On the jackknife Kibria-Lukman estimator for the linear regression model
The linear regression model explores the relationship between the dependent variable and the independent variables. The ordinary least squared estimator (OLSE) is widely applicable to estimate the parameters of the model. However, OLSE suffered a breakdown when the independent variables are linearly...
Saved in:
Published in | Communications in statistics. Simulation and computation Vol. ahead-of-print; no. ahead-of-print; pp. 1 - 13 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
02.12.2023
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0361-0918 1532-4141 |
DOI | 10.1080/03610918.2021.2007401 |
Cover
Loading…
Abstract | The linear regression model explores the relationship between the dependent variable and the independent variables. The ordinary least squared estimator (OLSE) is widely applicable to estimate the parameters of the model. However, OLSE suffered a breakdown when the independent variables are linearly dependent- a condition called multicollinearity. The Kibria-Lukman estimator (KLE) was suggested as an alternative to the OLSE and some other estimators (ridge and Liu estimators). In this paper, we developed a Jackknifed version of the Kibria-Lukman estimator- the estimator is named the Jackknifed KL estimator (JKLE). We derived the statistical properties of the new estimator and compared it theoretically with the KLE and some other existing estimators. Theoretically, the result revealed that JKLE possesses the lowest MSE when compared with the KLE and some other existing estimators. Finally, JKLE reduced the bias and the mean squared error (MSE) of KLE in both simulation and real-life analysis. JKLE dominates other methods considered in this study. |
---|---|
AbstractList | The linear regression model explores the relationship between the dependent variable and the independent variables. The ordinary least squared estimator (OLSE) is widely applicable to estimate the parameters of the model. However, OLSE suffered a breakdown when the independent variables are linearly dependent- a condition called multicollinearity. The Kibria-Lukman estimator (KLE) was suggested as an alternative to the OLSE and some other estimators (ridge and Liu estimators). In this paper, we developed a Jackknifed version of the Kibria-Lukman estimator- the estimator is named the Jackknifed KL estimator (JKLE). We derived the statistical properties of the new estimator and compared it theoretically with the KLE and some other existing estimators. Theoretically, the result revealed that JKLE possesses the lowest MSE when compared with the KLE and some other existing estimators. Finally, JKLE reduced the bias and the mean squared error (MSE) of KLE in both simulation and real-life analysis. JKLE dominates other methods considered in this study. |
Author | Oranye, Henrietta Ebele Ugwuowo, Fidelis Ifeanyi Arum, Kingsley Chinedu |
