Comparison of generalized estimating equations and Quasi-Least Squares regression methods in terms of efficiency with a simulation study

Generalized Estimating Equations (GEE) is used to analyze repeated measurements taken from subjects at equal time intervals and is applicable in presence of missing data. In this study, we aimed to introduce Quasi-Least Squares Regression (QLS), which is an extension of GEE and applicable when time...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 52; no. 3; pp. 1015 - 1025
Main Authors Asar, Erdoğan, Karabulut, Erdem
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 04.03.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0361-0918
1532-4141
DOI10.1080/03610918.2021.1872630

Cover

Abstract Generalized Estimating Equations (GEE) is used to analyze repeated measurements taken from subjects at equal time intervals and is applicable in presence of missing data. In this study, we aimed to introduce Quasi-Least Squares Regression (QLS), which is an extension of GEE and applicable when time intervals are unequal, and compare model performances under different scenarios in terms of efficiency using a comprehensive simulation study. The simulated datasets were analyzed using GEE and QLS, and the results were evaluated. In the simulation study, we produced 9 datasets with 1000 replicates using 3 correlation structures and 3 different correlation values . We obtained 36 scenarios by using 4 working correlation structures on these datasets. According to the results, in general, QLS has superiority over GEE in terms of the efficiency of estimations. In GEE method, a convergence problem was encountered for "Tri-diagonal" working correlation structure. However, in QLS method, there was no problem in convergence for this correlation structure. In order to make better comparisons of GEE and QLS results, Markov working correlation structure should be applicable to GEE as well as QLS. QLS gains an advantage over GEE when repeated measurements are collected at unequal time intervals and there are missing measurements.
AbstractList Generalized Estimating Equations (GEE) is used to analyze repeated measurements taken from subjects at equal time intervals and is applicable in presence of missing data. In this study, we aimed to introduce Quasi-Least Squares Regression (QLS), which is an extension of GEE and applicable when time intervals are unequal, and compare model performances under different scenarios in terms of efficiency using a comprehensive simulation study. The simulated datasets were analyzed using GEE and QLS, and the results were evaluated. In the simulation study, we produced 9 datasets with 1000 replicates using 3 correlation structures and 3 different correlation values . We obtained 36 scenarios by using 4 working correlation structures on these datasets. According to the results, in general, QLS has superiority over GEE in terms of the efficiency of estimations. In GEE method, a convergence problem was encountered for "Tri-diagonal" working correlation structure. However, in QLS method, there was no problem in convergence for this correlation structure. In order to make better comparisons of GEE and QLS results, Markov working correlation structure should be applicable to GEE as well as QLS. QLS gains an advantage over GEE when repeated measurements are collected at unequal time intervals and there are missing measurements.
Author Asar, Erdoğan
Karabulut, Erdem
Author_xml – sequence: 1
  givenname: Erdoğan
  orcidid: 0000-0002-6987-7068
  surname: Asar
  fullname: Asar, Erdoğan
  organization: Department of Statistical Consultancy, Turkish Statistical Institute
– sequence: 2
  givenname: Erdem
  orcidid: 0000-0002-7811-8215
  surname: Karabulut
  fullname: Karabulut, Erdem
  organization: Department of Biostatistics, School of Medicine, Hacettepe University
BookMark eNqFkMuKFDEUhoOMYM_oIwgB19UmlbqkcKM0XgYaRNR1SCUnPRmqkp6cFEP7BD62qemZjQtdnUC-_8_Jd0kuQgxAyGvOtpxJ9paJjrOBy23Nar7lsq87wZ6RDW9FXTW84RdkszLVCr0gl4i3jDEhG7khv3dxPurkMQYaHT1AgKQn_wssBcx-1tmHA4W7pRxiQKqDpd8Wjb7ag8ZMv5ebBEgTHMrAwtAZ8k20SH2gGdKMay84542HYE703ucbqin6eZkeSinmxZ5ekudOTwivHucV-fnp44_dl2r_9fP17sO-MkLIXLWylY2xvOtNZ6RrR1P3RkAvGtM2ZrSN0b3gMIwjq8FpqYeWt8xyCwMfumYUV-TNufeY4t1S_qhu45JCeVLVvWQd72vBCvXuTJkUERM4ZXx-2DYn7SfFmVrVqyf1alWvHtWXdPtX-piKynT6b-79OeeDi2nW9zFNVmV9mmJySQfjUYl_V_wBvh2fvw
CitedBy_id crossref_primary_10_1038_s41598_025_88304_w
Cites_doi 10.1002/0470114754
10.1016/S0378-3758(96)00203-0
10.1111/j.2041-210X.2009.00009.x
10.1201/b16446
10.1155/2014/303728
10.18637/jss.v035.i02
10.1016/S0378-3758(98)00180-3
10.1007/s11464-014-0359-5
10.2307/2336986
10.1002/sim.3489
10.1002/wics.1349
10.1080/0266476042000285530
10.1007/b97287
10.1111/j.0006-341x.2002.00521.x
10.1016/j.jmva.2019.05.006
10.1080/01621459.2012.682534
10.1007/978-1-4614-0499-6
10.2307/2533686
10.1111/j.0006-341x.2001.00120.x
10.1093/biomet/87.4.823
ContentType Journal Article
Copyright 2021 Taylor & Francis Group, LLC 2021
2021 Taylor & Francis Group, LLC
Copyright_xml – notice: 2021 Taylor & Francis Group, LLC 2021
– notice: 2021 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610918.2021.1872630
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 1025
ExternalDocumentID 10_1080_03610918_2021_1872630
1872630
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-58584cd167c6c8f5bc27c3e734c54cbd4ca731e9bb02efa8a95150d1de91964b3
ISSN 0361-0918
IngestDate Wed Aug 13 06:17:26 EDT 2025
Tue Jul 01 02:09:42 EDT 2025
Thu Apr 24 23:01:38 EDT 2025
Wed Dec 25 09:05:00 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-58584cd167c6c8f5bc27c3e734c54cbd4ca731e9bb02efa8a95150d1de91964b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6987-7068
0000-0002-7811-8215
PQID 2780617230
PQPubID 186203
PageCount 11
ParticipantIDs informaworld_taylorfrancis_310_1080_03610918_2021_1872630
proquest_journals_2780617230
crossref_citationtrail_10_1080_03610918_2021_1872630
crossref_primary_10_1080_03610918_2021_1872630
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-04
PublicationDateYYYYMMDD 2023-03-04
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-04
  day: 04
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0031
Xie J. (CIT0029) 2009; 32
Alpar R. (CIT0003) 2017
Hicks C. R. (CIT0012) 2009
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
Hardin J. W. (CIT0010) 2013
Aydın D. (CIT0004) 2014
CIT0019
Pan W. (CIT0017) 2002; 12
CIT0021
CIT0020
CIT0001
CIT0023
Hedeker D. (CIT0011) 2006
CIT0022
Alpar R. (CIT0002) 2016
CIT0025
CIT0024
CIT0005
CIT0027
CIT0026
CIT0007
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0001
  doi: 10.1002/0470114754
– ident: CIT0006
  doi: 10.1016/S0378-3758(96)00203-0
– ident: CIT0005
  doi: 10.1111/j.2041-210X.2009.00009.x
– volume-title: Uygulamalı İstatistik ve Geçerlik-Güvenirlik
  year: 2016
  ident: CIT0002
– volume-title: Uygulamalı Regresyon Analizi
  year: 2014
  ident: CIT0004
– ident: CIT0009
– volume: 32
  start-page: 1
  year: 2009
  ident: CIT0029
  publication-title: UPenn Biostatistics Working Papers
– ident: CIT0023
  doi: 10.1201/b16446
– ident: CIT0028
  doi: 10.1155/2014/303728
– ident: CIT0014
  doi: 10.18637/jss.v035.i02
– volume-title: Generalized estimating equations
  year: 2013
  ident: CIT0010
– ident: CIT0007
  doi: 10.1016/S0378-3758(98)00180-3
– ident: CIT0025
– ident: CIT0015
  doi: 10.1007/s11464-014-0359-5
– volume-title: Deney Düzenlemede İstatistiksel Yöntemler
  year: 2009
  ident: CIT0012
– ident: CIT0019
  doi: 10.2307/2336986
– volume-title: Çok Değişkenli İstatistiksel Yöntemler
  year: 2017
  ident: CIT0003
– ident: CIT0013
  doi: 10.1002/sim.3489
– ident: CIT0021
  doi: 10.1002/wics.1349
– ident: CIT0020
  doi: 10.1080/0266476042000285530
– ident: CIT0008
  doi: 10.1007/b97287
– volume-title: Longitudinal data analysis
  year: 2006
  ident: CIT0011
– ident: CIT0024
  doi: 10.1111/j.0006-341x.2002.00521.x
– ident: CIT0027
  doi: 10.1016/j.jmva.2019.05.006
– ident: CIT0026
– ident: CIT0030
  doi: 10.1080/01621459.2012.682534
– ident: CIT0031
  doi: 10.1007/978-1-4614-0499-6
– volume: 12
  start-page: 475
  issue: 2
  year: 2002
  ident: CIT0017
  publication-title: Statistica Sinica
– ident: CIT0022
  doi: 10.2307/2533686
– ident: CIT0016
  doi: 10.1111/j.0006-341x.2001.00120.x
– ident: CIT0018
  doi: 10.1093/biomet/87.4.823
SSID ssj0003848
Score 2.3024664
Snippet Generalized Estimating Equations (GEE) is used to analyze repeated measurements taken from subjects at equal time intervals and is applicable in presence of...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1015
SubjectTerms Convergence
Datasets
Efficiency
Generalized estimating equation
Intervals
Least squares method
Markov correlation structure
Missing data
Quasi-Least Squares regression
Regression
Simulation
Title Comparison of generalized estimating equations and Quasi-Least Squares regression methods in terms of efficiency with a simulation study
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2021.1872630
https://www.proquest.com/docview/2780617230
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECXc9JIeurgtmjQteOhNkGFx0XIMggRBlwCFEyA3gaSowEUjp5Z0yRf0n_JzHVKURLdG0_QiGLJJ0J7n4Qz15g1CHwA3cyIiHtKMk5AVkoSCZiyMmSyVigUVpWVbnMWnF-zjJb-cTO481lLbyJm63VpX8j9WhXtgV1Ml-wDLDpPCDXgN9oUrWBiu_2TjI7-JoGmGbA6YlrcQQxrtDBOLVleB_tE6ups5I__ainoZfjYde4IFvAPZdrDWVx0btnINpS1H1vhsy_PQVmXClmh2lXBBvbx2Xb88edpvw5rGihM7kalZ6uSgZ8FiHOkK6m7aTTLAYd1Rvo_XxcpEutnJiN9PYi1kC7-o-4A7dnaHFoRa1hbzfBuNoxBClc716t73AlqiTgerd86ceCCknqcFV8K9XRviJL51R3AUSmpk5SPD5SPRLEoTErvHQRsK3L_tjANfMeqFVN00uZkmd9M8Qo9JkliOAJ2fDWEATW3rtuGb9uVjRth922o2AqMN2dw_wgQb-5w_R09d0oIPOwS-QBNdTdGzviEIdvvDFD35MogA11O0uxgM_xL9HLGKVyX2sIpHrOIBqxjQgT2sYodVPGIVO6ziZYUtVs28I1axwSoWeMQqtlh9hS5Ojs-PTkPXBSRUlKZNCPlsylQRxYmKVVpyqUiiqE4oU5wpWTAlEhrpTMo50aVIBeQMfF5Ehc6M2Jykr9FOtar0G4RFJliqBRdCmaNPIRJZmuciJS9jyKzpHmK9CXLlJPJNp5bv-V8BsIdmw7CbTiPmvgGZb9-8sYdzZddJJ6f3jD3owZA7V1TnJEltKkLn-w9dy1u0O_5BD9BOs271O4izG_ne4vkXNgLPAA
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUqeig9QLtQlZa2c-jVSxLb-ThWqGjbLishQOJm2Y69WgGhbLIXfkF_dj12soJWiAPnaCxHMx7PjJ7fI-Srj5skU6mgrBIZ5bXOqGIVpznXzphcMeUC2mKWT875zwtxce8tDMIqsYd2kSgi5Go83DiMHiBxBz7rIp8lIrOydJyWRZYz37a_FL52xyhnyWydjVkZFLTQhKLN8IrnsWUe3E8P2Ev_y9bhCjraJmbYfESeXI5XnR6bu394HZ_3d2_IVl-hwrcYUm_JC9uMyPag_gB9MhiR18drxtd2RDaxao2kzzvkz-Fa3RBuHMwjtfXiztaApB5o08zB3kaa8Rb8XuFkpdoFnaKUEJz6L0vbwtLOI0y3gah03cKiAbxMWlzXBvoLfDsKOE4GBe3iupcjg8Cbu0vOj76fHU5oL_lAje-VO-qbl5KbOs0Lk5vSCW2ywjBbMG4EN7rmRhUstZXWSWadKpUvEEVSp7WtkFlMs3dko7lp7HsCqlK8tEooZXDOpVShHQ7BnXC5b6PYHuGDo6Xp-dBRluNKpgNtau8IiY6QvSP2yHht9jsSgjxlUN2PItmFSYyLsimSPWG7P4Sc7HNLK7OiDHUnSz48Y-kv5NXk7Hgqpz9mvz6STf-JBWgd3ycb3XJlP_laq9Ofw2H6Cwo0HFc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQkVA5UFhAtBSYA1cvSex8Hau2qwJlBYJK3CzbsVcrIC3r7KW_oD-7HttZURDqoWdrLEczHs-MXt4j5K2Pm6yQeUlZWxaUd6qgkrWcVlxZrSvJpA1oi3l1csY_fC9HNKFLsErsoW0kigi5Gi_3RWdHRNw7n3SRzhKBWUU-zZu6qJjv2u9XvjxBVB_L5ptkzJogoIUmFG3Gn3j-t82N5-kGeek_yTq8QLMdosazR-DJj-l6UFN9-Ret450-7jF5lOpTOIgB9YTcM_2E7IzaD5BSwYQ8_LThe3UTso01a6R8fkquDjfahnBuYRGJrZeXpgOk9ECbfgHmdyQZd-CPCl_W0i3pKQoJwVe_sjIOVmYRQbo9RJ1rB8se8ClxuK8J5Bf45yjgMBkkuOWvJEYGgTX3GTmbHX87PKFJ8IFq3ykP1LcuDdddXtW60o0tlS5qzUzNuC65Vh3Xsma5aZXKCmNlI315WGZd3pkWecUUe062-vPevCAgW8kbI0spNU65pKyVxRG4LW3lmyi2S_joZ6ETGzqKcvwU-Uiamhwh0BEiOWKXTDdmF5EO5DaD9s8gEkOYw9gomiLYLbb7Y8SJlFmcKOomVJ0s27vD1m_Ig89HM3H6fv7xJdn2Kyzg6vg-2RpWa_PKF1qDeh2u0jVtshr7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+generalized+estimating+equations+and+Quasi-Least+Squares+regression+methods+in+terms+of+efficiency+with+a+simulation+study&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Asar%2C+Erdo%C4%9Fan&rft.au=Karabulut%2C+Erdem&rft.date=2023-03-04&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=52&rft.issue=3&rft.spage=1015&rft.epage=1025&rft_id=info:doi/10.1080%2F03610918.2021.1872630&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03610918_2021_1872630
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon