 10.1038/s43856-024-00550-7 – volume: 28 start-page: 45 year: 2002 ident: boe-16-2-690-R16 publication-title: Vib. Spectrosc. doi: 10.1016/S0924-2031(01)00144-8 – volume: 66 start-page: 944 year: 2012 ident: boe-16-2-690-R37 publication-title: Appl. Spectrosc. doi: 10.1366/11-06461 – volume: 22 start-page: 406 year: 2016 ident: boe-16-2-690-R38 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2015.2506613 – start-page: 1195108 year: 2022 ident: boe-16-2-690-R40 article-title: Performance and reproducibility assessment across multiple time-domain near-infrared spectroscopy device replicas – volume: 102 start-page: 715 year: 2005 ident: boe-16-2-690-R15 publication-title: Anesthesiology doi: 10.1097/00000542-200504000-00004 – volume: 10 start-page: 054004 year: 2005 ident: boe-16-2-690-R45 publication-title: J. Biomed. Opt. doi: 10.1117/1.2085149 – volume: 47 start-page: 69 year: 2019 ident: boe-16-2-690-R42 publication-title: Anaesth. Intensive Care doi: 10.1177/0310057X18811962 – volume: 6 start-page: e2330856 year: 2023 ident: boe-16-2-690-R22 publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2023.30856 – volume: 9 start-page: S24001 year: 2022 ident: boe-16-2-690-R6 publication-title: Neurophotonics doi: 10.1117/1.NPh.9.S2.S24001 – volume: 10 start-page: 013502 year: 2022 ident: boe-16-2-690-R11 publication-title: Neurophotonics doi: 10.1117/1.NPh.10.1.013502 – volume: 28 start-page: 2331 year: 1989 ident: boe-16-2-690-R31 publication-title: Appl. Opt. doi: 10.1364/AO.28.002331 – volume: 8 start-page: 012101 year: 2021 ident: boe-16-2-690-R5 publication-title: Neurophotonics doi: 10.1117/1.NPh.8.1.012101 – volume: 114 start-page: 276 year: 2015 ident: boe-16-2-690-R18 publication-title: Br. J. Anaesth. doi: 10.1093/bja/aeu335 – volume: 85 start-page: 28 year: 2014 ident: boe-16-2-690-R32 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.106 – volume: 54 start-page: 975 year: 2024 ident: boe-16-2-690-R8 publication-title: Sports Med. doi: 10.1007/s40279-023-01987-x – volume: 36 start-page: 4587 year: 1997 ident: boe-16-2-690-R44 publication-title: Appl. Opt. doi: 10.1364/AO.36.004587 – volume: 12 start-page: 2155 year: 2022 ident: boe-16-2-690-R50 publication-title: Sci. Rep. doi: 10.1038/s41598-022-05863-y – volume: 84 start-page: 1219 year: 2021 ident: boe-16-2-690-R2 publication-title: J. Am. Acad. Dermatol. doi: 10.1016/j.jaad.2021.02.048 |
SSID | ssj0000447038 |
Score | 2.3868544 |
Snippet | Recently, skin pigmentation has been shown to affect the performance of pulse oximeters and other light-based techniques like photo-acoustic imaging, tissue... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 690 |
Title | Challenging the skin pigmentation bias in tissue oximetry via time-domain near-infrared spectroscopy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39958842 https://www.proquest.com/docview/3167721706 https://pubmed.ncbi.nlm.nih.gov/PMC11828448 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BkRAcEJRXeFSL4BZtsL0P20dUpRTUxyWRcrPG9jq1IHaUuKj01zO7fob2ULhY0a61Wc18Gu_szHxDyCeZOXGos5D5WcaZEBkwUMJnicvxcCC5FjZccHqmjufi-0Iu-gi-rS6p4klyfWtdyf9oFcdQr6ZK9h802y2KA_gb9YtP1DA-76Tjw6YTSlvytP1hcsLz5aopKCrGcQ424bWy8h2XV_lKV5vf41852LbyLC1XgPMFAp7hljY2H92WXxqay3K9G_W1tfpWreXa8jvrq3WXw2HpGxNTPngNbUa-_tlDCneVoiPd1B2assP-MgA2y3xZ5-1-Q18772fwI543lTjbLRh6heFFhSfb3ObWnuHhQjHfqTv0TPQtY61BVgPgeQPrqurOojesPlfC5LKfTydS4Jc47L9tbTz_7Dw6mp-cRLPpYnafPPDQpzDtLr4u3O5CzhECrZ_tYNhuqqGzxeU_94vvHmBueCV_J9cOTiuzp-RJ42bQLzVmnpF7utgnjwfkk_vk4WmTVvGcpAMgUQQSNUCiQyBRAySKgzWQaAskikCiAyDRHSDRIZBekPnRdHZ4zJr2GyzhPKiYcnTsxwHETgYuODLBw2riq4yD43si8GSqHQjBS51E8ywQXMtUgucLzf1Ui4S_JHtFWejXhCYyU2CYEiGRItQAgZvFrjZEQ9xHF3dEPrYyjdY1y0pkQ61KRCj5qJb8iHxoxR2hETSRLSh0ebmNDJ2D7xkmqBF5VYu_W8fUbgeB8EYk2FFM94IhWN-dKfILS7RunO9AiODNHf74LXnUg_4d2as2l_o9nler-MDe8xxYtP0BsWSejQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Challenging+the+skin+pigmentation+bias+in+tissue+oximetry+via+time-domain+near-infrared+spectroscopy&rft.jtitle=Biomedical+optics+express&rft.au=Lacerenza%2C+Michele&rft.au=Amendola%2C+Caterina&rft.au=Bargigia%2C+Ilaria&rft.au=Bossi%2C+Alessandro&rft.date=2025-02-01&rft.issn=2156-7085&rft.eissn=2156-7085&rft.volume=16&rft.issue=2&rft.spage=690&rft_id=info:doi/10.1364%2FBOE.541239&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-7085&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-7085&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-7085&client=summon |