On most perfect magic squares of order four

A simple parametrization for most perfect magic (MPM) squares is derived. This parametrization permits to calculate their powers and eigenvalues as well as their Moore-Penrose, group, and core inverses in an easy fashion. Such properties as EP-ness, normality, symmetry, and partial isometriness of t...

Full description

Saved in:
Bibliographic Details
Published inLinear & multilinear algebra Vol. 68; no. 7; pp. 1411 - 1423
Main Authors Baksalary, Oskar Maria, Trenkler, Dietrich, Trenkler, Götz
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 02.07.2020
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A simple parametrization for most perfect magic (MPM) squares is derived. This parametrization permits to calculate their powers and eigenvalues as well as their Moore-Penrose, group, and core inverses in an easy fashion. Such properties as EP-ness, normality, symmetry, and partial isometriness of the MPM squares are also characterized. Moreover, their eigenspaces are identified along with some properties of such squares with prime entries.
AbstractList A simple parametrization for most perfect magic (MPM) squares is derived. This parametrization permits to calculate their powers and eigenvalues as well as their Moore–Penrose, group, and core inverses in an easy fashion. Such properties as EP-ness, normality, symmetry, and partial isometriness of the MPM squares are also characterized. Moreover, their eigenspaces are identified along with some properties of such squares with prime entries.
A simple parametrization for most perfect magic (MPM) squares is derived. This parametrization permits to calculate their powers and eigenvalues as well as their Moore-Penrose, group, and core inverses in an easy fashion. Such properties as EP-ness, normality, symmetry, and partial isometriness of the MPM squares are also characterized. Moreover, their eigenspaces are identified along with some properties of such squares with prime entries.
Author Baksalary, Oskar Maria
Trenkler, Dietrich
Trenkler, Götz
Author_xml – sequence: 1
  givenname: Oskar Maria
  surname: Baksalary
  fullname: Baksalary, Oskar Maria
  email: obaksalary@gmail.com, baxx@amu.edu.pl
  organization: Faculty of Physics, Adam Mickiewicz University
– sequence: 2
  givenname: Dietrich
  surname: Trenkler
  fullname: Trenkler, Dietrich
  organization: Department of Economics, University of Osnabrück
– sequence: 3
  givenname: Götz
  surname: Trenkler
  fullname: Trenkler, Götz
  organization: Faculty of Statistics, Dortmund University of Technology
BookMark eNqFkEtLAzEUhYNUsK3-BGHApUy9mUw6CW6UUh9Q6EbXIeYhU2Ym7U2K9N87Q-vGha7uXZzvHPgmZNSFzhFyTWFGQcAdMBD9U80KoGJGeckB-BkZUz5nOadMjsh4yORD6IJMYtwAQEkZH5PbdZe1IaZs69A7k7JWf9Ymi7u9Rhez4LOA1mHmwx4vybnXTXRXpzsl70_Lt8VLvlo_vy4eV7lhTKScV9RXYFlR9Qu8sM4w56qCWund3GpZlFYyK7wUWnDHXQXGMCO5lB_cVALYlNwce7cYdnsXk9r0610_qYqyr4RSCt6n7o8pgyFGdF6ZOulUhy6hrhtFQQ121I8dNdhRJzs9zX_RW6xbjYd_uYcjV3c-YKu_AjZWJX1oAnrUnamjYn9XfAN2FHtL
CitedBy_id crossref_primary_10_12677_AAM_2021_108279
Cites_doi 10.1016/j.laa.2014.09.003
10.1515/9781400888252
10.1080/0020739042000232510
10.1080/03081080902778222
10.1080/00029890.1960.11989464
10.1016/S0024-3795(03)00508-1
ContentType Journal Article
Copyright 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
2018 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
– notice: 2018 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/03081087.2018.1545005
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1563-5139
EndPage 1423
ExternalDocumentID 10_1080_03081087_2018_1545005
1545005
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
YQT
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-571f70d32713552dec3ee721d9fe6da924d93d8f98a85e5e70cc3c9599b5c7803
ISSN 0308-1087
IngestDate Wed Aug 13 04:26:52 EDT 2025
Tue Jul 01 02:02:52 EDT 2025
Thu Apr 24 22:57:06 EDT 2025
Wed Dec 25 09:08:00 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-571f70d32713552dec3ee721d9fe6da924d93d8f98a85e5e70cc3c9599b5c7803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2435504985
PQPubID 186326
PageCount 13
ParticipantIDs crossref_citationtrail_10_1080_03081087_2018_1545005
proquest_journals_2435504985
crossref_primary_10_1080_03081087_2018_1545005
informaworld_taylorfrancis_310_1080_03081087_2018_1545005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-02
PublicationDateYYYYMMDD 2020-07-02
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-02
  day: 02
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Linear & multilinear algebra
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Ollerenshaw K (CIT0001) 1998
CIT0010
Campbell SL (CIT0008) 1979
CIT0003
CIT0002
CIT0005
CIT0004
CIT0007
CIT0006
CIT0009
References_xml – volume-title: Most-perfect pandiagonal magic squares: their construction and enumeration
  year: 1998
  ident: CIT0001
– ident: CIT0002
– ident: CIT0007
– ident: CIT0010
  doi: 10.1016/j.laa.2014.09.003
– ident: CIT0005
  doi: 10.1515/9781400888252
– ident: CIT0004
  doi: 10.1080/0020739042000232510
– ident: CIT0009
  doi: 10.1080/03081080902778222
– ident: CIT0003
  doi: 10.1080/00029890.1960.11989464
– ident: CIT0006
  doi: 10.1016/S0024-3795(03)00508-1
– volume-title: Generalized inverses of linear transformations
  year: 1979
  ident: CIT0008
SSID ssj0004135
Score 2.1820588
Snippet A simple parametrization for most perfect magic (MPM) squares is derived. This parametrization permits to calculate their powers and eigenvalues as well as...
A simple parametrization for most perfect magic (MPM) squares is derived. This parametrization permits to calculate their powers and eigenvalues as well as...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1411
SubjectTerms Eigenvalues
eigenvalues and eigenspaces
generalized inverses
Matrix classes
Normality
Parameterization
Title On most perfect magic squares of order four
URI https://www.tandfonline.com/doi/abs/10.1080/03081087.2018.1545005
https://www.proquest.com/docview/2435504985
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4ED4ikKBeXAbZUqseOsfeyTFWq7l6xYcbESxxZo2yxs0kt_PTOOs0m1KwpcojzkWPGMx_M5M98Q8qkA6F8Y8NxEkdsw0VSGgtskhJWEljy3Ni0xd_jyKp3Oky8LvuhDeV12SVMc6rudeSX_I1W4B3LFLNl_kOzmpXADzkG-cAQJw_GvZDyrxjer2nEPOw7imxzs2Lj-dYtJRegGOmLNsYV3DZ1QwJ9I34NCd_GE1-01Vvwo1j1Az5d1DrjXSWFWL5HwJ2-DklusvzbV0ucRnv7Awlz6-65nn_Ff_HHa3A03GABN4uZlD0ezrVofg4Ajl3flCGL9smm8GU1ZyOOWpqizs6kY6NNkYDTjxNtb4y_bDOQt4-6jIaE_7A7D8gRujPEo4v1q1v3Bv5qp8_nFhcrOFtljskcBRdAR2Tuann772ifO-gqs3Sd0KV5Ivr6rm3vOyz1q262l3Pkn2XPyzAOL4KjVkhfkkalekqeXG1be-hUZz6oA9SXw-hI4fQm8vgQrGzh9CVBfXpP5-Vl2Mg19sYxQMyaakE9iO4lKRrHmIqel0cwYgPeltAbmG8DsUrJSWClywQ03k0hrpiWXsuB6IiL2hoyqVWXeYhq_KMGLR2Z_lgDgLApqZB6lkpZxSq3YJ0k3Ckp7JnksaHKt4o5w1g-ewsFTfvD2yeGm2c-WSuWhBnI4xKpxmmhbJVTsgbYHnTyUn7G1ooANOEBiwd_9-fF78qSfCQdk1KxvzQdwPpvio1eh33vmejM
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGYCBN6JQIAMbSkntOLFHhKgKtGVppW5W4scCTUuTLvx6fHmUFoQ6dMtylnO27-473X2H0G1soX-sbeTG4si4vsTcZdT4rvUkWNHImEBB73CvH3SG_suIjpZ6YaCsEjC0KYgiclsNjxuS0VVJ3D1wrNiPECqzGORGaE5juk15EMIUA-L1f3ojyyGbJKcxZWHVxfPfMiv-aYW99I-1zl1Q-wDJavNF5cl7c57FTfn1i9dxs787RPtlhOo8FFfqCG3p5Bjt9Rb0rukJuntLnPEkzZypnkE5iDOOrAF10s85dDM5E-PkjJ6OsWudomH7afDYccupC660cDVzadgyoacIhuF9FCstidYWJyputD04i9cUJ4oZziJGNdWhJyWRnHIeUxkyj5yhWjJJ9Dn0gzNlw0GgiCe-RS5xjDWPvIBj1QqwYXXkV7oWsqQkh8kYH6JVMZeWuhCgC1Hqoo6aC7FpwcmxToAvH6TI8mSIKSaXCLJGtlGduiifdyqwDTKpxVaMXmyw9A3a6Qx6XdF97r9eol0MSB4Sx7iBatlsrq9suJPF1_l9_gbnUO0H
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMctVCQEA29EoUAGNpSSOnFijwioyqOFgUpsVvxaoA-adOHT40ucQkGoQ7cstpzz6_7W3e8QOhdW-gttPTcqUuNHEjOfEhP59ibBiqTGxApyh7u9uNOP7l9JFU2YubBK0NCmBEUUZzVs7rEyVUTcJSBW7EcCgVkUnkZIQTFdjQEeDlkcQe87NdLV2AwLiilNqiSe_7qZu57m4KV_DuviBmpvIVGNvQw8eWtOc9GUn7-wjkv93DbadP6pd1UuqB20ooe7aKM7g7tme-jiaegNRlnujfUEgkG8QWqPTy_7mEIukzcyXsHz9Iztax_127cv1x3f1VzwpRWruU-SlkkCFWIo3Uew0jLU2qpExYy202bVmmKhoobRlBJNdBJIGUpGGBNEJjQID1BtOBrqQ8gGp8o6gwCIDyOrW4TAmqVBzLBqxdjQOooqU3PpgORQF-OdtypuqbMFB1twZ4s6as6ajUsix6IG7Oc88rx4CjFl3RIeLmjbqCadu82dcWxdTGKVFSVHS3R9htaeb9r88a73cIzWMch4eDXGDVTLJ1N9Yn2dXJwWq_kL9c3rqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+most+perfect+magic+squares+of+order+four&rft.jtitle=Linear+%26+multilinear+algebra&rft.au=Baksalary%2C+Oskar+Maria&rft.au=Trenkler%2C+Dietrich&rft.au=Trenkler%2C+G%C3%B6tz&rft.date=2020-07-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0308-1087&rft.eissn=1563-5139&rft.volume=68&rft.issue=7&rft.spage=1411&rft.epage=1423&rft_id=info:doi/10.1080%2F03081087.2018.1545005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-1087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-1087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-1087&client=summon