An intelligent belt wear fault diagnosis method based on deep learning

Belt conveyors are important transportation equipment in coal mining enterprises. At present, most research on this topic focuses on areas such as tear resistance and foreign body identification. Few studies have focused on belt wear, but belt wear is the subject of daily inspections on site. The ar...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of coal preparation and utilization Vol. 43; no. 4; pp. 708 - 725
Main Authors Wang, Bingjun, Dou, Dongyang, Shen, Ning
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 03.04.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1939-2699
1939-2702
DOI10.1080/19392699.2022.2072306

Cover

Loading…
Abstract Belt conveyors are important transportation equipment in coal mining enterprises. At present, most research on this topic focuses on areas such as tear resistance and foreign body identification. Few studies have focused on belt wear, but belt wear is the subject of daily inspections on site. The artificial grayscale analysis method, support vector machine (SVM) method, and deep learning network are proposed herein to identify the degree of belt wear by using image acquisition devices installed on belt conveyors to collect images of no-load belts, instead of manual inspection. The experimental results indicate that the grayscale analysis method has limitations in identifying belt wear. For complex types of wear, such as annular wear, its recognition capability is poor, and the grayscale analysis method is heavily dependent on the results of human analysis. The highest accuracy of the SVM method is 84.5%, and it effectively identifies complex wear states. After training, worn belts can be detected automatically. However, the selection of features during training completely depends on human decisions, and the accuracy is affected by such factors that have a great influence. The deep learning network attained a 91.5% average recognition accuracy rate with the highest accuracy being 95%. It can fully automate intelligent feature selection, training and detection.
AbstractList Belt conveyors are important transportation equipment in coal mining enterprises. At present, most research on this topic focuses on areas such as tear resistance and foreign body identification. Few studies have focused on belt wear, but belt wear is the subject of daily inspections on site. The artificial grayscale analysis method, support vector machine (SVM) method, and deep learning network are proposed herein to identify the degree of belt wear by using image acquisition devices installed on belt conveyors to collect images of no-load belts, instead of manual inspection. The experimental results indicate that the grayscale analysis method has limitations in identifying belt wear. For complex types of wear, such as annular wear, its recognition capability is poor, and the grayscale analysis method is heavily dependent on the results of human analysis. The highest accuracy of the SVM method is 84.5%, and it effectively identifies complex wear states. After training, worn belts can be detected automatically. However, the selection of features during training completely depends on human decisions, and the accuracy is affected by such factors that have a great influence. The deep learning network attained a 91.5% average recognition accuracy rate with the highest accuracy being 95%. It can fully automate intelligent feature selection, training and detection.
Author Shen, Ning
Dou, Dongyang
Wang, Bingjun
Author_xml – sequence: 1
  givenname: Bingjun
  surname: Wang
  fullname: Wang, Bingjun
  organization: BGRIMM Technology Group
– sequence: 2
  givenname: Dongyang
  surname: Dou
  fullname: Dou, Dongyang
  email: ddy41@cumt.edu.cn
  organization: BGRIMM Technology Group
– sequence: 3
  givenname: Ning
  surname: Shen
  fullname: Shen, Ning
  organization: Ningxia Coal Industry Co, Ltd
BookMark eNqFkEtLQzEQhYNUsK3-BCHg-tY87iu4sRSrQsGNrkOaO6kpaVKTlNJ_7y2tGxe6mTkM55yBb4QGPnhA6JaSCSUtuaeCC1YLMWGEsX40jJP6Ag2P94I1hA1-dG-6QqOU1oTUjIpyiOZTj63P4Jxdgc94CS7jPaiIjdr1srNq5UOyCW8gf4YOL1WCDgePO4Atdr3TW7-6RpdGuQQ35z1GH_On99lLsXh7fp1NF4XmvM1FxbUiXDeMAlDdUkqXxpC2pIaVTdeKjtGO1qUS3BBWMwK1FpVpFNUKACrGx-ju1LuN4WsHKct12EXfv5SsEZzVvKK8d1Unl44hpQhGbqPdqHiQlMgjMvmDTB6RyTOyPvfwK6dtVtkGn6Oy7t_04yltvQlxo_Yhuk5mdXAhmqi8tknyvyu-AVidhcY
CitedBy_id crossref_primary_10_1007_s11042_022_13893_x
crossref_primary_10_1080_19392699_2023_2190097
crossref_primary_10_62520_fujece_1527246
crossref_primary_10_1016_j_ymssp_2023_110834
crossref_primary_10_3390_mi14071384
crossref_primary_10_1007_s11554_024_01614_6
crossref_primary_10_1007_s11554_024_01502_z
crossref_primary_10_3390_min14020174
crossref_primary_10_3390_machines11121039
Cites_doi 10.1016/j.powtec.2018.01.002
10.1049/iet-smt.2017.0100
10.1016/j.asoc.2016.05.015
10.1080/19392699.2022.2051011
10.1016/j.measurement.2019.05.010
10.1145/3065386
10.1016/j.knosys.2012.05.013
10.1016/j.ijmst.2018.12.002
10.1080/19392699.2018.1540416
10.1177/0954406213477777
10.1016/j.measurement.2017.06.032
10.1016/j.neucom.2019.09.109
10.1016/C2010-0-68987-5
10.1016/j.measurement.2018.03.051
10.1016/j.measurement.2014.12.013
10.1016/j.powtec.2019.09.007
10.1109/access.2019.2937660
10.1080/19392699.2021.1932842
10.1016/j.apenergy.2016.12.017
10.1109/SOLI.2006.328958
10.1007/s12206-018-0508-y
10.4028/scientific.net/AMM.192.174
10.1016/j.measurement.2020.107571
10.1016/j.ijleo.2016.05.111
10.13436/j.mkjx.2013.10.098
10.1080/19392699.2018.1515075
ContentType Journal Article
Copyright 2022 Taylor & Francis Group, LLC 2022
2022 Taylor & Francis Group, LLC
Copyright_xml – notice: 2022 Taylor & Francis Group, LLC 2022
– notice: 2022 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1080/19392699.2022.2072306
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-2702
EndPage 725
ExternalDocumentID 10_1080_19392699_2022_2072306
2072306
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
30N
4.4
4P2
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACGOD
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFRAH
AGDLA
AGMYJ
AHDZW
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDH
EMK
EPL
ESX
E~A
E~B
GTTXZ
H13
HF~
H~P
I-F
IPNFZ
J.P
KYCEM
L8X
LJTGL
M4Z
NA5
NX~
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ABJIA
ADMLS
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
TASJS
ID FETCH-LOGICAL-c338t-53ca03c721ee1c8111bff0841f247d89d21d164a93f02620e6c95f7a1caeee523
ISSN 1939-2699
IngestDate Fri Jul 25 05:28:02 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
Tue Jul 01 04:02:15 EDT 2025
Wed Dec 25 09:05:30 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-53ca03c721ee1c8111bff0841f247d89d21d164a93f02620e6c95f7a1caeee523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2793263513
PQPubID 105604
PageCount 18
ParticipantIDs informaworld_taylorfrancis_310_1080_19392699_2022_2072306
crossref_citationtrail_10_1080_19392699_2022_2072306
crossref_primary_10_1080_19392699_2022_2072306
proquest_journals_2793263513
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-03
PublicationDateYYYYMMDD 2023-04-03
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-03
  day: 03
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of coal preparation and utilization
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References cit0011
cit0012
cit0010
cit0019
cit0017
cit0018
cit0015
cit0016
cit0013
cit0014
cit0022
cit0001
cit0023
cit0020
cit0021
cit0008
cit0009
cit0006
cit0007
cit0004
cit0026
cit0005
cit0002
cit0024
cit0003
cit0025
References_xml – ident: cit0011
  doi: 10.1016/j.powtec.2018.01.002
– ident: cit0021
  doi: 10.1049/iet-smt.2017.0100
– ident: cit0007
  doi: 10.1016/j.asoc.2016.05.015
– ident: cit0014
  doi: 10.1080/19392699.2022.2051011
– ident: cit0013
  doi: 10.1016/j.measurement.2019.05.010
– ident: cit0001
  doi: 10.1145/3065386
– ident: cit0006
  doi: 10.1016/j.knosys.2012.05.013
– ident: cit0016
  doi: 10.1016/j.ijmst.2018.12.002
– ident: cit0009
  doi: 10.1080/19392699.2018.1540416
– ident: cit0003
  doi: 10.1177/0954406213477777
– ident: cit0020
  doi: 10.1016/j.measurement.2017.06.032
– ident: cit0026
  doi: 10.1016/j.neucom.2019.09.109
– ident: cit0019
  doi: 10.1016/C2010-0-68987-5
– ident: cit0002
  doi: 10.1016/j.measurement.2018.03.051
– ident: cit0017
  doi: 10.1016/j.measurement.2014.12.013
– ident: cit0005
  doi: 10.1016/j.powtec.2019.09.007
– ident: cit0012
  doi: 10.1109/access.2019.2937660
– ident: cit0023
  doi: 10.1080/19392699.2021.1932842
– ident: cit0010
  doi: 10.1016/j.apenergy.2016.12.017
– ident: cit0018
  doi: 10.1109/SOLI.2006.328958
– ident: cit0004
  doi: 10.1007/s12206-018-0508-y
– ident: cit0024
  doi: 10.4028/scientific.net/AMM.192.174
– ident: cit0025
  doi: 10.1016/j.measurement.2020.107571
– ident: cit0015
  doi: 10.1016/j.ijleo.2016.05.111
– ident: cit0022
  doi: 10.13436/j.mkjx.2013.10.098
– ident: cit0008
  doi: 10.1080/19392699.2018.1515075
SSID ssj0062194
Score 2.329309
Snippet Belt conveyors are important transportation equipment in coal mining enterprises. At present, most research on this topic focuses on areas such as tear...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 708
SubjectTerms Accuracy
Belt
Belt conveyors
Coal mining
Deep learning
Fault diagnosis
Gray scale
Image acquisition
image processing
Inspection
Machine learning
Recognition
Support vector machines
SVM
Training
Wear
Title An intelligent belt wear fault diagnosis method based on deep learning
URI https://www.tandfonline.com/doi/abs/10.1080/19392699.2022.2072306
https://www.proquest.com/docview/2793263513
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuMABjS8xGMgHblVK_JWPY4dWTWiUSyv1Zjm2M4GqdNpSIfbX8xw7qatODLhEkSvbqd8v78Px-z2EPtJaaGW4Sgh4IwknWiSVFWliOeMZUULo2iU4f51nF0v-ZSVWo9FdnF3SVhN9d29eyf9IFdpAri5L9h8kOwwKDXAP8oUrSBiufyXjadPRPXhKzXZc2XU7_umYeWq1hVvjj9F9vw11osfOZBn3ecBYe90XjLiK_dP9DcKIVkJvXMrWjfVU4eEIM_y1dcjj3G3Me-VxBgP_2A7N4Kd7d725-qXClJ4Y0ud79Y8R9h8o646tsAExi4NSINF5JKdRS1YmNPNVkCY2asvTPTXs2ZoC3HikU_O0iMxz7vOkDzS_PyrpRnaTQeBPXZpd7iKsnanrP-_Pv8nZ8vJSLs5Xi0foMYUQw5X9YOm8t-IZaPJwIsE_fp_9VaSf7p1kz6_ZY709sPKd67I4Rs9CzIGnHkDP0cg2L9DTiInyJZpNGxxBCTsoYQcl3EEJD1DCHkq4gxLeNNhBCfdQeoWWs_PF54sklNhINGNFmwimVcp0Tom1RBdg-Kq6TgtOaspzU5SGEgMBtSpZnbrSBTbTpahzRbSy1grKXqOjZtPYNwgzcPxZZQSFUTi4oQX4vhm1xmjFq6IUJ4j3CyR14J93ZVDWkgSa2n5dpVtXGdb1BE2GbteegOWhDmW8-rLtAFp7bEr2QN_TXlQyvGK3kuYuxmGCsLd__vkderJ7QU7RUXuzte_BZW2rDx22fgNfX5BP
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8UD-rBbyOK2oPX4bq223okRoIKnCDh1nT9MEQyiIyY-Nfb7oOAxnDgtstrtrbv9fe6934_AB4CQ6VQRHjIohGPIEm9RFPf0wSTEAlKpXENzr1-2BmS1xEdrfTCuLJKl0Obgigij9XOud1ldFUS92hBBwtC5vpMAtdMFTkcvQv2KAsjJ9-A_X4VjUPrkeWfZeY5m6qL579h1s6nNfbSP9E6P4Lax0BWL19Unnw0F1nSlN-_eB23-7oTcFQiVNgqttQp2NHpGThc4S08B-1WCsdLLs8MJnqSwS_rM9CIhX1URf3eeA4LgWrozkoFpylUWs9gqVTxfgGG7efBU8crBRk8aTPZzKNYCh9LmzRqjWRsw2RijB8TZAISqZipACmbfgmGje-I7nUoGTWRQFJorW3Kewlq6TTVVwBiCxNxomhgRyEWtMQWKYWBVkoKksSM1gGploHLkq3ciWZMOCpJTatp4m6aeDlNddBcms0Kuo5NBmx1jXmW35OYQtSE4w22jWpD8NLz5zyIHCLGFOHrLYa-B_udQa_Luy_9txtw4DTu83Ih3AC17HOhby0SypK7fKv_ANYx92E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSAgG3ohCAQ-sKXFs5zFWQFReFQOV2CzHD1RRpRVNhcSvx06cqgWhDt2ynOXY9_guufsOgKtAU8El4R4yaMQjSFAvU9T3FMEkRJxSoW2D83Mv7PbJwxutqwknrqzS5tC6IooofbU17rHUdUXctcEcSRAmts0ksL1UkYXR62AjNPDEKjb2e7UzDo1Buh_LiWdl6iae_5ZZCE8L5KV_nHUZgdJdkNV7rwpPPtrTImuL71-0jiu93B7YcfgUdiqF2gdrKj8A23OshYcg7eRwMGPyLGCmhgX8MhYDNZ-aR1lV7w0msBpPDW2klHCUQ6nUGLo5Fe9HoJ_evd50PTeOwRMmjy08igX3sTApo1JIxMZJZlr7MUE6IJGMExkgaZIvnmDtW5p7FYqE6ogjwZVSJuE9Bo18lKsTALEBiTiTNDCrEANZYoOTwkBJKTjJ4oQ2AalvgQnHVW5HZgwZcpSm9TExe0zMHVMTtGdi44qsY5lAMn_FrCi_kuhqpAnDS2RbtT4wZ_cTFkQWD2OK8OkKS1-CzZfblD3d9x7PwJYdcF_WCuEWaBSfU3VuYFCRXZSK_gPaGvYO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+intelligent+belt+wear+fault+diagnosis+method+based+on+deep+learning&rft.jtitle=International+journal+of+coal+preparation+and+utilization&rft.au=Wang%2C+Bingjun&rft.au=Dou%2C+Dongyang&rft.au=Shen%2C+Ning&rft.date=2023-04-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1939-2699&rft.eissn=1939-2702&rft.volume=43&rft.issue=4&rft.spage=708&rft.epage=725&rft_id=info:doi/10.1080%2F19392699.2022.2072306&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-2699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-2699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-2699&client=summon