Comparison of generalized estimating equations and Quasi-Least Squares regression methods in terms of efficiency with a simulation study
Generalized Estimating Equations (GEE) is used to analyze repeated measurements taken from subjects at equal time intervals and is applicable in presence of missing data. In this study, we aimed to introduce Quasi-Least Squares Regression (QLS), which is an extension of GEE and applicable when time...
Saved in:
Published in | Communications in statistics. Simulation and computation Vol. 52; no. 3; pp. 1015 - 1025 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
04.03.2023
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0361-0918 1532-4141 |
DOI | 10.1080/03610918.2021.1872630 |
Cover
Abstract | Generalized Estimating Equations (GEE) is used to analyze repeated measurements taken from subjects at equal time intervals and is applicable in presence of missing data. In this study, we aimed to introduce Quasi-Least Squares Regression (QLS), which is an extension of GEE and applicable when time intervals are unequal, and compare model performances under different scenarios in terms of efficiency using a comprehensive simulation study. The simulated datasets were analyzed using GEE and QLS, and the results were evaluated. In the simulation study, we produced 9 datasets with 1000 replicates using 3 correlation structures and 3 different correlation values . We obtained 36 scenarios by using 4 working correlation structures on these datasets. According to the results, in general, QLS has superiority over GEE in terms of the efficiency of estimations. In GEE method, a convergence problem was encountered for "Tri-diagonal" working correlation structure. However, in QLS method, there was no problem in convergence for this correlation structure. In order to make better comparisons of GEE and QLS results, Markov working correlation structure should be applicable to GEE as well as QLS. QLS gains an advantage over GEE when repeated measurements are collected at unequal time intervals and there are missing measurements. |
---|---|
AbstractList | Generalized Estimating Equations (GEE) is used to analyze repeated measurements taken from subjects at equal time intervals and is applicable in presence of missing data. In this study, we aimed to introduce Quasi-Least Squares Regression (QLS), which is an extension of GEE and applicable when time intervals are unequal, and compare model performances under different scenarios in terms of efficiency using a comprehensive simulation study. The simulated datasets were analyzed using GEE and QLS, and the results were evaluated. In the simulation study, we produced 9 datasets with 1000 replicates using 3 correlation structures and 3 different correlation values . We obtained 36 scenarios by using 4 working correlation structures on these datasets. According to the results, in general, QLS has superiority over GEE in terms of the efficiency of estimations. In GEE method, a convergence problem was encountered for "Tri-diagonal" working correlation structure. However, in QLS method, there was no problem in convergence for this correlation structure. In order to make better comparisons of GEE and QLS results, Markov working correlation structure should be applicable to GEE as well as QLS. QLS gains an advantage over GEE when repeated measurements are collected at unequal time intervals and there are missing measurements. |
Author | Asar, Erdoğan Karabulut, Erdem |
Author_xml | – sequence: 1 givenname: Erdoğan orcidid: 0000-0002-6987-7068 surname: Asar fullname: Asar, Erdoğan organization: Department of Statistical Consultancy, Turkish Statistical Institute – sequence: 2 givenname: Erdem orcidid: 0000-0002-7811-8215 surname: Karabulut fullname: Karabulut, Erdem organization: Department of Biostatistics, School of Medicine, Hacettepe University |
BookMark | eNqFkMuKFDEUhoOMYM_oIwgB19UmlbqkcKM0XgYaRNR1SCUnPRmqkp6cFEP7BD62qemZjQtdnUC-_8_Jd0kuQgxAyGvOtpxJ9paJjrOBy23Nar7lsq87wZ6RDW9FXTW84RdkszLVCr0gl4i3jDEhG7khv3dxPurkMQYaHT1AgKQn_wssBcx-1tmHA4W7pRxiQKqDpd8Wjb7ag8ZMv5ebBEgTHMrAwtAZ8k20SH2gGdKMay84542HYE703ucbqin6eZkeSinmxZ5ekudOTwivHucV-fnp44_dl2r_9fP17sO-MkLIXLWylY2xvOtNZ6RrR1P3RkAvGtM2ZrSN0b3gMIwjq8FpqYeWt8xyCwMfumYUV-TNufeY4t1S_qhu45JCeVLVvWQd72vBCvXuTJkUERM4ZXx-2DYn7SfFmVrVqyf1alWvHtWXdPtX-piKynT6b-79OeeDi2nW9zFNVmV9mmJySQfjUYl_V_wBvh2fvw |
CitedBy_id | crossref_primary_10_1038_s41598_025_88304_w |
Cites_doi | 10.1002/0470114754 10.1016/S0378-3758(96)00203-0 10.1111/j.2041-210X.2009.00009.x 10.1201/b16446 10.1155/2014/303728 10.18637/jss.v035.i02 10.1016/S0378-3758(98)00180-3 10.1007/s11464-014-0359-5 10.2307/2336986 10.1002/sim.3489 10.1002/wics.1349 10.1080/0266476042000285530 10.1007/b97287 10.1111/j.0006-341x.2002.00521.x 10.1016/j.jmva.2019.05.006 10.1080/01621459.2012.682534 10.1007/978-1-4614-0499-6 10.2307/2533686 10.1111/j.0006-341x.2001.00120.x 10.1093/biomet/87.4.823 |
ContentType | Journal Article |
Copyright | 2021 Taylor & Francis Group, LLC 2021 2021 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2021 Taylor & Francis Group, LLC 2021 – notice: 2021 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/03610918.2021.1872630 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1532-4141 |
EndPage | 1025 |
ExternalDocumentID | 10_1080_03610918_2021_1872630 1872630 |
Genre | Research Article |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM LJTGL M4Z NA5 NY~ O9- P2P QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c338t-58584cd167c6c8f5bc27c3e734c54cbd4ca731e9bb02efa8a95150d1de91964b3 |
ISSN | 0361-0918 |
IngestDate | Wed Aug 13 06:17:26 EDT 2025 Tue Jul 01 02:09:42 EDT 2025 Thu Apr 24 23:01:38 EDT 2025 Wed Dec 25 09:05:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-58584cd167c6c8f5bc27c3e734c54cbd4ca731e9bb02efa8a95150d1de91964b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6987-7068 0000-0002-7811-8215 |
PQID | 2780617230 |
PQPubID | 186203 |
PageCount | 11 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_03610918_2021_1872630 proquest_journals_2780617230 crossref_citationtrail_10_1080_03610918_2021_1872630 crossref_primary_10_1080_03610918_2021_1872630 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-04 |
PublicationDateYYYYMMDD | 2023-03-04 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in statistics. Simulation and computation |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 CIT0031 Xie J. (CIT0029) 2009; 32 Alpar R. (CIT0003) 2017 Hicks C. R. (CIT0012) 2009 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 Hardin J. W. (CIT0010) 2013 Aydın D. (CIT0004) 2014 CIT0019 Pan W. (CIT0017) 2002; 12 CIT0021 CIT0020 CIT0001 CIT0023 Hedeker D. (CIT0011) 2006 CIT0022 Alpar R. (CIT0002) 2016 CIT0025 CIT0024 CIT0005 CIT0027 CIT0026 CIT0007 CIT0006 CIT0028 CIT0009 CIT0008 |
References_xml | – ident: CIT0001 doi: 10.1002/0470114754 – ident: CIT0006 doi: 10.1016/S0378-3758(96)00203-0 – ident: CIT0005 doi: 10.1111/j.2041-210X.2009.00009.x – volume-title: Uygulamalı İstatistik ve Geçerlik-Güvenirlik year: 2016 ident: CIT0002 – volume-title: Uygulamalı Regresyon Analizi year: 2014 ident: CIT0004 – ident: CIT0009 – volume: 32 start-page: 1 year: 2009 ident: CIT0029 publication-title: UPenn Biostatistics Working Papers – ident: CIT0023 doi: 10.1201/b16446 – ident: CIT0028 doi: 10.1155/2014/303728 – ident: CIT0014 doi: 10.18637/jss.v035.i02 – volume-title: Generalized estimating equations year: 2013 ident: CIT0010 – ident: CIT0007 doi: 10.1016/S0378-3758(98)00180-3 – ident: CIT0025 – ident: CIT0015 doi: 10.1007/s11464-014-0359-5 – volume-title: Deney Düzenlemede İstatistiksel Yöntemler year: 2009 ident: CIT0012 – ident: CIT0019 doi: 10.2307/2336986 – volume-title: Çok Değişkenli İstatistiksel Yöntemler year: 2017 ident: CIT0003 – ident: CIT0013 doi: 10.1002/sim.3489 – ident: CIT0021 doi: 10.1002/wics.1349 – ident: CIT0020 doi: 10.1080/0266476042000285530 – ident: CIT0008 doi: 10.1007/b97287 – volume-title: Longitudinal data analysis year: 2006 ident: CIT0011 – ident: CIT0024 doi: 10.1111/j.0006-341x.2002.00521.x – ident: CIT0027 doi: 10.1016/j.jmva.2019.05.006 – ident: CIT0026 – ident: CIT0030 doi: 10.1080/01621459.2012.682534 – ident: CIT0031 doi: 10.1007/978-1-4614-0499-6 – volume: 12 start-page: 475 issue: 2 year: 2002 ident: CIT0017 publication-title: Statistica Sinica – ident: CIT0022 doi: 10.2307/2533686 – ident: CIT0016 doi: 10.1111/j.0006-341x.2001.00120.x – ident: CIT0018 doi: 10.1093/biomet/87.4.823 |
SSID | ssj0003848 |
Score | 2.3024664 |
Snippet | Generalized Estimating Equations (GEE) is used to analyze repeated measurements taken from subjects at equal time intervals and is applicable in presence of... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1015 |
SubjectTerms | Convergence Datasets Efficiency Generalized estimating equation Intervals Least squares method Markov correlation structure Missing data Quasi-Least Squares regression Regression Simulation |
Title | Comparison of generalized estimating equations and Quasi-Least Squares regression methods in terms of efficiency with a simulation study |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610918.2021.1872630 https://www.proquest.com/docview/2780617230 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECXc9JIeurgtmjQteOhNkGFx0XIMggRBlwCFEyA3gaSowEUjp5Z0yRf0n_JzHVKURLdG0_QiGLJJ0J7n4Qz15g1CHwA3cyIiHtKMk5AVkoSCZiyMmSyVigUVpWVbnMWnF-zjJb-cTO481lLbyJm63VpX8j9WhXtgV1Ml-wDLDpPCDXgN9oUrWBiu_2TjI7-JoGmGbA6YlrcQQxrtDBOLVleB_tE6ups5I__ainoZfjYde4IFvAPZdrDWVx0btnINpS1H1vhsy_PQVmXClmh2lXBBvbx2Xb88edpvw5rGihM7kalZ6uSgZ8FiHOkK6m7aTTLAYd1Rvo_XxcpEutnJiN9PYi1kC7-o-4A7dnaHFoRa1hbzfBuNoxBClc716t73AlqiTgerd86ceCCknqcFV8K9XRviJL51R3AUSmpk5SPD5SPRLEoTErvHQRsK3L_tjANfMeqFVN00uZkmd9M8Qo9JkliOAJ2fDWEATW3rtuGb9uVjRth922o2AqMN2dw_wgQb-5w_R09d0oIPOwS-QBNdTdGzviEIdvvDFD35MogA11O0uxgM_xL9HLGKVyX2sIpHrOIBqxjQgT2sYodVPGIVO6ziZYUtVs28I1axwSoWeMQqtlh9hS5Ojs-PTkPXBSRUlKZNCPlsylQRxYmKVVpyqUiiqE4oU5wpWTAlEhrpTMo50aVIBeQMfF5Ehc6M2Jykr9FOtar0G4RFJliqBRdCmaNPIRJZmuciJS9jyKzpHmK9CXLlJPJNp5bv-V8BsIdmw7CbTiPmvgGZb9-8sYdzZddJJ6f3jD3owZA7V1TnJEltKkLn-w9dy1u0O_5BD9BOs271O4izG_ne4vkXNgLPAA |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUqeig9QLtQlZa2c-jVSxLb-ThWqGjbLishQOJm2Y69WgGhbLIXfkF_dj12soJWiAPnaCxHMx7PjJ7fI-Srj5skU6mgrBIZ5bXOqGIVpznXzphcMeUC2mKWT875zwtxce8tDMIqsYd2kSgi5Go83DiMHiBxBz7rIp8lIrOydJyWRZYz37a_FL52xyhnyWydjVkZFLTQhKLN8IrnsWUe3E8P2Ev_y9bhCjraJmbYfESeXI5XnR6bu394HZ_3d2_IVl-hwrcYUm_JC9uMyPag_gB9MhiR18drxtd2RDaxao2kzzvkz-Fa3RBuHMwjtfXiztaApB5o08zB3kaa8Rb8XuFkpdoFnaKUEJz6L0vbwtLOI0y3gah03cKiAbxMWlzXBvoLfDsKOE4GBe3iupcjg8Cbu0vOj76fHU5oL_lAje-VO-qbl5KbOs0Lk5vSCW2ywjBbMG4EN7rmRhUstZXWSWadKpUvEEVSp7WtkFlMs3dko7lp7HsCqlK8tEooZXDOpVShHQ7BnXC5b6PYHuGDo6Xp-dBRluNKpgNtau8IiY6QvSP2yHht9jsSgjxlUN2PItmFSYyLsimSPWG7P4Sc7HNLK7OiDHUnSz48Y-kv5NXk7Hgqpz9mvz6STf-JBWgd3ycb3XJlP_laq9Ofw2H6Cwo0HFc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQkVA5UFhAtBSYA1cvSex8Hau2qwJlBYJK3CzbsVcrIC3r7KW_oD-7HttZURDqoWdrLEczHs-MXt4j5K2Pm6yQeUlZWxaUd6qgkrWcVlxZrSvJpA1oi3l1csY_fC9HNKFLsErsoW0kigi5Gi_3RWdHRNw7n3SRzhKBWUU-zZu6qJjv2u9XvjxBVB_L5ptkzJogoIUmFG3Gn3j-t82N5-kGeek_yTq8QLMdosazR-DJj-l6UFN9-Ret450-7jF5lOpTOIgB9YTcM_2E7IzaD5BSwYQ8_LThe3UTso01a6R8fkquDjfahnBuYRGJrZeXpgOk9ECbfgHmdyQZd-CPCl_W0i3pKQoJwVe_sjIOVmYRQbo9RJ1rB8se8ClxuK8J5Bf45yjgMBkkuOWvJEYGgTX3GTmbHX87PKFJ8IFq3ykP1LcuDdddXtW60o0tlS5qzUzNuC65Vh3Xsma5aZXKCmNlI315WGZd3pkWecUUe062-vPevCAgW8kbI0spNU65pKyVxRG4LW3lmyi2S_joZ6ETGzqKcvwU-Uiamhwh0BEiOWKXTDdmF5EO5DaD9s8gEkOYw9gomiLYLbb7Y8SJlFmcKOomVJ0s27vD1m_Ig89HM3H6fv7xJdn2Kyzg6vg-2RpWa_PKF1qDeh2u0jVtshr7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+generalized+estimating+equations+and+Quasi-Least+Squares+regression+methods+in+terms+of+efficiency+with+a+simulation+study&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Asar%2C+Erdo%C4%9Fan&rft.au=Karabulut%2C+Erdem&rft.date=2023-03-04&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=52&rft.issue=3&rft.spage=1015&rft.epage=1025&rft_id=info:doi/10.1080%2F03610918.2021.1872630&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03610918_2021_1872630 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon |