On the jackknife Kibria-Lukman estimator for the linear regression model

The linear regression model explores the relationship between the dependent variable and the independent variables. The ordinary least squared estimator (OLSE) is widely applicable to estimate the parameters of the model. However, OLSE suffered a breakdown when the independent variables are linearly...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. ahead-of-print; no. ahead-of-print; pp. 1 - 13
Main Authors Ugwuowo, Fidelis Ifeanyi, Oranye, Henrietta Ebele, Arum, Kingsley Chinedu
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.12.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0361-0918
1532-4141
DOI10.1080/03610918.2021.2007401

Cover

Loading…
Abstract The linear regression model explores the relationship between the dependent variable and the independent variables. The ordinary least squared estimator (OLSE) is widely applicable to estimate the parameters of the model. However, OLSE suffered a breakdown when the independent variables are linearly dependent- a condition called multicollinearity. The Kibria-Lukman estimator (KLE) was suggested as an alternative to the OLSE and some other estimators (ridge and Liu estimators). In this paper, we developed a Jackknifed version of the Kibria-Lukman estimator- the estimator is named the Jackknifed KL estimator (JKLE). We derived the statistical properties of the new estimator and compared it theoretically with the KLE and some other existing estimators. Theoretically, the result revealed that JKLE possesses the lowest MSE when compared with the KLE and some other existing estimators. Finally, JKLE reduced the bias and the mean squared error (MSE) of KLE in both simulation and real-life analysis. JKLE dominates other methods considered in this study.
AbstractList The linear regression model explores the relationship between the dependent variable and the independent variables. The ordinary least squared estimator (OLSE) is widely applicable to estimate the parameters of the model. However, OLSE suffered a breakdown when the independent variables are linearly dependent- a condition called multicollinearity. The Kibria-Lukman estimator (KLE) was suggested as an alternative to the OLSE and some other estimators (ridge and Liu estimators). In this paper, we developed a Jackknifed version of the Kibria-Lukman estimator- the estimator is named the Jackknifed KL estimator (JKLE). We derived the statistical properties of the new estimator and compared it theoretically with the KLE and some other existing estimators. Theoretically, the result revealed that JKLE possesses the lowest MSE when compared with the KLE and some other existing estimators. Finally, JKLE reduced the bias and the mean squared error (MSE) of KLE in both simulation and real-life analysis. JKLE dominates other methods considered in this study.
Author Oranye, Henrietta Ebele
Ugwuowo, Fidelis Ifeanyi
Arum, Kingsley Chinedu
Author_xml – sequence: 1
  givenname: Fidelis Ifeanyi
  orcidid: 0000-0002-9142-7135
  surname: Ugwuowo
  fullname: Ugwuowo, Fidelis Ifeanyi
  organization: Department of Statistics, University of Nigeria Nsukka
– sequence: 2
  givenname: Henrietta Ebele
  orcidid: 0000-0003-2283-4244
  surname: Oranye
  fullname: Oranye, Henrietta Ebele
  organization: Department of Statistics, University of Nigeria Nsukka
– sequence: 3
  givenname: Kingsley Chinedu
  orcidid: 0000-0001-5754-5536
  surname: Arum
  fullname: Arum, Kingsley Chinedu
  organization: Department of Statistics, University of Nigeria Nsukka
BookMark eNqFkMFOAyEURYmpiW31E0wmcT31MTAtxI2mUWts0o2uyesMKO0MVJjG9O9lUt240AWwOffy3hmRgfNOE3JJYUJBwDWwKQVJxaSAgqYLZhzoCRnSkhU5p5wOyLBn8h46I6MYNwDABBdDsli5rHvX2Qar7dZZo7Nnuw4W8-V-26LLdOxsi50PmUmnJxvrNIYs6LegY7TeZa2vdXNOTg02UV98v2Py-nD_Ml_ky9Xj0_xumVeMiS4v0dRYVJoWQoLkdVlLAyVjcro2QDkWvBKSIkVcFyj5TOsawdQUpSjB6IKNydWxdxf8xz6NpzZ-H1z6UqXKadpTzHiibo5UFXyMQRtV2Q67NG0X0DaKgurVqR91qlenvtWldPkrvQvJQjj8m7s95qxLtlr89KGpVYeHxgcT0FU2KvZ3xRf4xIar
CitedBy_id crossref_primary_10_1016_j_sciaf_2022_e01386
crossref_primary_10_1016_j_sciaf_2022_e01441
crossref_primary_10_1002_cem_3522
crossref_primary_10_1080_23322039_2024_2388234
crossref_primary_10_3390_sym15122107
crossref_primary_10_53570_jnt_1139885
crossref_primary_10_1038_s41598_023_36053_z
crossref_primary_10_3390_math11234795
crossref_primary_10_1016_j_sciaf_2023_e01566
crossref_primary_10_46481_jnsps_2022_664
crossref_primary_10_1080_03610926_2023_2273206
Cites_doi 10.1002/cpe.6222
10.1080/03610929308831027
10.1155/2019/6342702
10.1080/02664763.2019.1707485
10.1080/03610920701386877
10.1007/s00362-010-0334-5
10.1155/2021/5545356
10.1007/s40995-019-00769-3
10.1111/j.2517-6161.1976.tb01588.x
10.2307/2332914
10.29252/jirss.19.1.21
10.22237/jmasm/1462075860
10.1080/03610920902807911
10.1155/2020/9758378
10.1081/STA-120019959
10.1002/cem.3125
10.1080/00401706.1970.10488634
10.1007/s00362-010-0349-y
10.1155/2020/9574304
10.1080/03610926.2012.729640
10.1081/SAC-120017499
10.1007/BF02924687
10.1002/cem.3054
ContentType Journal Article
Copyright 2021 Taylor & Francis Group, LLC 2021
2021 Taylor & Francis Group, LLC
Copyright_xml – notice: 2021 Taylor & Francis Group, LLC 2021
– notice: 2021 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610918.2021.2007401
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 13
ExternalDocumentID 10_1080_03610918_2021_2007401
2007401
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-5afda2ce1289094d5d9f053396bf014a24c891a1aab2a947eeda0fd1a9850fe23
ISSN 0361-0918
IngestDate Wed Aug 13 07:35:26 EDT 2025
Thu Apr 24 23:01:03 EDT 2025
Tue Jul 01 02:09:43 EDT 2025
Wed Dec 25 09:06:45 EST 2024
IsPeerReviewed true
IsScholarly true
Issue ahead-of-print
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-5afda2ce1289094d5d9f053396bf014a24c891a1aab2a947eeda0fd1a9850fe23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2283-4244
0000-0002-9142-7135
0000-0001-5754-5536
PQID 2896036874
PQPubID 186203
PageCount 13
ParticipantIDs proquest_journals_2896036874
crossref_citationtrail_10_1080_03610918_2021_2007401
informaworld_taylorfrancis_310_1080_03610918_2021_2007401
crossref_primary_10_1080_03610918_2021_2007401
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-02
PublicationDateYYYYMMDD 2023-12-02
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-02
  day: 02
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Farebrother R. W. (e_1_3_1_5_1) 1976; 38
e_1_3_1_22_1
e_1_3_1_23_1
e_1_3_1_24_1
e_1_3_1_25_1
e_1_3_1_9_1
Singh B. (e_1_3_1_26_1) 1986; 48
e_1_3_1_8_1
e_1_3_1_21_1
e_1_3_1_4_1
e_1_3_1_6_1
Lukman A. F. (e_1_3_1_15_1) 2017; 46
e_1_3_1_27_1
e_1_3_1_3_1
e_1_3_1_28_1
e_1_3_1_2_1
Hussein Y. (e_1_3_1_7_1) 2012; 3
Malinvard E. (e_1_3_1_20_1) 1980
e_1_3_1_10_1
e_1_3_1_14_1
e_1_3_1_13_1
e_1_3_1_12_1
e_1_3_1_11_1
e_1_3_1_18_1
e_1_3_1_17_1
e_1_3_1_16_1
e_1_3_1_19_1
References_xml – ident: e_1_3_1_14_1
  doi: 10.1002/cpe.6222
– ident: e_1_3_1_12_1
  doi: 10.1080/03610929308831027
– ident: e_1_3_1_19_1
  doi: 10.1155/2019/6342702
– ident: e_1_3_1_23_1
  doi: 10.1080/02664763.2019.1707485
– ident: e_1_3_1_22_1
  doi: 10.1080/03610920701386877
– ident: e_1_3_1_2_1
  doi: 10.1007/s00362-010-0334-5
– ident: e_1_3_1_17_1
  doi: 10.1155/2021/5545356
– volume: 3
  start-page: 79
  issue: 3
  year: 2012
  ident: e_1_3_1_7_1
  article-title: Generalized two stage ridge regression estimators TR for multicollinearity and autocorrelated errors
  publication-title: Canadian Journal on Science and Engineering Mathematics
– ident: e_1_3_1_25_1
  doi: 10.1007/s40995-019-00769-3
– volume: 38
  start-page: 248
  year: 1976
  ident: e_1_3_1_5_1
  article-title: Further results on the mean square error of ridge regression
  publication-title: Journal of the Royal Statistical Society B
  doi: 10.1111/j.2517-6161.1976.tb01588.x
– ident: e_1_3_1_24_1
  doi: 10.2307/2332914
– ident: e_1_3_1_4_1
  doi: 10.29252/jirss.19.1.21
– ident: e_1_3_1_10_1
  doi: 10.22237/jmasm/1462075860
– ident: e_1_3_1_28_1
  doi: 10.1080/03610920902807911
– ident: e_1_3_1_9_1
  doi: 10.1155/2020/9758378
– ident: e_1_3_1_13_1
  doi: 10.1081/STA-120019959
– ident: e_1_3_1_18_1
  doi: 10.1002/cem.3125
– volume: 46
  start-page: 953
  issue: 5
  year: 2017
  ident: e_1_3_1_15_1
  article-title: Review and classifications of the ridge parameter estimation techniques
  publication-title: Hacettepe Journal of Mathematics and Statistics
– volume-title: Statistical: Methods of Econometrics
  year: 1980
  ident: e_1_3_1_20_1
– ident: e_1_3_1_6_1
  doi: 10.1080/00401706.1970.10488634
– ident: e_1_3_1_11_1
  doi: 10.1007/s00362-010-0349-y
– ident: e_1_3_1_16_1
  doi: 10.1155/2020/9574304
– ident: e_1_3_1_21_1
  doi: 10.1080/03610926.2012.729640
– ident: e_1_3_1_8_1
  doi: 10.1081/SAC-120017499
– volume: 48
  start-page: 342
  year: 1986
  ident: e_1_3_1_26_1
  article-title: An almost unbiased ridge estimator
  publication-title: Sankhya Series B
– ident: e_1_3_1_27_1
  doi: 10.1007/BF02924687
– ident: e_1_3_1_3_1
  doi: 10.1002/cem.3054
SSID ssj0003848
Score 2.3854716
Snippet The linear regression model explores the relationship between the dependent variable and the independent variables. The ordinary least squared estimator (OLSE)...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Dependent variables
Estimators
Independent variables
Jackknifed KL estimator
linear regression model
MSE
multicollinearity
OLS
Regression analysis
Regression models
Statistical analysis
Title On the jackknife Kibria-Lukman estimator for the linear regression model
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2021.2007401
https://www.proquest.com/docview/2896036874
Volume ahead-of-print
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb5tAFB656SU9dHFbNW1acegNjQXMsB2rKpG7JDnElnJDA8ykrhMc2aAo-Un9lX1vBsZYtpQuF2QxDMbvfX4bbyHkY5FK5pUypErxmHIZl1QA52lelH6Qc5Z7EouTT06j8ZR_vQgvBoNfvaylps5Hxf3OupJ_4SqcA75ilexfcNbeFE7AZ-AvHIHDcPwjHp-ZHMWfopjPMUfF_YYJ_IJ-b-YYmscGGtfoVNtcQrQpxdJdykuT_lqZSTh9C3WjYkQny2LNkWnnPHLPZ9ftvK-uIO6m2XyZP728bRa3OgB7jC20Ziv3i5IgcmY2ngvq8U4anVeBp17Xwj3K5VUPfGb4Ms5bWWmh9QOeu2z6EYqA6WyPtT872RoW0pNxLPIpmCxGBMtOBgeU-6YfViekBaimki4UxXBn3QPmjgUjiv2eTjflrlvaok2vZNhy3sc8v0BHDHBI4Vo92qTFduUReRyAS4LTMph3arU-S_SkNvuDumox7OO-6ws27KCNLrlbVoE2dSbPydPWR3E-GcC9IANZDcmzbv6H06qDIXlyYnv-roZk_9zi5CUZn1UOrDkWms4GNB0LTQeeSF9poOmsoeloaL4i0-OjyecxbYd20IKxpKahUKUICunjG-yUl2GZKqz3TqNcgTsuAl4kqS98IfJApDwGG014qvRFmoSekgF7TfaqRSXfEIcpFXIluCjAR2FJIFB-pDIPVRyqKGEHhHckzIq2oz0OVrnK_K7xbUv5DCmftZQ_ICO77ca0dHloQ9rnT1ZrQCuD5Yw9sPewY2bWSo5VBqSJ4Ook5m__49bvyP7633ZI9uplI9-DhVznHzQ0fwO8Lbje
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1ROJQegG6LSkvBh169TWI7iY-oKlrK7nIBiZs1cexKXQjVkr3019fjJCtohThwtsfyx3g8k8y8B_DFaieS2inuvSy4dEXNMZw8r2ydZpUUVeKoOHk2zydX8se1un5QC0NplRRD-w4oItpqutz0MXpIifsarC7hWVJmVhZjPKKVewVbSucFsRiIZL62xqKMDFokwklmqOJ5aphH79Mj9NL_rHV8gk53wQ6T7zJPFuNVW43tn39wHV-2uj3Y6T1UdtKp1FvYcM0Idgf2B9YbgxG8ma0RX-9HsE1eawf6_A4mFw0LbewX2sWCkmfYOVUWIJ-uFrfYMEL2uKVon4V1x540T1yypfvZ5eU2LFL0vIer0--X3ya8p2zgNsS6LVfoa8ysS-n_pZa1qrWnal-dVz4EY5hJW-oUU8QqQy2L8EJj4usUdakS7zKxD5vNXeM-ABPeK-lRog0eqigzJO3RrlK-UD4vxQHI4aCM7fHMiVbjxqQD7Gm_kYY20vQbeQDjtdjvDtDjOQH9UAtMG7-k-I72xIhnZA8HlTG9bbg3YWvy0Lss5McXDH0MryeXs6mZns3PP8F2aBIxyyY7hM12uXKfg6_UVkfxMvwFEFEEKw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61VEL0UNqlVSnQ-sDVSxI7Dx8RdLUtsOVQJG7W2LGRuiVFu9lLf309TrIqrRAHzvZYfozHM8k33wAcWuVEUrucey9LLl1Zcwwnz42t08xIYRJHyckXs2J6Jb9e5wOacNnDKimG9h1RRLTVdLnvaj8g4o6C0SU6SwJmZTHEo6pyz-FFQeThlMWRzNbGWFSxgBaJcJIZkngeGube83SPvPQ_Yx1foMk2mGHuHfBkPl61Zmx__0Pr-KTFvYZXvX_KjjuFegPPXDOC7aH2A-tNwQheXqz5Xpcj2CKftaN83oHpt4aFNvYD7XxO0Bl2RnkFyM9X81tsGPF63FKsz8KyY0-aJi7Ywt10qNyGxQI9b-Fq8vn7yZT3BRu4DZFuy3P0NWbWpfT3Usk6r5WnXF9VGB9CMcykrVSKKaLJUMkyvM-Y-DpFVeWJd5l4BxvNr8a9Bya8z6VHiTb4p6LKkHRHOZP7MvdFJXZBDuekbc9mTkU1fup0ID3tN1LTRup-I3dhvBa76-g8HhNQfyuBbuN3FN8VPdHiEdn9QWN0bxmWOmxNEXpXpfzwhKE_webl6USff5md7cFWaBERYpPtw0a7WLmD4Ci15mO8Cn8AyiICzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+jackknife+Kibria-Lukman+estimator+for+the+linear+regression+model&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Ugwuowo%2C+Fidelis+Ifeanyi&rft.au=Oranye%2C+Henrietta+Ebele&rft.au=Arum%2C+Kingsley+Chinedu&rft.date=2023-12-02&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=ahead-of-print&rft.issue=ahead-of-print&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1080%2F03610918.2021.2007401&rft.externalDocID=2007401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon