On most perfect magic squares of order four
A simple parametrization for most perfect magic (MPM) squares is derived. This parametrization permits to calculate their powers and eigenvalues as well as their Moore-Penrose, group, and core inverses in an easy fashion. Such properties as EP-ness, normality, symmetry, and partial isometriness of t...
Saved in:
Published in | Linear & multilinear algebra Vol. 68; no. 7; pp. 1411 - 1423 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
02.07.2020
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A simple parametrization for
most perfect magic (MPM) squares is derived. This parametrization permits to calculate their powers and eigenvalues as well as their Moore-Penrose, group, and core inverses in an easy fashion. Such properties as EP-ness, normality, symmetry, and partial isometriness of the MPM squares are also characterized. Moreover, their eigenspaces are identified along with some properties of such squares with prime entries. |
---|---|
AbstractList | A simple parametrization for most perfect magic (MPM) squares is derived. This parametrization permits to calculate their powers and eigenvalues as well as their Moore–Penrose, group, and core inverses in an easy fashion. Such properties as EP-ness, normality, symmetry, and partial isometriness of the MPM squares are also characterized. Moreover, their eigenspaces are identified along with some properties of such squares with prime entries. A simple parametrization for most perfect magic (MPM) squares is derived. This parametrization permits to calculate their powers and eigenvalues as well as their Moore-Penrose, group, and core inverses in an easy fashion. Such properties as EP-ness, normality, symmetry, and partial isometriness of the MPM squares are also characterized. Moreover, their eigenspaces are identified along with some properties of such squares with prime entries. |
Author | Baksalary, Oskar Maria Trenkler, Dietrich Trenkler, Götz |
Author_xml | – sequence: 1 givenname: Oskar Maria surname: Baksalary fullname: Baksalary, Oskar Maria email: obaksalary@gmail.com, baxx@amu.edu.pl organization: Faculty of Physics, Adam Mickiewicz University – sequence: 2 givenname: Dietrich surname: Trenkler fullname: Trenkler, Dietrich organization: Department of Economics, University of Osnabrück – sequence: 3 givenname: Götz surname: Trenkler fullname: Trenkler, Götz organization: Faculty of Statistics, Dortmund University of Technology |
BookMark | eNqFkEtLAzEUhYNUsK3-BGHApUy9mUw6CW6UUh9Q6EbXIeYhU2Ym7U2K9N87Q-vGha7uXZzvHPgmZNSFzhFyTWFGQcAdMBD9U80KoGJGeckB-BkZUz5nOadMjsh4yORD6IJMYtwAQEkZH5PbdZe1IaZs69A7k7JWf9Ymi7u9Rhez4LOA1mHmwx4vybnXTXRXpzsl70_Lt8VLvlo_vy4eV7lhTKScV9RXYFlR9Qu8sM4w56qCWund3GpZlFYyK7wUWnDHXQXGMCO5lB_cVALYlNwce7cYdnsXk9r0610_qYqyr4RSCt6n7o8pgyFGdF6ZOulUhy6hrhtFQQ121I8dNdhRJzs9zX_RW6xbjYd_uYcjV3c-YKu_AjZWJX1oAnrUnamjYn9XfAN2FHtL |
CitedBy_id | crossref_primary_10_12677_AAM_2021_108279 |
Cites_doi | 10.1016/j.laa.2014.09.003 10.1515/9781400888252 10.1080/0020739042000232510 10.1080/03081080902778222 10.1080/00029890.1960.11989464 10.1016/S0024-3795(03)00508-1 |
ContentType | Journal Article |
Copyright | 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 2018 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1080/03081087.2018.1545005 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1563-5139 |
EndPage | 1423 |
ExternalDocumentID | 10_1080_03081087_2018_1545005 1545005 |
Genre | Research Article |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 YQT ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7SC 8FD JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c338t-571f70d32713552dec3ee721d9fe6da924d93d8f98a85e5e70cc3c9599b5c7803 |
ISSN | 0308-1087 |
IngestDate | Wed Aug 13 04:26:52 EDT 2025 Tue Jul 01 02:02:52 EDT 2025 Thu Apr 24 22:57:06 EDT 2025 Wed Dec 25 09:08:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-571f70d32713552dec3ee721d9fe6da924d93d8f98a85e5e70cc3c9599b5c7803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2435504985 |
PQPubID | 186326 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1080_03081087_2018_1545005 proquest_journals_2435504985 crossref_primary_10_1080_03081087_2018_1545005 informaworld_taylorfrancis_310_1080_03081087_2018_1545005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-02 |
PublicationDateYYYYMMDD | 2020-07-02 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Linear & multilinear algebra |
PublicationYear | 2020 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Ollerenshaw K (CIT0001) 1998 CIT0010 Campbell SL (CIT0008) 1979 CIT0003 CIT0002 CIT0005 CIT0004 CIT0007 CIT0006 CIT0009 |
References_xml | – volume-title: Most-perfect pandiagonal magic squares: their construction and enumeration year: 1998 ident: CIT0001 – ident: CIT0002 – ident: CIT0007 – ident: CIT0010 doi: 10.1016/j.laa.2014.09.003 – ident: CIT0005 doi: 10.1515/9781400888252 – ident: CIT0004 doi: 10.1080/0020739042000232510 – ident: CIT0009 doi: 10.1080/03081080902778222 – ident: CIT0003 doi: 10.1080/00029890.1960.11989464 – ident: CIT0006 doi: 10.1016/S0024-3795(03)00508-1 – volume-title: Generalized inverses of linear transformations year: 1979 ident: CIT0008 |
SSID | ssj0004135 |
Score | 2.1820588 |
Snippet | A simple parametrization for
most perfect magic (MPM) squares is derived. This parametrization permits to calculate their powers and eigenvalues as well as... A simple parametrization for most perfect magic (MPM) squares is derived. This parametrization permits to calculate their powers and eigenvalues as well as... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1411 |
SubjectTerms | Eigenvalues eigenvalues and eigenspaces generalized inverses Matrix classes Normality Parameterization |
Title | On most perfect magic squares of order four |
URI | https://www.tandfonline.com/doi/abs/10.1080/03081087.2018.1545005 https://www.proquest.com/docview/2435504985 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4ED4ikKBeXAbZUqseOsfeyTFWq7l6xYcbESxxZo2yxs0kt_PTOOs0m1KwpcojzkWPGMx_M5M98Q8qkA6F8Y8NxEkdsw0VSGgtskhJWEljy3Ni0xd_jyKp3Oky8LvuhDeV12SVMc6rudeSX_I1W4B3LFLNl_kOzmpXADzkG-cAQJw_GvZDyrxjer2nEPOw7imxzs2Lj-dYtJRegGOmLNsYV3DZ1QwJ9I34NCd_GE1-01Vvwo1j1Az5d1DrjXSWFWL5HwJ2-DklusvzbV0ucRnv7Awlz6-65nn_Ff_HHa3A03GABN4uZlD0ezrVofg4Ajl3flCGL9smm8GU1ZyOOWpqizs6kY6NNkYDTjxNtb4y_bDOQt4-6jIaE_7A7D8gRujPEo4v1q1v3Bv5qp8_nFhcrOFtljskcBRdAR2Tuann772ifO-gqs3Sd0KV5Ivr6rm3vOyz1q262l3Pkn2XPyzAOL4KjVkhfkkalekqeXG1be-hUZz6oA9SXw-hI4fQm8vgQrGzh9CVBfXpP5-Vl2Mg19sYxQMyaakE9iO4lKRrHmIqel0cwYgPeltAbmG8DsUrJSWClywQ03k0hrpiWXsuB6IiL2hoyqVWXeYhq_KMGLR2Z_lgDgLApqZB6lkpZxSq3YJ0k3Ckp7JnksaHKt4o5w1g-ewsFTfvD2yeGm2c-WSuWhBnI4xKpxmmhbJVTsgbYHnTyUn7G1ooANOEBiwd_9-fF78qSfCQdk1KxvzQdwPpvio1eh33vmejM |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGYCBN6JQIAMbSkntOLFHhKgKtGVppW5W4scCTUuTLvx6fHmUFoQ6dMtylnO27-473X2H0G1soX-sbeTG4si4vsTcZdT4rvUkWNHImEBB73CvH3SG_suIjpZ6YaCsEjC0KYgiclsNjxuS0VVJ3D1wrNiPECqzGORGaE5juk15EMIUA-L1f3ojyyGbJKcxZWHVxfPfMiv-aYW99I-1zl1Q-wDJavNF5cl7c57FTfn1i9dxs787RPtlhOo8FFfqCG3p5Bjt9Rb0rukJuntLnPEkzZypnkE5iDOOrAF10s85dDM5E-PkjJ6OsWudomH7afDYccupC660cDVzadgyoacIhuF9FCstidYWJyputD04i9cUJ4oZziJGNdWhJyWRnHIeUxkyj5yhWjJJ9Dn0gzNlw0GgiCe-RS5xjDWPvIBj1QqwYXXkV7oWsqQkh8kYH6JVMZeWuhCgC1Hqoo6aC7FpwcmxToAvH6TI8mSIKSaXCLJGtlGduiifdyqwDTKpxVaMXmyw9A3a6Qx6XdF97r9eol0MSB4Sx7iBatlsrq9suJPF1_l9_gbnUO0H |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMctVCQEA29EoUAGNpSSOnFijwioyqOFgUpsVvxaoA-adOHT40ucQkGoQ7cstpzz6_7W3e8QOhdW-gttPTcqUuNHEjOfEhP59ibBiqTGxApyh7u9uNOP7l9JFU2YubBK0NCmBEUUZzVs7rEyVUTcJSBW7EcCgVkUnkZIQTFdjQEeDlkcQe87NdLV2AwLiilNqiSe_7qZu57m4KV_DuviBmpvIVGNvQw8eWtOc9GUn7-wjkv93DbadP6pd1UuqB20ooe7aKM7g7tme-jiaegNRlnujfUEgkG8QWqPTy_7mEIukzcyXsHz9Iztax_127cv1x3f1VzwpRWruU-SlkkCFWIo3Uew0jLU2qpExYy202bVmmKhoobRlBJNdBJIGUpGGBNEJjQID1BtOBrqQ8gGp8o6gwCIDyOrW4TAmqVBzLBqxdjQOooqU3PpgORQF-OdtypuqbMFB1twZ4s6as6ajUsix6IG7Oc88rx4CjFl3RIeLmjbqCadu82dcWxdTGKVFSVHS3R9htaeb9r88a73cIzWMch4eDXGDVTLJ1N9Yn2dXJwWq_kL9c3rqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+most+perfect+magic+squares+of+order+four&rft.jtitle=Linear+%26+multilinear+algebra&rft.au=Baksalary%2C+Oskar+Maria&rft.au=Trenkler%2C+Dietrich&rft.au=Trenkler%2C+G%C3%B6tz&rft.date=2020-07-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0308-1087&rft.eissn=1563-5139&rft.volume=68&rft.issue=7&rft.spage=1411&rft.epage=1423&rft_id=info:doi/10.1080%2F03081087.2018.1545005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-1087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-1087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-1087&client=summon |