An intelligent belt wear fault diagnosis method based on deep learning
Belt conveyors are important transportation equipment in coal mining enterprises. At present, most research on this topic focuses on areas such as tear resistance and foreign body identification. Few studies have focused on belt wear, but belt wear is the subject of daily inspections on site. The ar...
Saved in:
Published in | International journal of coal preparation and utilization Vol. 43; no. 4; pp. 708 - 725 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
03.04.2023
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1939-2699 1939-2702 |
DOI | 10.1080/19392699.2022.2072306 |
Cover
Loading…
Abstract | Belt conveyors are important transportation equipment in coal mining enterprises. At present, most research on this topic focuses on areas such as tear resistance and foreign body identification. Few studies have focused on belt wear, but belt wear is the subject of daily inspections on site. The artificial grayscale analysis method, support vector machine (SVM) method, and deep learning network are proposed herein to identify the degree of belt wear by using image acquisition devices installed on belt conveyors to collect images of no-load belts, instead of manual inspection. The experimental results indicate that the grayscale analysis method has limitations in identifying belt wear. For complex types of wear, such as annular wear, its recognition capability is poor, and the grayscale analysis method is heavily dependent on the results of human analysis. The highest accuracy of the SVM method is 84.5%, and it effectively identifies complex wear states. After training, worn belts can be detected automatically. However, the selection of features during training completely depends on human decisions, and the accuracy is affected by such factors that have a great influence. The deep learning network attained a 91.5% average recognition accuracy rate with the highest accuracy being 95%. It can fully automate intelligent feature selection, training and detection. |
---|---|
AbstractList | Belt conveyors are important transportation equipment in coal mining enterprises. At present, most research on this topic focuses on areas such as tear resistance and foreign body identification. Few studies have focused on belt wear, but belt wear is the subject of daily inspections on site. The artificial grayscale analysis method, support vector machine (SVM) method, and deep learning network are proposed herein to identify the degree of belt wear by using image acquisition devices installed on belt conveyors to collect images of no-load belts, instead of manual inspection. The experimental results indicate that the grayscale analysis method has limitations in identifying belt wear. For complex types of wear, such as annular wear, its recognition capability is poor, and the grayscale analysis method is heavily dependent on the results of human analysis. The highest accuracy of the SVM method is 84.5%, and it effectively identifies complex wear states. After training, worn belts can be detected automatically. However, the selection of features during training completely depends on human decisions, and the accuracy is affected by such factors that have a great influence. The deep learning network attained a 91.5% average recognition accuracy rate with the highest accuracy being 95%. It can fully automate intelligent feature selection, training and detection. |