Author_xml | – sequence: 1 givenname: Fidelis Ifeanyi orcidid: 0000-0002-9142-7135 surname: Ugwuowo fullname: Ugwuowo, Fidelis Ifeanyi organization: Department of Statistics, University of Nigeria Nsukka – sequence: 2 givenname: Henrietta Ebele orcidid: 0000-0003-2283-4244 surname: Oranye fullname: Oranye, Henrietta Ebele organization: Department of Statistics, University of Nigeria Nsukka – sequence: 3 givenname: Kingsley Chinedu orcidid: 0000-0001-5754-5536 surname: Arum fullname: Arum, Kingsley Chinedu organization: Department of Statistics, University of Nigeria Nsukka |
BookMark | eNqFkMFOAyEURYmpiW31E0wmcT31MTAtxI2mUWts0o2uyesMKO0MVJjG9O9lUt240AWwOffy3hmRgfNOE3JJYUJBwDWwKQVJxaSAgqYLZhzoCRnSkhU5p5wOyLBn8h46I6MYNwDABBdDsli5rHvX2Qar7dZZo7Nnuw4W8-V-26LLdOxsi50PmUmnJxvrNIYs6LegY7TeZa2vdXNOTg02UV98v2Py-nD_Ml_ky9Xj0_xumVeMiS4v0dRYVJoWQoLkdVlLAyVjcro2QDkWvBKSIkVcFyj5TOsawdQUpSjB6IKNydWxdxf8xz6NpzZ-H1z6UqXKadpTzHiibo5UFXyMQRtV2Q67NG0X0DaKgurVqR91qlenvtWldPkrvQvJQjj8m7s95qxLtlr89KGpVYeHxgcT0FU2KvZ3xRf4xIar |
CitedBy_id | crossref_primary_10_1016_j_sciaf_2022_e01386 crossref_primary_10_1016_j_sciaf_2022_e01441 crossref_primary_10_1002_cem_3522 crossref_primary_10_1080_23322039_2024_2388234 crossref_primary_10_3390_sym15122107 crossref_primary_10_53570_jnt_1139885 crossref_primary_10_1038_s41598_023_36053_z crossref_primary_10_3390_math11234795 crossref_primary_10_1016_j_sciaf_2023_e01566 crossref_primary_10_46481_jnsps_2022_664 crossref_primary_10_1080_03610926_2023_2273206 |
Cites_doi | 10.1002/cpe.6222 10.1080/03610929308831027 10.1155/2019/6342702 10.1080/02664763.2019.1707485 10.1080/03610920701386877 10.1007/s00362-010-0334-5 10.1155/2021/5545356 10.1007/s40995-019-00769-3 10.1111/j.2517-6161.1976.tb01588.x 10.2307/2332914 10.29252/jirss.19.1.21 10.22237/jmasm/1462075860 10.1080/03610920902807911 10.1155/2020/9758378 10.1081/STA-120019959 10.1002/cem.3125 10.1080/00401706.1970.10488634 10.1007/s00362-010-0349-y 10.1155/2020/9574304 10.1080/03610926.2012.729640 10.1081/SAC-120017499 10.1007/BF02924687 10.1002/cem.3054 |
ContentType | Journal Article |
Copyright | 2021 Taylor & Francis Group, LLC 2021 2021 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2021 Taylor & Francis Group, LLC 2021 – notice: 2021 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/03610918.2021.2007401 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1532-4141 |
EndPage | 13 |
ExternalDocumentID | 10_1080_03610918_2021_2007401 2007401 |
Genre | Research Article |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM LJTGL M4Z NA5 NY~ O9- P2P QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c338t-5afda2ce1289094d5d9f053396bf014a24c891a1aab2a947eeda0fd1a9850fe23 |
ISSN | 0361-0918 |
IngestDate | Wed Aug 13 07:35:26 EDT 2025 Thu Apr 24 23:01:03 EDT 2025 Tue Jul 01 02:09:43 EDT 2025 Wed Dec 25 09:06:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | ahead-of-print |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-5afda2ce1289094d5d9f053396bf014a24c891a1aab2a947eeda0fd1a9850fe23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2283-4244 0000-0002-9142-7135 0000-0001-5754-5536 |
PQID | 2896036874 |
PQPubID | 186203 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2896036874 crossref_citationtrail_10_1080_03610918_2021_2007401 informaworld_taylorfrancis_310_1080_03610918_2021_2007401 crossref_primary_10_1080_03610918_2021_2007401 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-02 |
