Air stable copper-silver core-shell submicron particles: Synthesis and conductive ink formulation

[Display omitted] •The air-stable Cu@Ag particles were synthesized.•The conductive inks containing Cu@Ag particles with optimal coating characteristics were formulated.•Metallic Cu@Ag films with conductivity as high as 16% of bulk copper were obtained. We report on the synthesis of copper-silver cor...

Full description

Saved in:
Bibliographic Details
Published inColloids and surfaces. A, Physicochemical and engineering aspects Vol. 521; pp. 272 - 280
Main Authors Pajor-Świerzy, Anna, Farraj, Yousef, Kamyshny, Alexander, Magdassi, Shlomo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 20.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •The air-stable Cu@Ag particles were synthesized.•The conductive inks containing Cu@Ag particles with optimal coating characteristics were formulated.•Metallic Cu@Ag films with conductivity as high as 16% of bulk copper were obtained. We report on the synthesis of copper-silver core-shell (Cu@Ag) particles with about 1μm-diameter Cu core coated with a thin (∼20nm) silver shell, for application in printed electronics as low cost conductive ink. The process is based on using the environmentally friendly sodium formaldehyde sulfoxylate dehydrate as a reducing agent for copper ions and two types of polymeric stabilizers (nonionic PVP and anionic PAA). The formation of core-shell particles is followed by transmetallation reaction on the surface of the Cu particles, where copper atoms function as the reducer for silver ions. Characterization of the submicron particles by SEM, EDS and XRD confirm the core-shell structure. The resulting Cu@Ag particles enable overcoming a major challenge in copper ink, their rapid oxidation in air. It was found that ink formulations based on propylene glycol as the liquid vehicle and containing a silicone based wetting agent possesses the optimal characteristics (wetting, sintering) for printing on a glass substrate. To obtain conductive metallic structures, thermal sintering of metallic patterns was used. The Cu@Ag coating are stable to oxidation for at least 6 months at room temperature, and also during sintering process which is carried out at temperatures up to 250°C. The conductivity of Cu@Ag coatings after sintering at 250°C was high, 16% of that for bulk copper.
AbstractList We report on the synthesis of copper-silver core-shell (Cu@Ag) particles with about 1μm-diameter Cu core coated with a thin (∼20nm) silver shell, for application in printed electronics as low cost conductive ink. The process is based on using the environmentally friendly sodium formaldehyde sulfoxylate dehydrate as a reducing agent for copper ions and two types of polymeric stabilizers (nonionic PVP and anionic PAA). The formation of core-shell particles is followed by transmetallation reaction on the surface of the Cu particles, where copper atoms function as the reducer for silver ions. Characterization of the submicron particles by SEM, EDS and XRD confirm the core-shell structure. The resulting Cu@Ag particles enable overcoming a major challenge in copper ink, their rapid oxidation in air. It was found that ink formulations based on propylene glycol as the liquid vehicle and containing a silicone based wetting agent possesses the optimal characteristics (wetting, sintering) for printing on a glass substrate. To obtain conductive metallic structures, thermal sintering of metallic patterns was used. The Cu@Ag coating are stable to oxidation for at least 6 months at room temperature, and also during sintering process which is carried out at temperatures up to 250°C. The conductivity of Cu@Ag coatings after sintering at 250°C was high, 16% of that for bulk copper.
[Display omitted] •The air-stable Cu@Ag particles were synthesized.•The conductive inks containing Cu@Ag particles with optimal coating characteristics were formulated.•Metallic Cu@Ag films with conductivity as high as 16% of bulk copper were obtained. We report on the synthesis of copper-silver core-shell (Cu@Ag) particles with about 1μm-diameter Cu core coated with a thin (∼20nm) silver shell, for application in printed electronics as low cost conductive ink. The process is based on using the environmentally friendly sodium formaldehyde sulfoxylate dehydrate as a reducing agent for copper ions and two types of polymeric stabilizers (nonionic PVP and anionic PAA). The formation of core-shell particles is followed by transmetallation reaction on the surface of the Cu particles, where copper atoms function as the reducer for silver ions. Characterization of the submicron particles by SEM, EDS and XRD confirm the core-shell structure. The resulting Cu@Ag particles enable overcoming a major challenge in copper ink, their rapid oxidation in air. It was found that ink formulations based on propylene glycol as the liquid vehicle and containing a silicone based wetting agent possesses the optimal characteristics (wetting, sintering) for printing on a glass substrate. To obtain conductive metallic structures, thermal sintering of metallic patterns was used. The Cu@Ag coating are stable to oxidation for at least 6 months at room temperature, and also during sintering process which is carried out at temperatures up to 250°C. The conductivity of Cu@Ag coatings after sintering at 250°C was high, 16% of that for bulk copper.
Author Farraj, Yousef
Pajor-Świerzy, Anna
Magdassi, Shlomo
Kamyshny, Alexander
Author_xml – sequence: 1
  givenname: Anna
  surname: Pajor-Świerzy
  fullname: Pajor-Świerzy, Anna
  email: ncpajor@cyf-kr.edu.pl
– sequence: 2
  givenname: Yousef
  surname: Farraj
  fullname: Farraj, Yousef
– sequence: 3
  givenname: Alexander
  surname: Kamyshny
  fullname: Kamyshny, Alexander
– sequence: 4
  givenname: Shlomo
  surname: Magdassi
  fullname: Magdassi, Shlomo
BookMark eNqFkEFP3DAQhS20SOwCfwHl2EtSJ14nTtVDEaJQaaUegLPlOGPhrddOPc5K--_rZeHSC6fRG703mvetyMIHD4Tc1LSqad1-3VY6OJyjUVWTdUVFRZv2jCxr0bFyzXi_IEvaN13Zdby7ICvELaV0zbt-SdStjQUmNTgodJgmiCVat4eYVYQSX8G5AudhZ3UMvphUTFY7wG_F08GnV0CLhfJjdvtx1snuobD-T2FC3M1OJRv8FTk3yiFcv89L8vLz_vnusdz8fvh1d7spNWMilbwZjKm56HrB2TBoOgpaU6Ga9WDEmPfCQDf2us9NGs5HqoxquWKs5WCMEuySfDndnWL4OwMmubOo8_vKQ5hRNrkz69c1O1rbkzV3Qoxg5BTtTsWDrKk8MpVb-cFUHplKKmRmmoPf_wtqm95apqis-zz-4xSHzGFvIUrUFryG0UbQSY7BfnbiHyzdnAg
CitedBy_id crossref_primary_10_1002_aelm_201800831
crossref_primary_10_1039_C9RA05954G
crossref_primary_10_1021_acsami_7b10748
crossref_primary_10_1016_j_apsusc_2022_152691
crossref_primary_10_1002_slct_201900426
crossref_primary_10_1016_j_ccr_2025_216455
crossref_primary_10_1088_1361_6528_ab925c
crossref_primary_10_3390_ma14092304
crossref_primary_10_1007_s11051_019_4567_5
crossref_primary_10_1016_j_cej_2019_04_141
crossref_primary_10_1088_1361_6528_ab5fed
crossref_primary_10_3139_146_111600
crossref_primary_10_3390_met12020234
crossref_primary_10_1016_j_colsurfa_2021_126907
crossref_primary_10_1088_2058_8585_ac49db
crossref_primary_10_1016_j_cplett_2020_137904
crossref_primary_10_1016_j_cplett_2020_137726
crossref_primary_10_1016_j_jallcom_2020_154623
crossref_primary_10_1088_1361_6528_ab0467
crossref_primary_10_1021_acsaelm_2c00931
crossref_primary_10_1016_j_ceramint_2022_12_005
crossref_primary_10_1016_j_enmm_2021_100493
crossref_primary_10_1039_D4TC02028F
crossref_primary_10_1007_s11664_022_09922_y
crossref_primary_10_1021_acs_iecr_0c04251
crossref_primary_10_1021_acsaelm_4c01257
crossref_primary_10_1016_j_cis_2021_102578
crossref_primary_10_1007_s11664_018_6631_9
crossref_primary_10_1016_j_colsurfa_2020_124567
crossref_primary_10_1088_1361_6528_ab68b9
crossref_primary_10_3390_polym14173467
crossref_primary_10_1002_adma_202006792
crossref_primary_10_1088_1361_6528_aae677
crossref_primary_10_3390_nano10091689
crossref_primary_10_1088_2058_8585_aa89bb
crossref_primary_10_1186_s40580_021_00265_8
crossref_primary_10_1007_s10854_022_08210_z
crossref_primary_10_1039_D5NJ00553A
Cites_doi 10.1002/smll.201303000
10.1021/cm400635z
10.1021/jp1104196
10.1016/j.jcis.2004.01.019
10.1088/0957-4484/19/41/415604
10.1039/c0jm00264j
10.1021/cm021804b
10.1039/c3tc00904a
10.1021/cm070182x
10.1039/b821327e
10.1016/j.matchemphys.2008.01.013
10.1039/C4CC08749F
10.1002/adma.200901141
10.1021/la0635092
10.1016/j.matlet.2007.03.014
10.1021/la104136w
10.1002/adfm.200700902
10.1088/0957-4484/24/26/265602
10.1021/ja053659j
10.1021/la802182y
10.1007/s11051-007-9324-5
10.1016/j.tsf.2006.11.142
10.1039/c4tc00509k
10.1007/s11664-014-3588-1
10.1016/j.colsurfa.2010.02.011
10.1108/03056121211280413
10.1007/s11051-008-9441-9
10.3390/ma3094626
10.1007/s11051-005-9065-2
10.1186/1556-276X-8-101
10.1039/c4nr00102h
10.1016/j.matchemphys.2014.02.045
10.2174/1874183501104010019
10.1016/j.powtec.2014.04.064
10.1002/admi.201400448
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.colsurfa.2016.08.026
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-4359
EndPage 280
ExternalDocumentID 10_1016_j_colsurfa_2016_08_026
S0927775716306641
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SPC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
WH7
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIIUN
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCB
SEW
SSH
VH1
WUQ
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c338t-52bff15879853bbc0d80108a24bf8d5878fe7d9c9092255d0afa65a3365effa83
IEDL.DBID .~1
ISSN 0927-7757
IngestDate Tue Aug 05 09:50:37 EDT 2025
Thu Apr 24 23:08:39 EDT 2025
Tue Jul 01 00:42:10 EDT 2025
Fri Feb 23 02:26:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Conductivity
Cu@Ag core-shell particles
Metallic ink
Sintering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-52bff15879853bbc0d80108a24bf8d5878fe7d9c9092255d0afa65a3365effa83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000394138
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_2000394138
crossref_primary_10_1016_j_colsurfa_2016_08_026
crossref_citationtrail_10_1016_j_colsurfa_2016_08_026
elsevier_sciencedirect_doi_10_1016_j_colsurfa_2016_08_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-20
PublicationDateYYYYMMDD 2017-05-20
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-20
  day: 20
PublicationDecade 2010
PublicationTitle Colloids and surfaces. A, Physicochemical and engineering aspects
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rivero, Goicoechea, Urrutia, Arregui (bib0205) 2013; 8
Chee, Lee (bib0150) 2014; 2
Rosen, Grouchko, Magdassi (bib0055) 2015; 2
Wu, Mosher, Zeng (bib0120) 2006; 8
Grouchko, Kamyshny, Magdassi (bib0165) 2009; 19
Jeong, Woo, Kim, Lim, Kim, Shin, Xia, Moon (bib0190) 2008; 18
Perelaer, Schubert (bib0020) 2012
Panaćek, Prucek, Hrbać, Nevecnǎ, Šteffkova, Zboril, Kvítek (bib0200) 2014; 26
Singh, Haverinen, Dhagat, Jabbour (bib0015) 2010; 22
Khanna, Khale, Shaikh, Rao (bib0180) 2008; 110
Grouchko, Kamyshny, Magdassi (bib0135) 2009; 19
Chen, Mochizuki, Maitani, Wada (bib0210) 2013; 24
Kamyshny, Magdassi (bib0005) 2014; 10
Tsai, Chang, Chen, Chung, Liang, Ma, Yang (bib0095) 2015; 10
Kim, Lee, Lee, Rhee (bib0145) 2014; 263
Jeong, Woo, Kim, Lim, Kim, Shin, Xia, Moon (bib0105) 2008; 18
Carrol, Reveles, Shultz, Khanna, Carpenter (bib0090) 2011; 115
Grouchko, Kamyshny, Ben-Ami, Magdassi (bib0160) 2009; 11
Lee, Kim, Choi, Park, Ko, Oh, Cheon (bib0125) 2005; 127
Song, Sun, Zhang, Yin (bib0060) 2004; 273
Cummins, Desmulliez (bib0025) 2012; 38
Khanna, More, Jawalkar, Patil, Rao (bib0185) 2009; 11
Subramanian (bib0030) 2012
Woo, Kim, Kim, Lim, Moon (bib0195) 2009; 25
Chen, Li, Shi, Du, Zhao, Sheng, Liu (bib0130) 2007; 19
Kamyshny, Steinke, Magdassi (bib0010) 2011; 4
Magdassi, Grouchko, Kamyshny (bib0100) 2010; 3
Farraj, Grouchko, Magdassi (bib0050) 2015; 51
Tang, Yang, Wang (bib0085) 2010; 360
Khanna, Gaikwad, Adhyapak, Singh, Marimuthu (bib0175) 2007; 61
Lee, Kim, Koo, Lee, Lee (bib0140) 2015; 26
Kamyshny, Magdassi (bib0045) 2010
Li, Li, Wei, Tan, Chen (bib0110) 2014; 146
Magdassi, Bassa, Vinetsky, Kamyshny (bib0170) 2003; 15
Lee, Choi, Lee, Stott, Kim (bib0080) 2008; 19
Jeong, Lee, Jo, Lee, Seo, Ahn, Kim, Jang, Park, Ryu, Choi (bib0070) 2013; 1
Jeong, Song, Lee, Lee, Choi, Son, Kim, Paik, Oh, Ryu (bib0065) 2011; 27
Perelaer, Smith, Mager, Soltman, Volkman, Subramanian, Korvink, Schubert (bib0035) 2010; 20
Hong, Kim (bib0155) 2015; 44
Park, Kim, Jeong, Moon, Kim (bib0115) 2007; 515
Mott, Galkowski, Wang, Luo, Zhong (bib0075) 2007; 23
Layani, Kamyshny, Magdassi (bib0040) 2014; 6
Chen (10.1016/j.colsurfa.2016.08.026_bib0130) 2007; 19
Magdassi (10.1016/j.colsurfa.2016.08.026_bib0170) 2003; 15
Woo (10.1016/j.colsurfa.2016.08.026_bib0195) 2009; 25
Panaćek (10.1016/j.colsurfa.2016.08.026_bib0200) 2014; 26
Jeong (10.1016/j.colsurfa.2016.08.026_bib0105) 2008; 18
Perelaer (10.1016/j.colsurfa.2016.08.026_bib0020) 2012
Hong (10.1016/j.colsurfa.2016.08.026_bib0155) 2015; 44
Khanna (10.1016/j.colsurfa.2016.08.026_bib0175) 2007; 61
Jeong (10.1016/j.colsurfa.2016.08.026_bib0065) 2011; 27
Magdassi (10.1016/j.colsurfa.2016.08.026_bib0100) 2010; 3
Kamyshny (10.1016/j.colsurfa.2016.08.026_bib0045) 2010
Song (10.1016/j.colsurfa.2016.08.026_bib0060) 2004; 273
Lee (10.1016/j.colsurfa.2016.08.026_bib0125) 2005; 127
Grouchko (10.1016/j.colsurfa.2016.08.026_bib0135) 2009; 19
Khanna (10.1016/j.colsurfa.2016.08.026_bib0180) 2008; 110
Cummins (10.1016/j.colsurfa.2016.08.026_bib0025) 2012; 38
Mott (10.1016/j.colsurfa.2016.08.026_bib0075) 2007; 23
Singh (10.1016/j.colsurfa.2016.08.026_bib0015) 2010; 22
Kamyshny (10.1016/j.colsurfa.2016.08.026_bib0005) 2014; 10
Kim (10.1016/j.colsurfa.2016.08.026_bib0145) 2014; 263
Park (10.1016/j.colsurfa.2016.08.026_bib0115) 2007; 515
Grouchko (10.1016/j.colsurfa.2016.08.026_bib0160) 2009; 11
Subramanian (10.1016/j.colsurfa.2016.08.026_bib0030) 2012
Rosen (10.1016/j.colsurfa.2016.08.026_bib0055) 2015; 2
Rivero (10.1016/j.colsurfa.2016.08.026_bib0205) 2013; 8
Layani (10.1016/j.colsurfa.2016.08.026_bib0040) 2014; 6
Farraj (10.1016/j.colsurfa.2016.08.026_bib0050) 2015; 51
Tang (10.1016/j.colsurfa.2016.08.026_bib0085) 2010; 360
Chen (10.1016/j.colsurfa.2016.08.026_bib0210) 2013; 24
Wu (10.1016/j.colsurfa.2016.08.026_bib0120) 2006; 8
Jeong (10.1016/j.colsurfa.2016.08.026_bib0190) 2008; 18
Lee (10.1016/j.colsurfa.2016.08.026_bib0140) 2015; 26
Li (10.1016/j.colsurfa.2016.08.026_bib0110) 2014; 146
Chee (10.1016/j.colsurfa.2016.08.026_bib0150) 2014; 2
Grouchko (10.1016/j.colsurfa.2016.08.026_bib0165) 2009; 19
Khanna (10.1016/j.colsurfa.2016.08.026_bib0185) 2009; 11
Jeong (10.1016/j.colsurfa.2016.08.026_bib0070) 2013; 1
Carrol (10.1016/j.colsurfa.2016.08.026_bib0090) 2011; 115
Lee (10.1016/j.colsurfa.2016.08.026_bib0080) 2008; 19
Kamyshny (10.1016/j.colsurfa.2016.08.026_bib0010) 2011; 4
Perelaer (10.1016/j.colsurfa.2016.08.026_bib0035) 2010; 20
Tsai (10.1016/j.colsurfa.2016.08.026_bib0095) 2015; 10
References_xml – volume: 8
  start-page: 1
  year: 2013
  end-page: 9
  ident: bib0205
  article-title: Effect of both protective and reducing agents in the synthesis of multicolor silver nanoparticles
  publication-title: Nanoscale Res. Lett.
– volume: 11
  start-page: 713
  year: 2009
  end-page: 716
  ident: bib0160
  article-title: Synthesis of copper nanoparticles catalyzed by pre-formed silver nanoparticles
  publication-title: J. Nanopart. Res.
– volume: 61
  start-page: 4711
  year: 2007
  end-page: 4714
  ident: bib0175
  article-title: Synthesis and characterization of copper nanoparticles
  publication-title: Mater. Lett.
– volume: 8
  start-page: 965
  year: 2006
  end-page: 969
  ident: bib0120
  article-title: One-step green route to narrowly dispersed copper nanocrystals
  publication-title: J. Nanopart. Res.
– volume: 2
  start-page: 1
  year: 2015
  end-page: 5
  ident: bib0055
  article-title: Printing a self-reducing copper precursor on 2D and 3D objects to yield copper patterns with 50% copper's bulk conductivity
  publication-title: Adv. Mater. Interfaces
– volume: 1
  start-page: 2704
  year: 2013
  end-page: 2710
  ident: bib0070
  article-title: Air-stable, surface-oxide free Cu nanoparticles for highly conductive Cu ink and their application to printed graphene transistors
  publication-title: J. Mater. Chem. C
– volume: 20
  start-page: 8446
  year: 2010
  end-page: 8453
  ident: bib0035
  article-title: Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials
  publication-title: J. Mater. Chem.
– volume: 6
  start-page: 5581
  year: 2014
  end-page: 5591
  ident: bib0040
  article-title: Transparent conductors composed of nanomaterials
  publication-title: Nanoscale
– volume: 25
  start-page: 429
  year: 2009
  end-page: 433
  ident: bib0195
  article-title: Ink-jet printing of Cu-Ag based highly conductive tracks on a transparent substrate
  publication-title: Langmuir
– start-page: 747
  year: 2010
  end-page: 778
  ident: bib0045
  article-title: Aqueous dispersions of metallic nanoparticles. Preparation, stabilization, and application
  publication-title: Nanoscience: Colloidal and Interfacial Aspects
– volume: 51
  start-page: 1587
  year: 2015
  end-page: 1590
  ident: bib0050
  article-title: Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics
  publication-title: Chem. Commun.
– volume: 515
  start-page: 7706
  year: 2007
  end-page: 7711
  ident: bib0115
  article-title: Direct writing of copper conductive patterns by ink-jet printing
  publication-title: Thin Solid Films
– volume: 3
  start-page: 4626
  year: 2010
  end-page: 4638
  ident: bib0100
  article-title: Copper nanoparticles for printed electronics: routes towards achieving oxidation stability
  publication-title: Materials
– volume: 19
  start-page: 3057
  year: 2009
  end-page: 3062
  ident: bib0165
  article-title: Formation of air-stable copper-silver core-shell nanoparticles for ink-jet printing
  publication-title: J. Mater. Chem.
– start-page: 347
  year: 2012
  end-page: 364
  ident: bib0020
  article-title: Inkjet printing of interconnects and contacts based on inorganic nanoparticles for printed electronic applications
  publication-title: Inkjet-Based Micromanufactoring
– volume: 38
  start-page: 193
  year: 2012
  end-page: 213
  ident: bib0025
  article-title: Inkjet printing of conductive materials: a review
  publication-title: Circuit Word
– volume: 19
  start-page: 415604
  year: 2008
  ident: bib0080
  article-title: Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics
  publication-title: Nanotechnology
– volume: 127
  start-page: 16090
  year: 2005
  end-page: 16097
  ident: bib0125
  article-title: Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 793
  year: 2009
  end-page: 799
  ident: bib0185
  article-title: Synthesis of hydrophilic copper nanoparticles: effect of reaction temperature
  publication-title: J. Nanopart. Res.
– volume: 27
  start-page: 3144
  year: 2011
  end-page: 3149
  ident: bib0065
  article-title: Stable aqueous based Cu nanoparticle ink for printing well-defined highly conductive features on a plastic substrate
  publication-title: Langmuir
– volume: 26
  start-page: 1332
  year: 2014
  end-page: 1339
  ident: bib0200
  article-title: Polyacrylate-assisted size control of silver nanoparticles and their catalytic activity
  publication-title: Chem. Mater
– volume: 19
  start-page: 3057
  year: 2009
  end-page: 3062
  ident: bib0135
  article-title: Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing
  publication-title: J. Mater. Chem.
– volume: 24
  start-page: 265602
  year: 2013
  ident: bib0210
  article-title: Facile synthesis of bimetallic Cu-Ag nanoparticles under microwave irradiation and their oxidation resisintance
  publication-title: Nanotechnol
– volume: 273
  start-page: 463
  year: 2004
  end-page: 469
  ident: bib0060
  article-title: A method for the synthesis of spherical copper nanoparticles in the organic phase
  publication-title: J. Colloid Interface Sci.
– volume: 18
  start-page: 679
  year: 2008
  end-page: 686
  ident: bib0190
  article-title: Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing
  publication-title: Adv. Funct. Mater.
– volume: 44
  start-page: 823
  year: 2015
  end-page: 830
  ident: bib0155
  article-title: Synthesis of 3D printable Cu-Ag core-shell materials: kinetics of CuO film removal
  publication-title: J. Electron. Mater.
– volume: 2
  start-page: 5372
  year: 2014
  end-page: 5381
  ident: bib0150
  article-title: Preparation and oxidation behavior of Ag-coated Cu nanoparticles less than 20
  publication-title: J. Mater. Chem. C
– volume: 4
  start-page: 19
  year: 2011
  end-page: 36
  ident: bib0010
  article-title: Metal-based inkjet inks for printed electronics
  publication-title: Open Appl. Phys. J.
– volume: 18
  start-page: 679
  year: 2008
  end-page: 686
  ident: bib0105
  article-title: J. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 2208
  year: 2003
  end-page: 2217
  ident: bib0170
  article-title: Silver nanoparticles as pigments for water-based ink-jet inks
  publication-title: Chem. Mater.
– volume: 360
  start-page: 99
  year: 2010
  end-page: 104
  ident: bib0085
  article-title: A simple way of preparing high-concentration and high-purity nano copper colloid for conductive ink in inkjet printing technology
  publication-title: Colloids Surf. A
– volume: 146
  start-page: 82
  year: 2014
  end-page: 87
  ident: bib0110
  article-title: Preparation of conductive Cu patterns by directly writing using nano-Cu ink
  publication-title: Mater. Chem. Phys.
– volume: 115
  start-page: 2656
  year: 2011
  end-page: 2664
  ident: bib0090
  article-title: Preparation of elemental Cu and Ni nanoparticles by the polyol method: an experimental and theoretical approach
  publication-title: J. Phys. Chem. C
– volume: 110
  start-page: 21
  year: 2008
  end-page: 25
  ident: bib0180
  article-title: C.V.V. Satyanarayana, Synthesis of oleic acid capped copper nano-particles
  publication-title: Mater. Chem. Phys.
– volume: 10
  start-page: 1
  year: 2015
  end-page: 7
  ident: bib0095
  article-title: A study of the preparation and properties of antioxidative copper inks with high electrical conductivity
  publication-title: Nanoscale Res. Lett
– volume: 19
  start-page: 3399
  year: 2007
  end-page: 3405
  ident: bib0130
  article-title: Properties of core-shell Ni-Au nanoparticles synthesized through a redox-transmetalation method in reverse microemulsion
  publication-title: Chem. Mater.
– volume: 23
  start-page: 5740
  year: 2007
  end-page: 5745
  ident: bib0075
  article-title: Synthesis of size-controlled and shaped copper nanoparticles
  publication-title: Langmuir
– volume: 263
  start-page: 1
  year: 2014
  end-page: 6
  ident: bib0145
  article-title: A novel method to prepare Cu@Ag core-shell nanoparticles for printed flexible electronics
  publication-title: Powder Technol.
– volume: 22
  start-page: 673
  year: 2010
  end-page: 685
  ident: bib0015
  article-title: Inkjet printing – process and its applications
  publication-title: Adv. Mater.
– start-page: 313
  year: 2012
  end-page: 329
  ident: bib0030
  article-title: Antennas for radio frequency identification tags
  publication-title: Inkjet-Based Micromanufactoring
– volume: 10
  start-page: 3515
  year: 2014
  end-page: 3535
  ident: bib0005
  article-title: Conductive nanomaterials for printed electronics
  publication-title: Small
– volume: 26
  start-page: 1
  year: 2015
  end-page: 9
  ident: bib0140
  article-title: Cu-Ag core–shell nanoparticles with enhanced oxidation stability for printed electronics
  publication-title: Nanotechnol
– volume: 10
  start-page: 3515
  year: 2014
  ident: 10.1016/j.colsurfa.2016.08.026_bib0005
  article-title: Conductive nanomaterials for printed electronics
  publication-title: Small
  doi: 10.1002/smll.201303000
– volume: 26
  start-page: 1332
  year: 2014
  ident: 10.1016/j.colsurfa.2016.08.026_bib0200
  article-title: Polyacrylate-assisted size control of silver nanoparticles and their catalytic activity
  publication-title: Chem. Mater
  doi: 10.1021/cm400635z
– volume: 115
  start-page: 2656
  year: 2011
  ident: 10.1016/j.colsurfa.2016.08.026_bib0090
  article-title: Preparation of elemental Cu and Ni nanoparticles by the polyol method: an experimental and theoretical approach
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1104196
– volume: 273
  start-page: 463
  year: 2004
  ident: 10.1016/j.colsurfa.2016.08.026_bib0060
  article-title: A method for the synthesis of spherical copper nanoparticles in the organic phase
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.01.019
– volume: 19
  start-page: 415604
  issue: 1–7
  year: 2008
  ident: 10.1016/j.colsurfa.2016.08.026_bib0080
  article-title: Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/41/415604
– volume: 20
  start-page: 8446
  year: 2010
  ident: 10.1016/j.colsurfa.2016.08.026_bib0035
  article-title: Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm00264j
– volume: 15
  start-page: 2208
  year: 2003
  ident: 10.1016/j.colsurfa.2016.08.026_bib0170
  article-title: Silver nanoparticles as pigments for water-based ink-jet inks
  publication-title: Chem. Mater.
  doi: 10.1021/cm021804b
– volume: 1
  start-page: 2704
  year: 2013
  ident: 10.1016/j.colsurfa.2016.08.026_bib0070
  article-title: Air-stable, surface-oxide free Cu nanoparticles for highly conductive Cu ink and their application to printed graphene transistors
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c3tc00904a
– volume: 19
  start-page: 3399
  year: 2007
  ident: 10.1016/j.colsurfa.2016.08.026_bib0130
  article-title: Properties of core-shell Ni-Au nanoparticles synthesized through a redox-transmetalation method in reverse microemulsion
  publication-title: Chem. Mater.
  doi: 10.1021/cm070182x
– volume: 19
  start-page: 3057
  year: 2009
  ident: 10.1016/j.colsurfa.2016.08.026_bib0135
  article-title: Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing
  publication-title: J. Mater. Chem.
  doi: 10.1039/b821327e
– volume: 110
  start-page: 21
  year: 2008
  ident: 10.1016/j.colsurfa.2016.08.026_bib0180
  article-title: C.V.V. Satyanarayana, Synthesis of oleic acid capped copper nano-particles via reduction of copper salt by SFS
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2008.01.013
– start-page: 313
  year: 2012
  ident: 10.1016/j.colsurfa.2016.08.026_bib0030
  article-title: Antennas for radio frequency identification tags
– volume: 51
  start-page: 1587
  year: 2015
  ident: 10.1016/j.colsurfa.2016.08.026_bib0050
  article-title: Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC08749F
– volume: 22
  start-page: 673
  year: 2010
  ident: 10.1016/j.colsurfa.2016.08.026_bib0015
  article-title: Inkjet printing – process and its applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200901141
– volume: 23
  start-page: 5740
  year: 2007
  ident: 10.1016/j.colsurfa.2016.08.026_bib0075
  article-title: Synthesis of size-controlled and shaped copper nanoparticles
  publication-title: Langmuir
  doi: 10.1021/la0635092
– volume: 19
  start-page: 3057
  year: 2009
  ident: 10.1016/j.colsurfa.2016.08.026_bib0165
  article-title: Formation of air-stable copper-silver core-shell nanoparticles for ink-jet printing
  publication-title: J. Mater. Chem.
  doi: 10.1039/b821327e
– volume: 61
  start-page: 4711
  year: 2007
  ident: 10.1016/j.colsurfa.2016.08.026_bib0175
  article-title: Synthesis and characterization of copper nanoparticles
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2007.03.014
– volume: 27
  start-page: 3144
  year: 2011
  ident: 10.1016/j.colsurfa.2016.08.026_bib0065
  article-title: Stable aqueous based Cu nanoparticle ink for printing well-defined highly conductive features on a plastic substrate
  publication-title: Langmuir
  doi: 10.1021/la104136w
– volume: 18
  start-page: 679
  year: 2008
  ident: 10.1016/j.colsurfa.2016.08.026_bib0190
  article-title: Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200700902
– volume: 24
  start-page: 265602
  issue: 1–9
  year: 2013
  ident: 10.1016/j.colsurfa.2016.08.026_bib0210
  article-title: Facile synthesis of bimetallic Cu-Ag nanoparticles under microwave irradiation and their oxidation resisintance
  publication-title: Nanotechnol
  doi: 10.1088/0957-4484/24/26/265602
– start-page: 347
  year: 2012
  ident: 10.1016/j.colsurfa.2016.08.026_bib0020
  article-title: Inkjet printing of interconnects and contacts based on inorganic nanoparticles for printed electronic applications
– volume: 26
  start-page: 1
  issue: 455601
  year: 2015
  ident: 10.1016/j.colsurfa.2016.08.026_bib0140
  article-title: Cu-Ag core–shell nanoparticles with enhanced oxidation stability for printed electronics
  publication-title: Nanotechnol
– volume: 127
  start-page: 16090
  year: 2005
  ident: 10.1016/j.colsurfa.2016.08.026_bib0125
  article-title: Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja053659j
– volume: 18
  start-page: 679
  year: 2008
  ident: 10.1016/j.colsurfa.2016.08.026_bib0105
  article-title: J. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200700902
– volume: 25
  start-page: 429
  year: 2009
  ident: 10.1016/j.colsurfa.2016.08.026_bib0195
  article-title: Ink-jet printing of Cu-Ag based highly conductive tracks on a transparent substrate
  publication-title: Langmuir
  doi: 10.1021/la802182y
– volume: 11
  start-page: 713
  year: 2009
  ident: 10.1016/j.colsurfa.2016.08.026_bib0160
  article-title: Synthesis of copper nanoparticles catalyzed by pre-formed silver nanoparticles
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-007-9324-5
– volume: 515
  start-page: 7706
  year: 2007
  ident: 10.1016/j.colsurfa.2016.08.026_bib0115
  article-title: Direct writing of copper conductive patterns by ink-jet printing
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2006.11.142
– volume: 2
  start-page: 5372
  year: 2014
  ident: 10.1016/j.colsurfa.2016.08.026_bib0150
  article-title: Preparation and oxidation behavior of Ag-coated Cu nanoparticles less than 20nm in size
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c4tc00509k
– volume: 44
  start-page: 823
  year: 2015
  ident: 10.1016/j.colsurfa.2016.08.026_bib0155
  article-title: Synthesis of 3D printable Cu-Ag core-shell materials: kinetics of CuO film removal
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-014-3588-1
– volume: 360
  start-page: 99
  year: 2010
  ident: 10.1016/j.colsurfa.2016.08.026_bib0085
  article-title: A simple way of preparing high-concentration and high-purity nano copper colloid for conductive ink in inkjet printing technology
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2010.02.011
– volume: 38
  start-page: 193
  year: 2012
  ident: 10.1016/j.colsurfa.2016.08.026_bib0025
  article-title: Inkjet printing of conductive materials: a review
  publication-title: Circuit Word
  doi: 10.1108/03056121211280413
– volume: 11
  start-page: 793
  year: 2009
  ident: 10.1016/j.colsurfa.2016.08.026_bib0185
  article-title: Synthesis of hydrophilic copper nanoparticles: effect of reaction temperature
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-008-9441-9
– volume: 3
  start-page: 4626
  year: 2010
  ident: 10.1016/j.colsurfa.2016.08.026_bib0100
  article-title: Copper nanoparticles for printed electronics: routes towards achieving oxidation stability
  publication-title: Materials
  doi: 10.3390/ma3094626
– volume: 8
  start-page: 965
  year: 2006
  ident: 10.1016/j.colsurfa.2016.08.026_bib0120
  article-title: One-step green route to narrowly dispersed copper nanocrystals
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-005-9065-2
– volume: 8
  start-page: 1
  year: 2013
  ident: 10.1016/j.colsurfa.2016.08.026_bib0205
  article-title: Effect of both protective and reducing agents in the synthesis of multicolor silver nanoparticles
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-8-101
– volume: 6
  start-page: 5581
  year: 2014
  ident: 10.1016/j.colsurfa.2016.08.026_bib0040
  article-title: Transparent conductors composed of nanomaterials
  publication-title: Nanoscale
  doi: 10.1039/c4nr00102h
– volume: 10
  start-page: 1
  issue: 357
  year: 2015
  ident: 10.1016/j.colsurfa.2016.08.026_bib0095
  article-title: A study of the preparation and properties of antioxidative copper inks with high electrical conductivity
  publication-title: Nanoscale Res. Lett
– volume: 146
  start-page: 82
  year: 2014
  ident: 10.1016/j.colsurfa.2016.08.026_bib0110
  article-title: Preparation of conductive Cu patterns by directly writing using nano-Cu ink
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2014.02.045
– volume: 4
  start-page: 19
  year: 2011
  ident: 10.1016/j.colsurfa.2016.08.026_bib0010
  article-title: Metal-based inkjet inks for printed electronics
  publication-title: Open Appl. Phys. J.
  doi: 10.2174/1874183501104010019
– start-page: 747
  year: 2010
  ident: 10.1016/j.colsurfa.2016.08.026_bib0045
  article-title: Aqueous dispersions of metallic nanoparticles. Preparation, stabilization, and application
– volume: 263
  start-page: 1
  year: 2014
  ident: 10.1016/j.colsurfa.2016.08.026_bib0145
  article-title: A novel method to prepare Cu@Ag core-shell nanoparticles for printed flexible electronics
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2014.04.064
– volume: 2
  start-page: 1
  year: 2015
  ident: 10.1016/j.colsurfa.2016.08.026_bib0055
  article-title: Printing a self-reducing copper precursor on 2D and 3D objects to yield copper patterns with 50% copper's bulk conductivity
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201400448
SSID ssj0004579
Score 2.3913348
Snippet [Display omitted] •The air-stable Cu@Ag particles were synthesized.•The conductive inks containing Cu@Ag particles with optimal coating characteristics were...
We report on the synthesis of copper-silver core-shell (Cu@Ag) particles with about 1μm-diameter Cu core coated with a thin (∼20nm) silver shell, for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 272
SubjectTerms air
ambient temperature
coatings
Conductivity
copper
Cu@Ag core-shell particles
electronics
energy-dispersive X-ray analysis
glass
ions
Metallic ink
oxidation
propylene glycol
reducing agents
scanning electron microscopy
silicone
silver
Sintering
stabilizers
X-ray diffraction
Title Air stable copper-silver core-shell submicron particles: Synthesis and conductive ink formulation
URI https://dx.doi.org/10.1016/j.colsurfa.2016.08.026
https://www.proquest.com/docview/2000394138
Volume 521
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lHtSDaFWsjxLBa-y-sg9vpViqQi-10NuSbBLYUrbLbnvw4m93ZrsrVYQevIYkLJPhm2_YmW8IeZDKdhSgHLOFTCBB4TaTrquZx-1Eu44KHFmpfU788cx7nfN5iwybXhgsq6yxf4vpFVrXK_3amv08TftTK3KCIOBA-IH2-lXzuucF6OWPn_aOYnitt-cEDHfvdAkv4O5luSkM6g_ZfiXliSILfweoX1BdxZ_RKTmpiSMdbL_tjLR01iGHw2ZeW4cc70gLnhMxSAsKzE8uNU1Wea4LVqZYBU1Rt5KVWP9JSwiGWJCX0bwpkHui048MSGGZllRkCnZnqAgLmEgha6VIceuBXxdkNnp-H45ZPU6BJZCHriHllMbYPAwiCNFSJpaC6GSFwvGkCRWsh0YHKkoisBUkGsoSRvhcuK7PtTEidC9JO1tl-opQbLtMQgu8UGqPKyk0yrCZSFnaRKFQXcIbG8ZJrTWOIy-WcVNUtogb28do-xhnYTp-l_S_z-VbtY29J6LmieIffhNDSNh79r550xjeCv-UiEyvNiXO5rTcCOJ7eP2P-2_IkYMkwOKARbekvS42-g4ozFr2Kh_tkYPBy9t48gXAafRb
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lHqoH0apYnxG8rt1X9uGtFKVq9WILvYVkk8CWsl267cGLv92Z7a5UEXrwGpKwTJKZb9iZ7yPkVirHVeDlLEfIBBIU5ljS87TlMyfRnqtCV5Zsn2_BYOw_T9ikQfp1LwyWVVa-f-3TS29djXQra3bzNO2-27EbhiEDwA-wN8Dm9R0fni_KGNx9OhuU4RXhnhtaOH2jTXgKm8-K1cIgAZETlFyeyLLwd4T65avLAPR4QPYr5Eh76487JA2dtUmrXwu2tcneBrfgERG9dEEB-smZpsk8z_XCKlIsg6ZIXGkVWABKC4iGWJGX0byukLun7x8ZoMIiLajIFMzOkBIWnCKFtJUixq0Uv47J-PFh1B9YlZ6ClUAiuoScUxrjsCiMIUZLmdgKwpMdCdeXJlIwHhkdqjiJwVaQaShbGBEw4XkB08aIyDshzWye6VNCse8yiWy4hlL7TEmhkYfNxMrWJo6E6hBW25AnFdk4al7MeF1VNuW17TnanqMYpht0SPd7Xb6m29i6Iq6PiP-4OBxiwta1N_WZcjgr_FUiMj1fFSjOaXsxBPjo7B_7X5PWYPQ65MOnt5dzsusiIrAZOKYL0lwuVvoS8MxSXpX39QtTIfXp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Air+stable+copper-silver+core-shell+submicron+particles%3A+Synthesis+and+conductive+ink+formulation&rft.jtitle=Colloids+and+surfaces.+A%2C+Physicochemical+and+engineering+aspects&rft.au=Pajor-%C5%9Awierzy%2C+Anna&rft.au=Farraj%2C+Yousef&rft.au=Kamyshny%2C+Alexander&rft.au=Magdassi%2C+Shlomo&rft.date=2017-05-20&rft.issn=0927-7757&rft.volume=521&rft.spage=272&rft.epage=280&rft_id=info:doi/10.1016%2Fj.colsurfa.2016.08.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_colsurfa_2016_08_026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7757&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7757&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7757&client=summon