Bayesian quantile regression for skew-normal linear mixed models
Linear mixed models have been widely used to analyze repeated measures data which arise in many studies. In most applications, it is assumed that both the random effects and the within-subjects errors are normally distributed. This can be extremely restrictive, obscuring important features of within...
Saved in:
Published in | Communications in statistics. Theory and methods Vol. 46; no. 22; pp. 10953 - 10972 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
17.11.2017
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0361-0926 1532-415X |
DOI | 10.1080/03610926.2016.1257713 |
Cover
Abstract | Linear mixed models have been widely used to analyze repeated measures data which arise in many studies. In most applications, it is assumed that both the random effects and the within-subjects errors are normally distributed. This can be extremely restrictive, obscuring important features of within-and among-subject variations. Here, quantile regression in the Bayesian framework for the linear mixed models is described to carry out the robust inferences. We also relax the normality assumption for the random effects by using a multivariate skew-normal distribution, which includes the normal ones as a special case and provides robust estimation in the linear mixed models. For posterior inference, we propose a Gibbs sampling algorithm based on a mixture representation of the asymmetric Laplace distribution and multivariate skew-normal distribution. The procedures are demonstrated by both simulated and real data examples. |
---|---|
AbstractList | Linear mixed models have been widely used to analyze repeated measures data which arise in many studies. In most applications, it is assumed that both the random effects and the within-subjects errors are normally distributed. This can be extremely restrictive, obscuring important features of within-and among-subject variations. Here, quantile regression in the Bayesian framework for the linear mixed models is described to carry out the robust inferences. We also relax the normality assumption for the random effects by using a multivariate skew-normal distribution, which includes the normal ones as a special case and provides robust estimation in the linear mixed models. For posterior inference, we propose a Gibbs sampling algorithm based on a mixture representation of the asymmetric Laplace distribution and multivariate skew-normal distribution. The procedures are demonstrated by both simulated and real data examples. |
Author | Meshkani, M. R. Aghamohammadi, A. |
Author_xml | – sequence: 1 givenname: A. surname: Aghamohammadi fullname: Aghamohammadi, A. email: Aghamohammadi.ali@znu.ac.ir organization: Department of Statistics, University of Zanjan – sequence: 2 givenname: M. R. surname: Meshkani fullname: Meshkani, M. R. organization: Department of Statistics, Shahid Beheshti University |
BookMark | eNqFkE1LAzEQQINUsK3-BGHB89Z8bLK7eKkWv6DgRcFbSLMTSU2TNtlS--_dpfXiQU8Dw3sz8EZo4IMHhC4JnhBc4WvMBME1FROKiZgQysuSsBM0JJzRvCD8fYCGPZP30BkapbTEmPCyYkM0vVN7SFb5bLNVvrUOsggfEVKywWcmxCx9wi73Ia6Uy5z1oGK2sl_QZKvQgEvn6NQol-DiOMfo7eH-dfaUz18en2e381wzVrU5bxQnRW0EN5RwaqCi3BTamEJAqTnRGBpWLVQpsFqUWjC10KIBwP1KccPG6Opwdx3DZguplcuwjb57KUld1LggJaYdxQ-UjiGlCEauo12puJcEyz6W_Ikl-1jyGKvzbn552raq7Rq0UVn3rz092NabPtQuRNfIVu1diCYqr22S7O8T35KHhTk |
CitedBy_id | crossref_primary_10_1080_03610918_2018_1484482 crossref_primary_10_1080_03610926_2022_2150054 crossref_primary_10_1007_s40300_018_0136_4 crossref_primary_10_1080_14737167_2021_1857242 |
Cites_doi | 10.1016/j.csda.2008.04.027 10.1007/978-1-4612-1276-8 10.1111/1467-9868.00282 10.1016/S0167-7152(01)00124-9 10.1080/02664760701236905 10.2202/1557-4679.1186 10.1006/jmva.2000.1960 10.1111/1467-9868.00194 10.6339/JDS.2005.03(4).238 10.1016/j.jspi.2009.05.040 10.1002/bimj.200390034 10.2307/2297968 10.1016/j.csda.2012.02.005 10.1080/00949655.2011.590488 10.1080/01621459.2000.10474285 10.1080/00949655.2010.496117 10.1007/978-1-4612-0173-1 10.1198/10618600152628059 10.1007/s10260-012-0190-7 10.1017/CBO9780511754098 10.1214/06-BA122 10.1111/j.0006-341X.2001.00795.x 10.1002/sim.3026 10.1016/j.jspi.2011.07.007 10.1111/j.0006-341X.2004.00250.x 10.1080/00949655.2012.731689 10.1016/j.jeconom.2011.02.016 10.2307/3316064 10.1093/biomet/83.4.715 10.1016/S0167-9473(96)00047-3 10.1111/1467-9868.00353 10.1007/s11222-013-9381-9 10.1111/j.1541-0420.2009.01269.x 10.1016/j.jmva.2004.05.006 10.2307/2533493 10.2307/2529876 10.1080/10618600.1993.10474606 10.1007/s11222-010-9213-0 |
ContentType | Journal Article |
Copyright | 2017 Taylor & Francis Group, LLC 2017 2017 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2017 Taylor & Francis Group, LLC 2017 – notice: 2017 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/03610926.2016.1257713 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1532-415X |
EndPage | 10972 |
ExternalDocumentID | 10_1080_03610926_2016_1257713 1257713 |
Genre | Article |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS EJD E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM M4Z NA5 NY~ O9- QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF TWZ UPT UT5 UU3 WH7 ZGOLN ZL0 ~02 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c338t-5da5149f65f2152fe825f4cff46e7c51c0ed38ba760ab7c63abc6dee0ba76a5f3 |
ISSN | 0361-0926 |
IngestDate | Wed Aug 13 11:26:14 EDT 2025 Tue Jul 01 00:46:40 EDT 2025 Thu Apr 24 23:08:46 EDT 2025 Wed Dec 25 09:05:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-5da5149f65f2152fe825f4cff46e7c51c0ed38ba760ab7c63abc6dee0ba76a5f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1949041702 |
PQPubID | 186202 |
PageCount | 20 |
ParticipantIDs | proquest_journals_1949041702 crossref_primary_10_1080_03610926_2016_1257713 informaworld_taylorfrancis_310_1080_03610926_2016_1257713 crossref_citationtrail_10_1080_03610926_2016_1257713 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-17 |
PublicationDateYYYYMMDD | 2017-11-17 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in statistics. Theory and methods |
PublicationYear | 2017 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | cit0011 cit0033 cit0012 cit0034 cit0031 cit0010 cit0032 cit0030 Arellano-Valle R.B. (cit0003) 2005; 3 De Iorio M. (cit0013) 2002; 64 cit0019 cit0017 cit0039 cit0018 cit0015 cit0037 cit0016 cit0038 cit0035 cit0014 cit0036 cit0022 cit0001 cit0023 cit0020 cit0021 cit0040 Lachos V.H. (cit0026) 2010; 20 cit0008 cit0009 cit0006 cit0028 cit0007 cit0029 cit0004 cit0005 cit0027 cit0002 cit0024 cit0025 |
References_xml | – ident: cit0020 doi: 10.1016/j.csda.2008.04.027 – ident: cit0012 doi: 10.1007/978-1-4612-1276-8 – ident: cit0007 doi: 10.1111/1467-9868.00282 – ident: cit0038 doi: 10.1016/S0167-7152(01)00124-9 – ident: cit0004 doi: 10.1080/02664760701236905 – ident: cit0030 doi: 10.2202/1557-4679.1186 – ident: cit0008 doi: 10.1006/jmva.2000.1960 – ident: cit0006 doi: 10.1111/1467-9868.00194 – volume: 3 start-page: 415 year: 2005 ident: cit0003 publication-title: J. Data Sci. doi: 10.6339/JDS.2005.03(4).238 – ident: cit0025 doi: 10.1016/j.jspi.2009.05.040 – ident: cit0033 doi: 10.1002/bimj.200390034 – ident: cit0002 doi: 10.2307/2297968 – ident: cit0016 doi: 10.1016/j.csda.2012.02.005 – ident: cit0031 doi: 10.1080/00949655.2011.590488 – ident: cit0010 doi: 10.1080/01621459.2000.10474285 – ident: cit0024 doi: 10.1080/00949655.2010.496117 – ident: cit0023 doi: 10.1007/978-1-4612-0173-1 – ident: cit0032 doi: 10.1198/10618600152628059 – ident: cit0037 doi: 10.1007/s10260-012-0190-7 – ident: cit0021 doi: 10.1017/CBO9780511754098 – ident: cit0011 doi: 10.1214/06-BA122 – ident: cit0040 doi: 10.1111/j.0006-341X.2001.00795.x – ident: cit0029 doi: 10.1002/sim.3026 – ident: cit0009 doi: 10.1016/j.jspi.2011.07.007 – ident: cit0019 doi: 10.1111/j.0006-341X.2004.00250.x – ident: cit0001 doi: 10.1080/00949655.2012.731689 – volume: 64 start-page: 629 year: 2002 ident: cit0013 publication-title: J. R. Stat. Soc. Ser. B – ident: cit0017 doi: 10.1016/j.jeconom.2011.02.016 – ident: cit0034 doi: 10.2307/3316064 – ident: cit0005 doi: 10.1093/biomet/83.4.715 – ident: cit0036 doi: 10.1016/S0167-9473(96)00047-3 – ident: cit0035 doi: 10.1111/1467-9868.00353 – ident: cit0018 doi: 10.1007/s11222-013-9381-9 – ident: cit0039 doi: 10.1111/j.1541-0420.2009.01269.x – ident: cit0022 doi: 10.1016/j.jmva.2004.05.006 – ident: cit0014 doi: 10.2307/2533493 – ident: cit0027 doi: 10.2307/2529876 – ident: cit0028 doi: 10.1080/10618600.1993.10474606 – volume: 20 start-page: 303 year: 2010 ident: cit0026 publication-title: Stat. Sin. – ident: cit0015 doi: 10.1007/s11222-010-9213-0 |
SSID | ssj0015783 |
Score | 2.1375911 |
Snippet | Linear mixed models have been widely used to analyze repeated measures data which arise in many studies. In most applications, it is assumed that both the... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10953 |
SubjectTerms | Asymmetric laplace distribution Bayesian analysis Bayesian quantile regression Computer simulation Economic models linear mixed models MCMC Normal distribution Normality Regression analysis skew-normal distribution Skewed distributions Statistical analysis |
Title | Bayesian quantile regression for skew-normal linear mixed models |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610926.2016.1257713 https://www.proquest.com/docview/1949041702 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXMoBQQFRKCgHbpGjOI7tzY0FgSqk7QFaaW-R7dgtandbNql4_HrGj2SzsKKUQ5KVJTuPbzzzrT0PhF4TyokUDcec2waXTGo84RXBhSwUz0XDmHKxw7MjfnhSfpyz-dqtyEeXdCrTP7fGlfwPqtAGuLoo2VsgOwwKDfAb8IUzIAznf8L4rfxhfBDk12v4QDC_05U5DY6twX-wPTff8NLR0ovU8Um5ShdfvgPH9AVw2jEz3YgU8U6yLtYopHHOYgi_32kINacHKj49PZOLSzgWsvGeAdNsANG0Z-ehZlQ6y9JP2XiJAcyWc3MTI00EgOK8KmLO6l5TFhis_3ysSuNqYhCZEG8cFSNxee1GVtZtfBdbVXj0eaQuD3zhnEgIz4CFCUHo2mb1-_S_mbLBwZD0mU_jMLUbpo7D3EX3Crg6fUjzo2HPCXRXKKYdX7aP93KZ2Lc9zQaT2chz-4dd92Tl-CF6EP9lJNMgMo_QHbPcQ_dnQ4redg_tfh7gfYze9JKU9JKUrCUpgVsmI0lKgiQlXpKSIElP0MmH98fvDnGsrYE1pZMOs0YCVa4sZ9ZVNrZmUjBbamtLboRmROemoRMlBc-lEppTqTRvjMldk2SWPkU7y8uleYYSpXJrBGEWOpdVXiottVRVpSXwwdLqfVT236nWMfG8q39yUf8VpX2UDd2uQuaVmzpUYxDqzi952VCfpqY39D3oEavjBG9rUrnXISIvnt_2WV6g3fVEOkA73eravAT22qlXXuh-AQlAj6E |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwMhECamHtSDb-OjKgevW2F3AffmI5r6aE826Y0AC8aoq7bb-Pj1MvtoqsZ46HWTIQwMwzfszDcIHdCIUyVSHnDu0iBmygRHPKFBqELNiUgZ01A73Onydi--6rP-RC0MpFVCDO1KoojCV8PhhsfoOiXu0HtdSpIQMgwob_krWghoXDvLPHYHK49Id_wnwVtk2SKZ-7DZy9RVPH8N8-1--sZe-stbF1fQxRIy9eTLzJOH1ijXLfP5g9dxOu2W0WKFUPFJaVIraMZmq2ihM6Z3Ha6ieYCoJcPzGjo-VR8WSjHx68hvk_cyeGDvyvTaDHvF8PDBvgUZaPiIYUJqgJ_u322KizY8w3XUuzi_PWsHVV-GwPiANg9YqjzMShxnDrriOuujTBcb52JuhWHUEJtGR1oJTpQWhkdKG55aS-CTYi7aQI3sObObCGtNnBWUOS8cJyTWRhmlk8QojyViZ7ZQXO-GNBVpOfTOeJS05jatVkvCaslqtbZQayz2UrJ2_CeQTG61zIvnElf2NpHRP7LN2i5k5QCGkiagDhUk3J5i6H00177t3Miby-71DpoPAVJACqJookY-GNldD4hyvVdY_Bfbrvw0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSAgOLAXEUsAHril2EtvkxlqxVhxA4mbZjo1QIUCTiuXr8WSpWIQ4cI00kccej98kz28Q2qIRp0qkPODcpUHMlAl2eEKDUIWaE5EypuHu8EWPH1_HpzesYRPmNa0SamhXCUWUuRo291PqGkbctk-6lCQhEAwo7_gTWgjoWzvBPTwBVl9EeqMfCT4gqw7J3FfN3qa5xPPba74cT1_ES38k6_IE6s4i3Yy9Ip70O8NCd8z7N1nHfzk3h2ZqfIr3qoCaR2M2a6Hpi5G4a95CUwBQK33nBbS7r94sXMTEz0O_SD7H4IG9rci1GfZ-4bxvX4IMHLzHMB41wA93rzbFZROefBFdd4-uDo6DuitDYHw5WwQsVR5kJY4zBz1xnfU1pouNczG3wjBqiE2jHa0EJ0oLwyOlDU-tJfBIMRctofHsMbPLCGtNnBWUOW8cJyTWRhmlk8QojyRiZ1ZQ3CyGNLVkOXTOuJe0UTatZ0vCbMl6tlZQZ2T2VGl2_GWQfF5pWZQfS1zV2URGf9i2m7CQ9fbPJU3AHSpIuPqPV2-iycvDrjw_6Z2toakQ8ATwD0UbjReDoV33aKjQG2W8fwC6IfrY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+quantile+regression+for+skew-normal+linear+mixed+models&rft.jtitle=Communications+in+statistics.+Theory+and+methods&rft.au=Aghamohammadi%2C+A.&rft.au=Meshkani%2C+M.+R.&rft.date=2017-11-17&rft.issn=0361-0926&rft.eissn=1532-415X&rft.volume=46&rft.issue=22&rft.spage=10953&rft.epage=10972&rft_id=info:doi/10.1080%2F03610926.2016.1257713&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03610926_2016_1257713 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0926&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0926&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0926&client=summon |