Multiple distresses detection for Asphalt Pavement using improved you Only Look Once Algorithm based on convolutional neural network
Leveraging the YOLOv7 object detection framework, this study introduces YOLOv7-CSP, a refined algorithm tailored for identifying asphalt pavement distress with enhanced precision. Utilizing advanced image processing for dataset preprocessing, including data augmentation and denoising, YOLOv7-CSP int...
Saved in:
Published in | The international journal of pavement engineering Vol. 25; no. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
31.12.2024
Taylor & Francis LLC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Leveraging the YOLOv7 object detection framework, this study introduces YOLOv7-CSP, a refined algorithm tailored for identifying asphalt pavement distress with enhanced precision. Utilizing advanced image processing for dataset preprocessing, including data augmentation and denoising, YOLOv7-CSP integrates the CSPNeXt structure and CA attention mechanism for improved detection accuracy and efficiency. The algorithm optimizes anchor box selection through Kmeans clustering and employs a secondary labeling method to enhance learning efficiency and dataset quality. Comparative tests reveal YOLOv7-CSP's superior performance, with significant improvements in mAP, F1 score, GFLOPS, and FPS metrics, demonstrating its effectiveness in detecting various pavement distresses. This innovative approach marks a significant advancement in automatic pavement distress recognition, offering a robust solution for highway maintenance decision-making. |
---|---|
AbstractList | Leveraging the YOLOv7 object detection framework, this study introduces YOLOv7-CSP, a refined algorithm tailored for identifying asphalt pavement distress with enhanced precision. Utilizing advanced image processing for dataset preprocessing, including data augmentation and denoising, YOLOv7-CSP integrates the CSPNeXt structure and CA attention mechanism for improved detection accuracy and efficiency. The algorithm optimizes anchor box selection through Kmeans clustering and employs a secondary labeling method to enhance learning efficiency and dataset quality. Comparative tests reveal YOLOv7-CSP's superior performance, with significant improvements in mAP, F1 score, GFLOPS, and FPS metrics, demonstrating its effectiveness in detecting various pavement distresses. This innovative approach marks a significant advancement in automatic pavement distress recognition, offering a robust solution for highway maintenance decision-making. |
Author | Yan, Peng Tan, Jiawei Zhou, Yinchao Lu, Bingjie Dan, Han-Cheng |
Author_xml | – sequence: 1 givenname: Han-Cheng surname: Dan fullname: Dan, Han-Cheng organization: Central South University – sequence: 2 givenname: Peng surname: Yan fullname: Yan, Peng organization: Central South University – sequence: 3 givenname: Jiawei surname: Tan fullname: Tan, Jiawei email: jiawei.tan@ntu.edu.sg organization: Nanyang Technological University – sequence: 4 givenname: Yinchao surname: Zhou fullname: Zhou, Yinchao organization: Hunan Zhongda Design Institute Co., LTD – sequence: 5 givenname: Bingjie surname: Lu fullname: Lu, Bingjie organization: Central South University |
BookMark | eNqFkD9vFDEUxC0UJJLAR0CylHoPe-39pzQ5RUlAOhQKkOgsr_2cOPHaF9t70fV8cLxcaFJA9aaYGc37naAjHzwg9JGSFSU9-URJPfSctaua1HxVM9LTdniDjinvuqpu-59HRRdPtZjeoZOUHgipKSXsGP36Ortstw6wtilHSAkS1pBBZRs8NiHiddreS5fxN7mDCXzGc7L-DttpG8MONN6HGd96t8ebEB6LUoDX7i5Em-8nPMpULKVJBb8Lbl5apcMe5vjn5OcQH9-jt0a6BB9e7in6cX31_fJztbm9-XK53lSKsT5XzTgS1WpQxgztCEQpSbuOKMolZeXrQTPWUTmA4dw0jebQaMkVI2octDSanaKzQ29Z_jRDyuIhzLHsSYLRpuasZ31bXM3BpWJIKYIR22gnGfeCErEAF3-BiwW4eAFecuevcspmuTyco7Tuv-mLQ9r6An2ShYvTIsu9C9FE6ZVdRv6z4jfDVp9Y |
CitedBy_id | crossref_primary_10_1117_1_JEI_33_5_053056 crossref_primary_10_70693_itphss_v2i3_269 crossref_primary_10_4236_jcc_2024_1210001 crossref_primary_10_1016_j_conbuildmat_2024_139056 crossref_primary_10_3390_jimaging10100248 crossref_primary_10_1016_j_conbuildmat_2024_139031 |
Cites_doi | 10.1117/1.3115362 10.1109/BigData.2018.8622327 10.1109/CIS.2008.208 10.1007/978-3-319-10602-1_48 10.1109/CVPR.2017.195 10.48550/arXiv.2212.07784 10.1109/TPAMI.2016.2577031 10.1109/CVPR46437.2021.01283 10.1002/stc.2551 10.1109/CVPR46437.2021.01352 10.1109/TII.2021.3090036 10.1186/s12911-021-01691-8 10.3390/s22031215 10.1016/j.autcon.2022.104575 10.1111/mice.12622 10.1016/j.autcon.2018.07.008 10.48550/arXiv.1412.6980 10.1016/j.conbuildmat.2017.09.110 10.12677/CSA.2021.112037 10.48550/arXiv.2209.02976 10.48550/arXiv.1605.06409 10.1145/1360612.1360700 10.48550/arXiv.2203.16250 10.1007/978-3-319-46448-0_2 10.48550/arXiv.2207.02696 10.1109/TPAMI.2018.2858826 10.1016/J.OPTLASENG.2009.05.014 10.1016/0167-8655(95)00035-F 10.48550/arXiv.2004.10934 10.1038/s41598-022-19674-8 10.1080/10298436.2018.1485917 10.1155/2013/856876 10.1117/12.259128 10.3969/j.issn.1671-1637.2017.05.012 10.1109/TITS.2019.2910595 10.48550/arXiv.2205.15242 10.1109/CVPR46437.2021.01350 10.48550/arXiv.1804.02767 10.1109/TITS.2022.3142393 10.1080/10298436.2020.1714047 10.1109/iccsce.2018.8685007 10.1109/ICCV.2015.169 10.1016/j.autcon.2022.104383 10.1109/TPAMI.2018.2844175 10.1007/s11263-009-0275-4 10.1109/TITS.2019.2891167 |
ContentType | Journal Article |
Copyright | 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 2024 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 8FD FR3 KR7 |
DOI | 10.1080/10298436.2024.2308169 |
DatabaseName | CrossRef Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Technology Research Database Civil Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1477-268X |
ExternalDocumentID | 10_1080_10298436_2024_2308169 2308169 |
Genre | Research Article |
GrantInformation_xml | – fundername: Hunan Transportation Science and Technology Foundation grantid: 202104 – fundername: National Natural Science Foundation of China grantid: 52278468 funderid: 10.13039/501100001809 |
GroupedDBID | .7F .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DKSSO DU5 EAP EBS EST ESX E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION DGEBU 8FD ACUHS FR3 KR7 TASJS |
ID | FETCH-LOGICAL-c338t-5bb0c6decff96be0cca1770c14a133089d3371a9ef44f55d4e5da4c30cb9dafd3 |
ISSN | 1029-8436 |
IngestDate | Wed Aug 13 09:18:44 EDT 2025 Tue Jul 01 00:17:43 EDT 2025 Thu Apr 24 23:02:14 EDT 2025 Tue Jan 07 04:16:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-5bb0c6decff96be0cca1770c14a133089d3371a9ef44f55d4e5da4c30cb9dafd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3152438386 |
PQPubID | 53119 |
ParticipantIDs | proquest_journals_3152438386 crossref_citationtrail_10_1080_10298436_2024_2308169 informaworld_taylorfrancis_310_1080_10298436_2024_2308169 crossref_primary_10_1080_10298436_2024_2308169 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-31 |
PublicationDateYYYYMMDD | 2024-12-31 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | The international journal of pavement engineering |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis LLC |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
References | e_1_3_5_29_1 e_1_3_5_28_1 e_1_3_5_27_1 e_1_3_5_26_1 e_1_3_5_25_1 e_1_3_5_24_1 e_1_3_5_23_1 e_1_3_5_22_1 e_1_3_5_44_1 e_1_3_5_45_1 e_1_3_5_46_1 e_1_3_5_47_1 e_1_3_5_3_1 e_1_3_5_2_1 e_1_3_5_40_1 e_1_3_5_41_1 e_1_3_5_42_1 e_1_3_5_43_1 e_1_3_5_9_1 e_1_3_5_21_1 e_1_3_5_8_1 e_1_3_5_20_1 e_1_3_5_5_1 e_1_3_5_4_1 e_1_3_5_7_1 e_1_3_5_6_1 e_1_3_5_18_1 e_1_3_5_17_1 e_1_3_5_39_1 e_1_3_5_16_1 e_1_3_5_38_1 e_1_3_5_15_1 e_1_3_5_37_1 e_1_3_5_13_1 e_1_3_5_14_1 e_1_3_5_36_1 e_1_3_5_35_1 e_1_3_5_11_1 e_1_3_5_34_1 e_1_3_5_12_1 e_1_3_5_33_1 e_1_3_5_19_1 e_1_3_5_32_1 e_1_3_5_10_1 e_1_3_5_31_1 e_1_3_5_30_1 |
References_xml | – ident: e_1_3_5_16_1 doi: 10.1117/1.3115362 – ident: e_1_3_5_35_1 doi: 10.1109/BigData.2018.8622327 – ident: e_1_3_5_47_1 doi: 10.1109/CIS.2008.208 – ident: e_1_3_5_27_1 doi: 10.1007/978-3-319-10602-1_48 – ident: e_1_3_5_6_1 doi: 10.1109/CVPR.2017.195 – ident: e_1_3_5_34_1 doi: 10.48550/arXiv.2212.07784 – ident: e_1_3_5_38_1 doi: 10.1109/TPAMI.2016.2577031 – ident: e_1_3_5_40_1 doi: 10.1109/CVPR46437.2021.01283 – ident: e_1_3_5_22_1 doi: 10.1002/stc.2551 – ident: e_1_3_5_8_1 doi: 10.1109/CVPR46437.2021.01352 – ident: e_1_3_5_10_1 doi: 10.1109/TII.2021.3090036 – ident: e_1_3_5_39_1 doi: 10.1186/s12911-021-01691-8 – ident: e_1_3_5_43_1 doi: 10.3390/s22031215 – ident: e_1_3_5_32_1 doi: 10.1016/j.autcon.2022.104575 – ident: e_1_3_5_30_1 doi: 10.1111/mice.12622 – ident: e_1_3_5_36_1 doi: 10.1016/j.autcon.2018.07.008 – ident: e_1_3_5_24_1 doi: 10.48550/arXiv.1412.6980 – ident: e_1_3_5_17_1 doi: 10.1016/j.conbuildmat.2017.09.110 – ident: e_1_3_5_14_1 doi: 10.12677/CSA.2021.112037 – ident: e_1_3_5_26_1 doi: 10.48550/arXiv.2209.02976 – ident: e_1_3_5_7_1 doi: 10.48550/arXiv.1605.06409 – ident: e_1_3_5_19_1 doi: 10.1145/1360612.1360700 – ident: e_1_3_5_42_1 doi: 10.48550/arXiv.2203.16250 – ident: e_1_3_5_29_1 doi: 10.1007/978-3-319-46448-0_2 – ident: e_1_3_5_41_1 doi: 10.48550/arXiv.2207.02696 – ident: e_1_3_5_28_1 doi: 10.1109/TPAMI.2018.2858826 – ident: e_1_3_5_46_1 doi: 10.1016/J.OPTLASENG.2009.05.014 – ident: e_1_3_5_3_1 doi: 10.1016/0167-8655(95)00035-F – ident: e_1_3_5_4_1 doi: 10.48550/arXiv.2004.10934 – ident: e_1_3_5_18_1 doi: 10.1038/s41598-022-19674-8 – ident: e_1_3_5_25_1 doi: 10.1080/10298436.2018.1485917 – ident: e_1_3_5_2_1 doi: 10.1155/2013/856876 – ident: e_1_3_5_5_1 doi: 10.1117/12.259128 – ident: e_1_3_5_23_1 doi: 10.3969/j.issn.1671-1637.2017.05.012 – ident: e_1_3_5_44_1 doi: 10.1109/TITS.2019.2910595 – ident: e_1_3_5_9_1 doi: 10.48550/arXiv.2205.15242 – ident: e_1_3_5_21_1 doi: 10.1109/CVPR46437.2021.01350 – ident: e_1_3_5_37_1 doi: 10.48550/arXiv.1804.02767 – ident: e_1_3_5_31_1 doi: 10.1109/TITS.2022.3142393 – ident: e_1_3_5_11_1 doi: 10.1080/10298436.2020.1714047 – ident: e_1_3_5_45_1 doi: 10.1109/iccsce.2018.8685007 – ident: e_1_3_5_15_1 doi: 10.1109/ICCV.2015.169 – ident: e_1_3_5_33_1 doi: 10.1016/j.autcon.2022.104383 – ident: e_1_3_5_20_1 doi: 10.1109/TPAMI.2018.2844175 – ident: e_1_3_5_12_1 doi: 10.1007/s11263-009-0275-4 – ident: e_1_3_5_13_1 doi: 10.1109/TITS.2019.2891167 |
SSID | ssj0021103 |
Score | 2.4060786 |
Snippet | Leveraging the YOLOv7 object detection framework, this study introduces YOLOv7-CSP, a refined algorithm tailored for identifying asphalt pavement distress with... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Artificial neural networks Asphalt pavements Clustering CSPNext Data augmentation Datasets Highway maintenance Image processing Image processing systems Image quality Machine learning Object recognition Pavement distress detection; image recognition secondary labelling YOLOv7 |
Title | Multiple distresses detection for Asphalt Pavement using improved you Only Look Once Algorithm based on convolutional neural network |
URI | https://www.tandfonline.com/doi/abs/10.1080/10298436.2024.2308169 https://www.proquest.com/docview/3152438386 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaW7gUOiKdYWJAP3KqUJHYePlYLqFqxLIeuWLhEsePQSCWtdlOh5cwf4Z8yYzuP0pWWxyWtJrLjZL7Y48nMN4S8jJMSVqlceCIPlcd1wjwhZeCxXPmKCR1oU3nu5H08O-PH59H53t7PQdTSppET9f3avJJ_0SrIQK-YJfsXmu06BQH8B_3CETQMxz_S8UkbDVhUNudDX44L3WjVBRBOL9f4QRwMRcML3ow3xjdQGVcC2JpXq834tF5ejd9hzsMpvuXT5ZfVRdUsvo5xhSvwawKGprsbAY0iBab5MQHkQ-sWMVdtuRgHxBTrdgi6p0Ds_eRm8pvltXe00L38k5V_GIjmVnRc5d901bu9VxuzmFS1WuSroSsj7AgTHfjmO1VFBhMzhumknDnabCvjSeKFsSlN3M3mNo16iNqdRcJGVWKP2OEER4Lx8Glgi8b8xr_tztwi-yHsRMIR2Z_OXn_-2O3qwX6yWRxugG2aWOq_uvYSWwbQFj3ujjlgbJz5PXLXbU7o1CLtPtnT9QNyZ0BZ-ZD8aDFHe8zRDnMULkMd5miLOWowR1vMUcAcRcxRxBxFzNEOc9RgjkJPW5ijFnPUYe4ROXv7Zn4081wlD08xljZeJKWv4kKrshSx1D5MG0GS-CrgecDgsYiCsSTIhS45L6Oo4Doqcq6Yr6Qo8rJgj8moXtX6CaG8KDUvExlLgZlNYF_HaSpCrVkSwSl5QHj7eDPlaO6x2soyCxwbbquVDLWSOa0ckEnXbG15Xm5qIIa6yxoD3tLiNmM3tD1sFZ259xCbRCHyBqfx0__o-hm53b9Zh2TUXGz0czCbG_nCAfcXKh7EIg |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT9swFLYYHNgODBjT2GD4wDVVEjtOfKzQUMfawgEkblFsP5eKLq3a9ABnfvj8nAQV0MShJ0eKnmU7z37vOd_7HiGnIrXOShUykEWsAw4pC6RSUcAKHWomIQJfeW4wFL0bfnGb3K7kwiCsEmNoWxNF-LMaNzdeRreQONfGMuMMEQYxRyhzFgn5gWwlUqRYxYCFw-egy5m3GmQfywBl2iye_3Xzwj69YC99c1p7E3T-meh28DXy5L6zrFRHP77idVxvdrtkp_FQabdWqT2yAeU--bTCW_iFPA0aGCI14zrZBBbUQOVhXSV1k6HdxQz_xNOrwhOSVxQB9iM69ncYYOjDdEkvy8kD7Tsv3z1poN3JaDofV3d_KZpWQ11PiIlv9oYbEnJv-sYj1w_Izfmv67Ne0JRzCLSLg6sgUSrUwoC2VgoFodOdKE1DHfHCBcphJg1jaVRIsJzbJDEcElNwzUKtpCmsYV_JZjkt4Ruh3FjgNlVCSUxvcU6WyDIZA7A0ca_UIeHtR8x1w3WOJTcmedRQoraLnOMi580iH5LOs9isJvt4T0Cuakhe-VsWW5dEydk7sketOuXNuYEiSYzksZn4vkbXJ2S7dz3o5_3fwz8_yEd8VXNTHpHNar6EY-dHVeqn3yj_AMFeEYc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4SAgOLa-qFEp94JpVEjtOfFwBK9rClgNI3KLYHsOq2-xqN3uAc394PY6DoAhx4ORI0Vi2M_bMON98Q8iRyK2zUpWMZJXqiEPOIqlUErFKx5pJSMBXnrsYirNr_uMm69CE8wCrxBjatkQR_qzGzT01tkPEuTaVBWcIMEg5IpmLRMhlsiqQPByzOOLhY8zlrFuLsU9lhDJdEs9r3TwzT8_IS18c1t4CDT4S1Y29BZ787i0a1dMP_9E6vmtym-RD8E9pv1WoLbIE9TbZeMJauEP-XgQQIjWjNtUE5tRA40FdNXVzof35FP_D08vK05E3FOH1t3TkbzDA0PvJgv6qx_f03Pn47kkD7Y9vJ7NRc_eHomE11PWEiPiwM9yQkHnTNx63vkuuB6dXx2dRKOYQaRcFN1GmVKyFAW2tFApipzlJnsc64ZULk-NCGsbypJJgObdZZjhkpuKaxVpJU1nDPpGVelLDZ0K5scBtroSSmNziXCxRFDIFYHnmXqk9wrtvWOrAdI4FN8ZlEghRu0UucZHLsMh7pPcoNm2pPt4SkE8VpGz8HYttC6KU7A3Zg06bynBqoEiWInVsIb68o-tvZO3yZFCefx_-3Cfr-KYlpjwgK81sAV-dE9WoQ79N_gFTHhAr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+distresses+detection+for+Asphalt+Pavement+using+improved+you+Only+Look+Once+Algorithm+based+on+convolutional+neural+network&rft.jtitle=The+international+journal+of+pavement+engineering&rft.au=Dan%2C+Han-Cheng&rft.au=Yan%2C+Peng&rft.au=Tan%2C+Jiawei&rft.au=Zhou%2C+Yinchao&rft.date=2024-12-31&rft.pub=Taylor+%26+Francis&rft.issn=1029-8436&rft.eissn=1477-268X&rft.volume=25&rft.issue=1&rft_id=info:doi/10.1080%2F10298436.2024.2308169&rft.externalDocID=2308169 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8436&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8436&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8436&client=summon |