PublicationDateYYYYMMDD | 2023-12-02 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in statistics. Simulation and computation |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Farebrother R. W. (e_1_3_1_5_1) 1976; 38 e_1_3_1_22_1 e_1_3_1_23_1 e_1_3_1_24_1 e_1_3_1_25_1 e_1_3_1_9_1 Singh B. (e_1_3_1_26_1) 1986; 48 e_1_3_1_8_1 e_1_3_1_21_1 e_1_3_1_4_1 e_1_3_1_6_1 Lukman A. F. (e_1_3_1_15_1) 2017; 46 e_1_3_1_27_1 e_1_3_1_3_1 e_1_3_1_28_1 e_1_3_1_2_1 Hussein Y. (e_1_3_1_7_1) 2012; 3 Malinvard E. (e_1_3_1_20_1) 1980 e_1_3_1_10_1 e_1_3_1_14_1 e_1_3_1_13_1 e_1_3_1_12_1 e_1_3_1_11_1 e_1_3_1_18_1 e_1_3_1_17_1 e_1_3_1_16_1 e_1_3_1_19_1 |
References_xml | – ident: e_1_3_1_14_1 doi: 10.1002/cpe.6222 – ident: e_1_3_1_12_1 doi: 10.1080/03610929308831027 – ident: e_1_3_1_19_1 doi: 10.1155/2019/6342702 – ident: e_1_3_1_23_1 doi: 10.1080/02664763.2019.1707485 – ident: e_1_3_1_22_1 doi: 10.1080/03610920701386877 – ident: e_1_3_1_2_1 doi: 10.1007/s00362-010-0334-5 – ident: e_1_3_1_17_1 doi: 10.1155/2021/5545356 – volume: 3 start-page: 79 issue: 3 year: 2012 ident: e_1_3_1_7_1 article-title: Generalized two stage ridge regression estimators TR for multicollinearity and autocorrelated errors publication-title: Canadian Journal on Science and Engineering Mathematics – ident: e_1_3_1_25_1 doi: 10.1007/s40995-019-00769-3 – volume: 38 start-page: 248 year: 1976 ident: e_1_3_1_5_1 article-title: Further results on the mean square error of ridge regression publication-title: Journal of the Royal Statistical Society B doi: 10.1111/j.2517-6161.1976.tb01588.x – ident: e_1_3_1_24_1 doi: 10.2307/2332914 – ident: e_1_3_1_4_1 doi: 10.29252/jirss.19.1.21 – ident: e_1_3_1_10_1 doi: 10.22237/jmasm/1462075860 – ident: e_1_3_1_28_1 doi: 10.1080/03610920902807911 – ident: e_1_3_1_9_1 doi: 10.1155/2020/9758378 – ident: e_1_3_1_13_1 doi: 10.1081/STA-120019959 – ident: e_1_3_1_18_1 doi: 10.1002/cem.3125 – volume: 46 start-page: 953 issue: 5 year: 2017 ident: e_1_3_1_15_1 article-title: Review and classifications of the ridge parameter estimation techniques publication-title: Hacettepe Journal of Mathematics and Statistics – volume-title: Statistical: Methods of Econometrics year: 1980 ident: e_1_3_1_20_1 – ident: e_1_3_1_6_1 doi: 10.1080/00401706.1970.10488634 – ident: e_1_3_1_11_1 doi: 10.1007/s00362-010-0349-y – ident: e_1_3_1_16_1 doi: 10.1155/2020/9574304 – ident: e_1_3_1_21_1 doi: 10.1080/03610926.2012.729640 – ident: e_1_3_1_8_1 doi: 10.1081/SAC-120017499 – volume: 48 start-page: 342 year: 1986 ident: e_1_3_1_26_1 article-title: An almost unbiased ridge estimator publication-title: Sankhya Series B – ident: e_1_3_1_27_1 doi: 10.1007/BF02924687 – ident: e_1_3_1_3_1 doi: 10.1002/cem.3054 |
SSID | ssj0003848 |
Score | 2.3854716 |
Snippet | The linear regression model explores the relationship between the dependent variable and the independent variables. The ordinary least squared estimator (OLSE)... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Dependent variables Estimators Independent variables Jackknifed KL estimator linear regression model MSE multicollinearity OLS Regression analysis Regression models Statistical analysis |
Title | On the jackknife Kibria-Lukman estimator for the linear regression model |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610918.2021.2007401 https://www.proquest.com/docview/2896036874 |
Volume | ahead-of-print |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb5tAFB656SU9dHFbNW1acegNjQXMsB2rKpG7JDnElnJDA8ykrhMc2aAo-Un9lX1vBsZYtpQuF2QxDMbvfX4bbyHkY5FK5pUypErxmHIZl1QA52lelH6Qc5Z7EouTT06j8ZR_vQgvBoNfvaylps5Hxf3OupJ_4SqcA75ilexfcNbeFE7AZ-AvHIHDcPwjHp-ZHMWfopjPMUfF_YYJ_IJ-b-YYmscGGtfoVNtcQrQpxdJdykuT_lqZSTh9C3WjYkQny2LNkWnnPHLPZ9ftvK-uIO6m2XyZP728bRa3OgB7jC20Ziv3i5IgcmY2ngvq8U4anVeBp17Xwj3K5VUPfGb4Ms5bWWmh9QOeu2z6EYqA6WyPtT872RoW0pNxLPIpmCxGBMtOBgeU-6YfViekBaimki4UxXBn3QPmjgUjiv2eTjflrlvaok2vZNhy3sc8v0BHDHBI4Vo92qTFduUReRyAS4LTMph3arU-S_SkNvuDumox7OO-6ws27KCNLrlbVoE2dSbPydPWR3E-GcC9IANZDcmzbv6H06qDIXlyYnv-roZk_9zi5CUZn1UOrDkWms4GNB0LTQeeSF9poOmsoeloaL4i0-OjyecxbYd20IKxpKahUKUICunjG-yUl2GZKqz3TqNcgTsuAl4kqS98IfJApDwGG014qvRFmoSekgF7TfaqRSXfEIcpFXIluCjAR2FJIFB-pDIPVRyqKGEHhHckzIq2oz0OVrnK_K7xbUv5DCmftZQ_ICO77ca0dHloQ9rnT1ZrQCuD5Yw9sPewY2bWSo5VBqSJ4Ook5m__49bvyP7633ZI9uplI9-DhVznHzQ0fwO8Lbje |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1ROJQegG6LSkvBh169TWI7iY-oKlrK7nIBiZs1cexKXQjVkr3019fjJCtohThwtsfyx3g8k8y8B_DFaieS2inuvSy4dEXNMZw8r2ydZpUUVeKoOHk2zydX8se1un5QC0NplRRD-w4oItpqutz0MXpIifsarC7hWVJmVhZjPKKVewVbSucFsRiIZL62xqKMDFokwklmqOJ5aphH79Mj9NL_rHV8gk53wQ6T7zJPFuNVW43tn39wHV-2uj3Y6T1UdtKp1FvYcM0Idgf2B9YbgxG8ma0RX-9HsE1eawf6_A4mFw0LbewX2sWCkmfYOVUWIJ-uFrfYMEL2uKVon4V1x540T1yypfvZ5eU2LFL0vIer0--X3ya8p2zgNsS6LVfoa8ysS-n_pZa1qrWnal-dVz4EY5hJW-oUU8QqQy2L8EJj4usUdakS7zKxD5vNXeM-ABPeK-lRog0eqigzJO3RrlK-UD4vxQHI4aCM7fHMiVbjxqQD7Gm_kYY20vQbeQDjtdjvDtDjOQH9UAtMG7-k-I72xIhnZA8HlTG9bbg3YWvy0Lss5McXDH0MryeXs6mZns3PP8F2aBIxyyY7hM12uXKfg6_UVkfxMvwFEFEEKw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61VEL0UNqlVSnQ-sDVSxI7Dx8RdLUtsOVQJG7W2LGRuiVFu9lLf309TrIqrRAHzvZYfozHM8k33wAcWuVEUrucey9LLl1Zcwwnz42t08xIYRJHyckXs2J6Jb9e5wOacNnDKimG9h1RRLTVdLnvaj8g4o6C0SU6SwJmZTHEo6pyz-FFQeThlMWRzNbGWFSxgBaJcJIZkngeGube83SPvPQ_Yx1foMk2mGHuHfBkPl61Zmx__0Pr-KTFvYZXvX_KjjuFegPPXDOC7aH2A-tNwQheXqz5Xpcj2CKftaN83oHpt4aFNvYD7XxO0Bl2RnkFyM9X81tsGPF63FKsz8KyY0-aJi7Ywt10qNyGxQI9b-Fq8vn7yZT3BRu4DZFuy3P0NWbWpfT3Usk6r5WnXF9VGB9CMcykrVSKKaLJUMkyvM-Y-DpFVeWJd5l4BxvNr8a9Bya8z6VHiTb4p6LKkHRHOZP7MvdFJXZBDuekbc9mTkU1fup0ID3tN1LTRup-I3dhvBa76-g8HhNQfyuBbuN3FN8VPdHiEdn9QWN0bxmWOmxNEXpXpfzwhKE_webl6USff5md7cFWaBERYpPtw0a7WLmD4Ci15mO8Cn8AyiICzw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+jackknife+Kibria-Lukman+estimator+for+the+linear+regression+model&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Ugwuowo%2C+Fidelis+Ifeanyi&rft.au=Oranye%2C+Henrietta+Ebele&rft.au=Arum%2C+Kingsley+Chinedu&rft.date=2023-12-02&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=ahead-of-print&rft.issue=ahead-of-print&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1080%2F03610918.2021.2007401&rft.externalDocID=2007401 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon |