Bayesian quantile regression for skew-normal linear mixed models

Linear mixed models have been widely used to analyze repeated measures data which arise in many studies. In most applications, it is assumed that both the random effects and the within-subjects errors are normally distributed. This can be extremely restrictive, obscuring important features of within...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Theory and methods Vol. 46; no. 22; pp. 10953 - 10972
Main Authors Aghamohammadi, A., Meshkani, M. R.
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 17.11.2017
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0361-0926
1532-415X
DOI10.1080/03610926.2016.1257713

Cover

Abstract Linear mixed models have been widely used to analyze repeated measures data which arise in many studies. In most applications, it is assumed that both the random effects and the within-subjects errors are normally distributed. This can be extremely restrictive, obscuring important features of within-and among-subject variations. Here, quantile regression in the Bayesian framework for the linear mixed models is described to carry out the robust inferences. We also relax the normality assumption for the random effects by using a multivariate skew-normal distribution, which includes the normal ones as a special case and provides robust estimation in the linear mixed models. For posterior inference, we propose a Gibbs sampling algorithm based on a mixture representation of the asymmetric Laplace distribution and multivariate skew-normal distribution. The procedures are demonstrated by both simulated and real data examples.
AbstractList Linear mixed models have been widely used to analyze repeated measures data which arise in many studies. In most applications, it is assumed that both the random effects and the within-subjects errors are normally distributed. This can be extremely restrictive, obscuring important features of within-and among-subject variations. Here, quantile regression in the Bayesian framework for the linear mixed models is described to carry out the robust inferences. We also relax the normality assumption for the random effects by using a multivariate skew-normal distribution, which includes the normal ones as a special case and provides robust estimation in the linear mixed models. For posterior inference, we propose a Gibbs sampling algorithm based on a mixture representation of the asymmetric Laplace distribution and multivariate skew-normal distribution. The procedures are demonstrated by both simulated and real data examples.
Author Meshkani, M. R.
Aghamohammadi, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Aghamohammadi
  fullname: Aghamohammadi, A.
  email: Aghamohammadi.ali@znu.ac.ir
  organization: Department of Statistics, University of Zanjan
– sequence: 2
  givenname: M. R.
  surname: Meshkani
  fullname: Meshkani, M. R.
  organization: Department of Statistics, Shahid Beheshti University
BookMark eNqFkE1LAzEQQINUsK3-BGHB89Z8bLK7eKkWv6DgRcFbSLMTSU2TNtlS--_dpfXiQU8Dw3sz8EZo4IMHhC4JnhBc4WvMBME1FROKiZgQysuSsBM0JJzRvCD8fYCGPZP30BkapbTEmPCyYkM0vVN7SFb5bLNVvrUOsggfEVKywWcmxCx9wi73Ia6Uy5z1oGK2sl_QZKvQgEvn6NQol-DiOMfo7eH-dfaUz18en2e381wzVrU5bxQnRW0EN5RwaqCi3BTamEJAqTnRGBpWLVQpsFqUWjC10KIBwP1KccPG6Opwdx3DZguplcuwjb57KUld1LggJaYdxQ-UjiGlCEauo12puJcEyz6W_Ikl-1jyGKvzbn552raq7Rq0UVn3rz092NabPtQuRNfIVu1diCYqr22S7O8T35KHhTk
CitedBy_id crossref_primary_10_1080_03610918_2018_1484482
crossref_primary_10_1080_03610926_2022_2150054
crossref_primary_10_1007_s40300_018_0136_4
crossref_primary_10_1080_14737167_2021_1857242
Cites_doi 10.1016/j.csda.2008.04.027
10.1007/978-1-4612-1276-8
10.1111/1467-9868.00282
10.1016/S0167-7152(01)00124-9
10.1080/02664760701236905
10.2202/1557-4679.1186
10.1006/jmva.2000.1960
10.1111/1467-9868.00194
10.6339/JDS.2005.03(4).238
10.1016/j.jspi.2009.05.040
10.1002/bimj.200390034
10.2307/2297968
10.1016/j.csda.2012.02.005
10.1080/00949655.2011.590488
10.1080/01621459.2000.10474285
10.1080/00949655.2010.496117
10.1007/978-1-4612-0173-1
10.1198/10618600152628059
10.1007/s10260-012-0190-7
10.1017/CBO9780511754098
10.1214/06-BA122
10.1111/j.0006-341X.2001.00795.x
10.1002/sim.3026
10.1016/j.jspi.2011.07.007
10.1111/j.0006-341X.2004.00250.x
10.1080/00949655.2012.731689
10.1016/j.jeconom.2011.02.016
10.2307/3316064
10.1093/biomet/83.4.715
10.1016/S0167-9473(96)00047-3
10.1111/1467-9868.00353
10.1007/s11222-013-9381-9
10.1111/j.1541-0420.2009.01269.x
10.1016/j.jmva.2004.05.006
10.2307/2533493
10.2307/2529876
10.1080/10618600.1993.10474606
10.1007/s11222-010-9213-0
ContentType Journal Article
Copyright 2017 Taylor & Francis Group, LLC 2017
2017 Taylor & Francis Group, LLC
Copyright_xml – notice: 2017 Taylor & Francis Group, LLC 2017
– notice: 2017 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610926.2016.1257713
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1532-415X
EndPage 10972
ExternalDocumentID 10_1080_03610926_2016_1257713
1257713
Genre Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
M4Z
NA5
NY~
O9-
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
TWZ
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~02
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-5da5149f65f2152fe825f4cff46e7c51c0ed38ba760ab7c63abc6dee0ba76a5f3
ISSN 0361-0926
IngestDate Wed Aug 13 11:26:14 EDT 2025
Tue Jul 01 00:46:40 EDT 2025
Thu Apr 24 23:08:46 EDT 2025
Wed Dec 25 09:05:52 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-5da5149f65f2152fe825f4cff46e7c51c0ed38ba760ab7c63abc6dee0ba76a5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1949041702
PQPubID 186202
PageCount 20
ParticipantIDs proquest_journals_1949041702
crossref_primary_10_1080_03610926_2016_1257713
informaworld_taylorfrancis_310_1080_03610926_2016_1257713
crossref_citationtrail_10_1080_03610926_2016_1257713
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-17
PublicationDateYYYYMMDD 2017-11-17
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-17
  day: 17
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Theory and methods
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References cit0011
cit0033
cit0012
cit0034
cit0031
cit0010
cit0032
cit0030
Arellano-Valle R.B. (cit0003) 2005; 3
De Iorio M. (cit0013) 2002; 64
cit0019
cit0017
cit0039
cit0018
cit0015
cit0037
cit0016
cit0038
cit0035
cit0014
cit0036
cit0022
cit0001
cit0023
cit0020
cit0021
cit0040
Lachos V.H. (cit0026) 2010; 20
cit0008
cit0009
cit0006
cit0028
cit0007
cit0029
cit0004
cit0005
cit0027
cit0002
cit0024
cit0025
References_xml – ident: cit0020
  doi: 10.1016/j.csda.2008.04.027
– ident: cit0012
  doi: 10.1007/978-1-4612-1276-8
– ident: cit0007
  doi: 10.1111/1467-9868.00282
– ident: cit0038
  doi: 10.1016/S0167-7152(01)00124-9
– ident: cit0004
  doi: 10.1080/02664760701236905
– ident: cit0030
  doi: 10.2202/1557-4679.1186
– ident: cit0008
  doi: 10.1006/jmva.2000.1960
– ident: cit0006
  doi: 10.1111/1467-9868.00194
– volume: 3
  start-page: 415
  year: 2005
  ident: cit0003
  publication-title: J. Data Sci.
  doi: 10.6339/JDS.2005.03(4).238
– ident: cit0025
  doi: 10.1016/j.jspi.2009.05.040
– ident: cit0033
  doi: 10.1002/bimj.200390034
– ident: cit0002
  doi: 10.2307/2297968
– ident: cit0016
  doi: 10.1016/j.csda.2012.02.005
– ident: cit0031
  doi: 10.1080/00949655.2011.590488
– ident: cit0010
  doi: 10.1080/01621459.2000.10474285
– ident: cit0024
  doi: 10.1080/00949655.2010.496117
– ident: cit0023
  doi: 10.1007/978-1-4612-0173-1
– ident: cit0032
  doi: 10.1198/10618600152628059
– ident: cit0037
  doi: 10.1007/s10260-012-0190-7
– ident: cit0021
  doi: 10.1017/CBO9780511754098
– ident: cit0011
  doi: 10.1214/06-BA122
– ident: cit0040
  doi: 10.1111/j.0006-341X.2001.00795.x
– ident: cit0029
  doi: 10.1002/sim.3026
– ident: cit0009
  doi: 10.1016/j.jspi.2011.07.007
– ident: cit0019
  doi: 10.1111/j.0006-341X.2004.00250.x
– ident: cit0001
  doi: 10.1080/00949655.2012.731689
– volume: 64
  start-page: 629
  year: 2002
  ident: cit0013
  publication-title: J. R. Stat. Soc. Ser. B
– ident: cit0017
  doi: 10.1016/j.jeconom.2011.02.016
– ident: cit0034
  doi: 10.2307/3316064
– ident: cit0005
  doi: 10.1093/biomet/83.4.715
– ident: cit0036
  doi: 10.1016/S0167-9473(96)00047-3
– ident: cit0035
  doi: 10.1111/1467-9868.00353
– ident: cit0018
  doi: 10.1007/s11222-013-9381-9
– ident: cit0039
  doi: 10.1111/j.1541-0420.2009.01269.x
– ident: cit0022
  doi: 10.1016/j.jmva.2004.05.006
– ident: cit0014
  doi: 10.2307/2533493
– ident: cit0027
  doi: 10.2307/2529876
– ident: cit0028
  doi: 10.1080/10618600.1993.10474606
– volume: 20
  start-page: 303
  year: 2010
  ident: cit0026
  publication-title: Stat. Sin.
– ident: cit0015
  doi: 10.1007/s11222-010-9213-0
SSID ssj0015783
Score 2.1375911
Snippet Linear mixed models have been widely used to analyze repeated measures data which arise in many studies. In most applications, it is assumed that both the...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10953
SubjectTerms Asymmetric laplace distribution
Bayesian analysis
Bayesian quantile regression
Computer simulation
Economic models
linear mixed models
MCMC
Normal distribution
Normality
Regression analysis
skew-normal distribution
Skewed distributions
Statistical analysis
Title Bayesian quantile regression for skew-normal linear mixed models
URI https://www.tandfonline.com/doi/abs/10.1080/03610926.2016.1257713
https://www.proquest.com/docview/1949041702
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXMoBQQFRKCgHbpGjOI7tzY0FgSqk7QFaaW-R7dgtandbNql4_HrGj2SzsKKUQ5KVJTuPbzzzrT0PhF4TyokUDcec2waXTGo84RXBhSwUz0XDmHKxw7MjfnhSfpyz-dqtyEeXdCrTP7fGlfwPqtAGuLoo2VsgOwwKDfAb8IUzIAznf8L4rfxhfBDk12v4QDC_05U5DY6twX-wPTff8NLR0ovU8Um5ShdfvgPH9AVw2jEz3YgU8U6yLtYopHHOYgi_32kINacHKj49PZOLSzgWsvGeAdNsANG0Z-ehZlQ6y9JP2XiJAcyWc3MTI00EgOK8KmLO6l5TFhis_3ysSuNqYhCZEG8cFSNxee1GVtZtfBdbVXj0eaQuD3zhnEgIz4CFCUHo2mb1-_S_mbLBwZD0mU_jMLUbpo7D3EX3Crg6fUjzo2HPCXRXKKYdX7aP93KZ2Lc9zQaT2chz-4dd92Tl-CF6EP9lJNMgMo_QHbPcQ_dnQ4redg_tfh7gfYze9JKU9JKUrCUpgVsmI0lKgiQlXpKSIElP0MmH98fvDnGsrYE1pZMOs0YCVa4sZ9ZVNrZmUjBbamtLboRmROemoRMlBc-lEppTqTRvjMldk2SWPkU7y8uleYYSpXJrBGEWOpdVXiottVRVpSXwwdLqfVT236nWMfG8q39yUf8VpX2UDd2uQuaVmzpUYxDqzi952VCfpqY39D3oEavjBG9rUrnXISIvnt_2WV6g3fVEOkA73eravAT22qlXXuh-AQlAj6E
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwMhECamHtSDb-OjKgevW2F3AffmI5r6aE826Y0AC8aoq7bb-Pj1MvtoqsZ46HWTIQwMwzfszDcIHdCIUyVSHnDu0iBmygRHPKFBqELNiUgZ01A73Onydi--6rP-RC0MpFVCDO1KoojCV8PhhsfoOiXu0HtdSpIQMgwob_krWghoXDvLPHYHK49Id_wnwVtk2SKZ-7DZy9RVPH8N8-1--sZe-stbF1fQxRIy9eTLzJOH1ijXLfP5g9dxOu2W0WKFUPFJaVIraMZmq2ihM6Z3Ha6ieYCoJcPzGjo-VR8WSjHx68hvk_cyeGDvyvTaDHvF8PDBvgUZaPiIYUJqgJ_u322KizY8w3XUuzi_PWsHVV-GwPiANg9YqjzMShxnDrriOuujTBcb52JuhWHUEJtGR1oJTpQWhkdKG55aS-CTYi7aQI3sObObCGtNnBWUOS8cJyTWRhmlk8QojyViZ7ZQXO-GNBVpOfTOeJS05jatVkvCaslqtbZQayz2UrJ2_CeQTG61zIvnElf2NpHRP7LN2i5k5QCGkiagDhUk3J5i6H00177t3Miby-71DpoPAVJACqJookY-GNldD4hyvVdY_Bfbrvw0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSAgOLAXEUsAHril2EtvkxlqxVhxA4mbZjo1QIUCTiuXr8WSpWIQ4cI00kccej98kz28Q2qIRp0qkPODcpUHMlAl2eEKDUIWaE5EypuHu8EWPH1_HpzesYRPmNa0SamhXCUWUuRo291PqGkbctk-6lCQhEAwo7_gTWgjoWzvBPTwBVl9EeqMfCT4gqw7J3FfN3qa5xPPba74cT1_ES38k6_IE6s4i3Yy9Ip70O8NCd8z7N1nHfzk3h2ZqfIr3qoCaR2M2a6Hpi5G4a95CUwBQK33nBbS7r94sXMTEz0O_SD7H4IG9rci1GfZ-4bxvX4IMHLzHMB41wA93rzbFZROefBFdd4-uDo6DuitDYHw5WwQsVR5kJY4zBz1xnfU1pouNczG3wjBqiE2jHa0EJ0oLwyOlDU-tJfBIMRctofHsMbPLCGtNnBWUOW8cJyTWRhmlk8QojyRiZ1ZQ3CyGNLVkOXTOuJe0UTatZ0vCbMl6tlZQZ2T2VGl2_GWQfF5pWZQfS1zV2URGf9i2m7CQ9fbPJU3AHSpIuPqPV2-iycvDrjw_6Z2toakQ8ATwD0UbjReDoV33aKjQG2W8fwC6IfrY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+quantile+regression+for+skew-normal+linear+mixed+models&rft.jtitle=Communications+in+statistics.+Theory+and+methods&rft.au=Aghamohammadi%2C+A.&rft.au=Meshkani%2C+M.+R.&rft.date=2017-11-17&rft.issn=0361-0926&rft.eissn=1532-415X&rft.volume=46&rft.issue=22&rft.spage=10953&rft.epage=10972&rft_id=info:doi/10.1080%2F03610926.2016.1257713&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03610926_2016_1257713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0926&client=summon