Author | Shen, Ning Dou, Dongyang Wang, Bingjun |
Author_xml | – sequence: 1 givenname: Bingjun surname: Wang fullname: Wang, Bingjun organization: BGRIMM Technology Group – sequence: 2 givenname: Dongyang surname: Dou fullname: Dou, Dongyang email: ddy41@cumt.edu.cn organization: BGRIMM Technology Group – sequence: 3 givenname: Ning surname: Shen fullname: Shen, Ning organization: Ningxia Coal Industry Co, Ltd |
BookMark | eNqFkEtLQzEQhYNUsK3-BCHg-tY87iu4sRSrQsGNrkOaO6kpaVKTlNJ_7y2tGxe6mTkM55yBb4QGPnhA6JaSCSUtuaeCC1YLMWGEsX40jJP6Ag2P94I1hA1-dG-6QqOU1oTUjIpyiOZTj63P4Jxdgc94CS7jPaiIjdr1srNq5UOyCW8gf4YOL1WCDgePO4Atdr3TW7-6RpdGuQQ35z1GH_On99lLsXh7fp1NF4XmvM1FxbUiXDeMAlDdUkqXxpC2pIaVTdeKjtGO1qUS3BBWMwK1FpVpFNUKACrGx-ju1LuN4WsHKct12EXfv5SsEZzVvKK8d1Unl44hpQhGbqPdqHiQlMgjMvmDTB6RyTOyPvfwK6dtVtkGn6Oy7t_04yltvQlxo_Yhuk5mdXAhmqi8tknyvyu-AVidhcY |
CitedBy_id | crossref_primary_10_1007_s11042_022_13893_x crossref_primary_10_1080_19392699_2023_2190097 crossref_primary_10_62520_fujece_1527246 crossref_primary_10_1016_j_ymssp_2023_110834 crossref_primary_10_3390_mi14071384 crossref_primary_10_1007_s11554_024_01614_6 crossref_primary_10_1007_s11554_024_01502_z crossref_primary_10_3390_min14020174 crossref_primary_10_3390_machines11121039 |
Cites_doi | 10.1016/j.powtec.2018.01.002 10.1049/iet-smt.2017.0100 10.1016/j.asoc.2016.05.015 10.1080/19392699.2022.2051011 10.1016/j.measurement.2019.05.010 10.1145/3065386 10.1016/j.knosys.2012.05.013 10.1016/j.ijmst.2018.12.002 10.1080/19392699.2018.1540416 10.1177/0954406213477777 10.1016/j.measurement.2017.06.032 10.1016/j.neucom.2019.09.109 10.1016/C2010-0-68987-5 10.1016/j.measurement.2018.03.051 10.1016/j.measurement.2014.12.013 10.1016/j.powtec.2019.09.007 10.1109/access.2019.2937660 10.1080/19392699.2021.1932842 10.1016/j.apenergy.2016.12.017 10.1109/SOLI.2006.328958 10.1007/s12206-018-0508-y 10.4028/scientific.net/AMM.192.174 10.1016/j.measurement.2020.107571 10.1016/j.ijleo.2016.05.111 10.13436/j.mkjx.2013.10.098 10.1080/19392699.2018.1515075 |
ContentType | Journal Article |
Copyright | 2022 Taylor & Francis Group, LLC 2022 2022 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2022 Taylor & Francis Group, LLC 2022 – notice: 2022 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1080/19392699.2022.2072306 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-2702 |
EndPage | 725 |
ExternalDocumentID | 10_1080_19392699_2022_2072306 2072306 |
Genre | Research Article |
GroupedDBID | .7F .QJ 0BK 0R~ 30N 4.4 4P2 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACGOD ACIWK ACTIO ACUHS ADCVX ADGTB AEISY AENEX AEOZL AEPSL AEYOC AFRAH AGDLA AGMYJ AHDZW AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EDH EMK EPL ESX E~A E~B GTTXZ H13 HF~ H~P I-F IPNFZ J.P KYCEM L8X LJTGL M4Z NA5 NX~ PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ABJIA ADMLS ADYSH AFRVT AIYEW AMPGV CITATION 7SP 7TB 8FD FR3 KR7 L7M TASJS |
ID | FETCH-LOGICAL-c338t-53ca03c721ee1c8111bff0841f247d89d21d164a93f02620e6c95f7a1caeee523 |
ISSN | 1939-2699 |
IngestDate | Fri Jul 25 05:28:02 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Tue Jul 01 04:02:15 EDT 2025 Wed Dec 25 09:05:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-53ca03c721ee1c8111bff0841f247d89d21d164a93f02620e6c95f7a1caeee523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2793263513 |
PQPubID | 105604 |
PageCount | 18 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_19392699_2022_2072306 crossref_citationtrail_10_1080_19392699_2022_2072306 crossref_primary_10_1080_19392699_2022_2072306 proquest_journals_2793263513 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-03 |
PublicationDateYYYYMMDD | 2023-04-03 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | International journal of coal preparation and utilization |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | cit0011 cit0012 cit0010 cit0019 cit0017 cit0018 cit0015 cit0016 cit0013 cit0014 cit0022 cit0001 cit0023 cit0020 cit0021 cit0008 cit0009 cit0006 cit0007 cit0004 cit0026 cit0005 cit0002 cit0024 cit0003 cit0025 |
References_xml | – ident: cit0011 doi: 10.1016/j.powtec.2018.01.002 – ident: cit0021 doi: 10.1049/iet-smt.2017.0100 – ident: cit0007 doi: 10.1016/j.asoc.2016.05.015 – ident: cit0014 doi: 10.1080/19392699.2022.2051011 – ident: cit0013 doi: 10.1016/j.measurement.2019.05.010 – ident: cit0001 doi: 10.1145/3065386 – ident: cit0006 doi: 10.1016/j.knosys.2012.05.013 – ident: cit0016 doi: 10.1016/j.ijmst.2018.12.002 – ident: cit0009 doi: 10.1080/19392699.2018.1540416 – ident: cit0003 doi: 10.1177/0954406213477777 – ident: cit0020 doi: 10.1016/j.measurement.2017.06.032 – ident: cit0026 doi: 10.1016/j.neucom.2019.09.109 – ident: cit0019 doi: 10.1016/C2010-0-68987-5 – ident: cit0002 doi: 10.1016/j.measurement.2018.03.051 – ident: cit0017 doi: 10.1016/j.measurement.2014.12.013 – ident: cit0005 doi: 10.1016/j.powtec.2019.09.007 – ident: cit0012 doi: 10.1109/access.2019.2937660 – ident: cit0023 doi: 10.1080/19392699.2021.1932842 – ident: cit0010 doi: 10.1016/j.apenergy.2016.12.017 – ident: cit0018 doi: 10.1109/SOLI.2006.328958 – ident: cit0004 doi: 10.1007/s12206-018-0508-y – ident: cit0024 doi: 10.4028/scientific.net/AMM.192.174 – ident: cit0025 doi: 10.1016/j.measurement.2020.107571 – ident: cit0015 doi: 10.1016/j.ijleo.2016.05.111 – ident: cit0022 doi: 10.13436/j.mkjx.2013.10.098 – ident: cit0008 doi: 10.1080/19392699.2018.1515075 |
SSID | ssj0062194 |
Score | 2.329309 |
Snippet | Belt conveyors are important transportation equipment in coal mining enterprises. At present, most research on this topic focuses on areas such as tear... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 708 |
SubjectTerms | Accuracy Belt Belt conveyors Coal mining Deep learning Fault diagnosis Gray scale Image acquisition image processing Inspection Machine learning Recognition Support vector machines SVM Training Wear |
Title | An intelligent belt wear fault diagnosis method based on deep learning |
URI | https://www.tandfonline.com/doi/abs/10.1080/19392699.2022.2072306 https://www.proquest.com/docview/2793263513 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuMABjS8xGMgHblVK_JWPY4dWTWiUSyv1Zjm2M4GqdNpSIfbX8xw7qatODLhEkSvbqd8v78Px-z2EPtJaaGW4Sgh4IwknWiSVFWliOeMZUULo2iU4f51nF0v-ZSVWo9FdnF3SVhN9d29eyf9IFdpAri5L9h8kOwwKDXAP8oUrSBiufyXjadPRPXhKzXZc2XU7_umYeWq1hVvjj9F9vw11osfOZBn3ecBYe90XjLiK_dP9DcKIVkJvXMrWjfVU4eEIM_y1dcjj3G3Me-VxBgP_2A7N4Kd7d725-qXClJ4Y0ud79Y8R9h8o646tsAExi4NSINF5JKdRS1YmNPNVkCY2asvTPTXs2ZoC3HikU_O0iMxz7vOkDzS_PyrpRnaTQeBPXZpd7iKsnanrP-_Pv8nZ8vJSLs5Xi0foMYUQw5X9YOm8t-IZaPJwIsE_fp_9VaSf7p1kz6_ZY709sPKd67I4Rs9CzIGnHkDP0cg2L9DTiInyJZpNGxxBCTsoYQcl3EEJD1DCHkq4gxLeNNhBCfdQeoWWs_PF54sklNhINGNFmwimVcp0Tom1RBdg-Kq6TgtOaspzU5SGEgMBtSpZnbrSBTbTpahzRbSy1grKXqOjZtPYNwgzcPxZZQSFUTi4oQX4vhm1xmjFq6IUJ4j3CyR14J93ZVDWkgSa2n5dpVtXGdb1BE2GbteegOWhDmW8-rLtAFp7bEr2QN_TXlQyvGK3kuYuxmGCsLd__vkderJ7QU7RUXuzte_BZW2rDx22fgNfX5BP |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8UD-rBbyOK2oPX4bq223okRoIKnCDh1nT9MEQyiIyY-Nfb7oOAxnDgtstrtrbv9fe6934_AB4CQ6VQRHjIohGPIEm9RFPf0wSTEAlKpXENzr1-2BmS1xEdrfTCuLJKl0Obgigij9XOud1ldFUS92hBBwtC5vpMAtdMFTkcvQv2KAsjJ9-A_X4VjUPrkeWfZeY5m6qL579h1s6nNfbSP9E6P4Lax0BWL19Unnw0F1nSlN-_eB23-7oTcFQiVNgqttQp2NHpGThc4S08B-1WCsdLLs8MJnqSwS_rM9CIhX1URf3eeA4LgWrozkoFpylUWs9gqVTxfgGG7efBU8crBRk8aTPZzKNYCh9LmzRqjWRsw2RijB8TZAISqZipACmbfgmGje-I7nUoGTWRQFJorW3Kewlq6TTVVwBiCxNxomhgRyEWtMQWKYWBVkoKksSM1gGploHLkq3ciWZMOCpJTatp4m6aeDlNddBcms0Kuo5NBmx1jXmW35OYQtSE4w22jWpD8NLz5zyIHCLGFOHrLYa-B_udQa_Luy_9txtw4DTu83Ih3AC17HOhby0SypK7fKv_ANYx92E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSAgG3ohCAQ-sKXFs5zFWQFReFQOV2CzHD1RRpRVNhcSvx06cqgWhDt2ynOXY9_guufsOgKtAU8El4R4yaMQjSFAvU9T3FMEkRJxSoW2D83Mv7PbJwxutqwknrqzS5tC6IooofbU17rHUdUXctcEcSRAmts0ksL1UkYXR62AjNPDEKjb2e7UzDo1Buh_LiWdl6iae_5ZZCE8L5KV_nHUZgdJdkNV7rwpPPtrTImuL71-0jiu93B7YcfgUdiqF2gdrKj8A23OshYcg7eRwMGPyLGCmhgX8MhYDNZ-aR1lV7w0msBpPDW2klHCUQ6nUGLo5Fe9HoJ_evd50PTeOwRMmjy08igX3sTApo1JIxMZJZlr7MUE6IJGMExkgaZIvnmDtW5p7FYqE6ogjwZVSJuE9Bo18lKsTALEBiTiTNDCrEANZYoOTwkBJKTjJ4oQ2AalvgQnHVW5HZgwZcpSm9TExe0zMHVMTtGdi44qsY5lAMn_FrCi_kuhqpAnDS2RbtT4wZ_cTFkQWD2OK8OkKS1-CzZfblD3d9x7PwJYdcF_WCuEWaBSfU3VuYFCRXZSK_gPaGvYO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+intelligent+belt+wear+fault+diagnosis+method+based+on+deep+learning&rft.jtitle=International+journal+of+coal+preparation+and+utilization&rft.au=Wang%2C+Bingjun&rft.au=Dou%2C+Dongyang&rft.au=Shen%2C+Ning&rft.date=2023-04-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1939-2699&rft.eissn=1939-2702&rft.volume=43&rft.issue=4&rft.spage=708&rft.epage=725&rft_id=info:doi/10.1080%2F19392699.2022.2072306&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-2699&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-2699&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-2699&client=summon |