Air stable copper-silver core-shell submicron particles: Synthesis and conductive ink formulation
[Display omitted] •The air-stable Cu@Ag particles were synthesized.•The conductive inks containing Cu@Ag particles with optimal coating characteristics were formulated.•Metallic Cu@Ag films with conductivity as high as 16% of bulk copper were obtained. We report on the synthesis of copper-silver cor...
Saved in:
Published in | Colloids and surfaces. A, Physicochemical and engineering aspects Vol. 521; pp. 272 - 280 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
20.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•The air-stable Cu@Ag particles were synthesized.•The conductive inks containing Cu@Ag particles with optimal coating characteristics were formulated.•Metallic Cu@Ag films with conductivity as high as 16% of bulk copper were obtained.
We report on the synthesis of copper-silver core-shell (Cu@Ag) particles with about 1μm-diameter Cu core coated with a thin (∼20nm) silver shell, for application in printed electronics as low cost conductive ink. The process is based on using the environmentally friendly sodium formaldehyde sulfoxylate dehydrate as a reducing agent for copper ions and two types of polymeric stabilizers (nonionic PVP and anionic PAA). The formation of core-shell particles is followed by transmetallation reaction on the surface of the Cu particles, where copper atoms function as the reducer for silver ions. Characterization of the submicron particles by SEM, EDS and XRD confirm the core-shell structure. The resulting Cu@Ag particles enable overcoming a major challenge in copper ink, their rapid oxidation in air. It was found that ink formulations based on propylene glycol as the liquid vehicle and containing a silicone based wetting agent possesses the optimal characteristics (wetting, sintering) for printing on a glass substrate. To obtain conductive metallic structures, thermal sintering of metallic patterns was used. The Cu@Ag coating are stable to oxidation for at least 6 months at room temperature, and also during sintering process which is carried out at temperatures up to 250°C. The conductivity of Cu@Ag coatings after sintering at 250°C was high, 16% of that for bulk copper. |
---|---|
AbstractList | We report on the synthesis of copper-silver core-shell (Cu@Ag) particles with about 1μm-diameter Cu core coated with a thin (∼20nm) silver shell, for application in printed electronics as low cost conductive ink. The process is based on using the environmentally friendly sodium formaldehyde sulfoxylate dehydrate as a reducing agent for copper ions and two types of polymeric stabilizers (nonionic PVP and anionic PAA). The formation of core-shell particles is followed by transmetallation reaction on the surface of the Cu particles, where copper atoms function as the reducer for silver ions. Characterization of the submicron particles by SEM, EDS and XRD confirm the core-shell structure. The resulting Cu@Ag particles enable overcoming a major challenge in copper ink, their rapid oxidation in air. It was found that ink formulations based on propylene glycol as the liquid vehicle and containing a silicone based wetting agent possesses the optimal characteristics (wetting, sintering) for printing on a glass substrate. To obtain conductive metallic structures, thermal sintering of metallic patterns was used. The Cu@Ag coating are stable to oxidation for at least 6 months at room temperature, and also during sintering process which is carried out at temperatures up to 250°C. The conductivity of Cu@Ag coatings after sintering at 250°C was high, 16% of that for bulk copper. [Display omitted] •The air-stable Cu@Ag particles were synthesized.•The conductive inks containing Cu@Ag particles with optimal coating characteristics were formulated.•Metallic Cu@Ag films with conductivity as high as 16% of bulk copper were obtained. We report on the synthesis of copper-silver core-shell (Cu@Ag) particles with about 1μm-diameter Cu core coated with a thin (∼20nm) silver shell, for application in printed electronics as low cost conductive ink. The process is based on using the environmentally friendly sodium formaldehyde sulfoxylate dehydrate as a reducing agent for copper ions and two types of polymeric stabilizers (nonionic PVP and anionic PAA). The formation of core-shell particles is followed by transmetallation reaction on the surface of the Cu particles, where copper atoms function as the reducer for silver ions. Characterization of the submicron particles by SEM, EDS and XRD confirm the core-shell structure. The resulting Cu@Ag particles enable overcoming a major challenge in copper ink, their rapid oxidation in air. It was found that ink formulations based on propylene glycol as the liquid vehicle and containing a silicone based wetting agent possesses the optimal characteristics (wetting, sintering) for printing on a glass substrate. To obtain conductive metallic structures, thermal sintering of metallic patterns was used. The Cu@Ag coating are stable to oxidation for at least 6 months at room temperature, and also during sintering process which is carried out at temperatures up to 250°C. The conductivity of Cu@Ag coatings after sintering at 250°C was high, 16% of that for bulk copper. |
Author | Farraj, Yousef Pajor-Świerzy, Anna Magdassi, Shlomo Kamyshny, Alexander |
Author_xml | – sequence: 1 givenname: Anna surname: Pajor-Świerzy fullname: Pajor-Świerzy, Anna email: ncpajor@cyf-kr.edu.pl – sequence: 2 givenname: Yousef surname: Farraj fullname: Farraj, Yousef – sequence: 3 givenname: Alexander surname: Kamyshny fullname: Kamyshny, Alexander – sequence: 4 givenname: Shlomo surname: Magdassi fullname: Magdassi, Shlomo |
BookMark | eNqFkEFP3DAQhS20SOwCfwHl2EtSJ14nTtVDEaJQaaUegLPlOGPhrddOPc5K--_rZeHSC6fRG703mvetyMIHD4Tc1LSqad1-3VY6OJyjUVWTdUVFRZv2jCxr0bFyzXi_IEvaN13Zdby7ICvELaV0zbt-SdStjQUmNTgodJgmiCVat4eYVYQSX8G5AudhZ3UMvphUTFY7wG_F08GnV0CLhfJjdvtx1snuobD-T2FC3M1OJRv8FTk3yiFcv89L8vLz_vnusdz8fvh1d7spNWMilbwZjKm56HrB2TBoOgpaU6Ga9WDEmPfCQDf2us9NGs5HqoxquWKs5WCMEuySfDndnWL4OwMmubOo8_vKQ5hRNrkz69c1O1rbkzV3Qoxg5BTtTsWDrKk8MpVb-cFUHplKKmRmmoPf_wtqm95apqis-zz-4xSHzGFvIUrUFryG0UbQSY7BfnbiHyzdnAg |
CitedBy_id | crossref_primary_10_1002_aelm_201800831 crossref_primary_10_1039_C9RA05954G crossref_primary_10_1021_acsami_7b10748 crossref_primary_10_1016_j_apsusc_2022_152691 crossref_primary_10_1002_slct_201900426 crossref_primary_10_1016_j_ccr_2025_216455 crossref_primary_10_1088_1361_6528_ab925c crossref_primary_10_3390_ma14092304 crossref_primary_10_1007_s11051_019_4567_5 crossref_primary_10_1016_j_cej_2019_04_141 crossref_primary_10_1088_1361_6528_ab5fed crossref_primary_10_3139_146_111600 crossref_primary_10_3390_met12020234 crossref_primary_10_1016_j_colsurfa_2021_126907 crossref_primary_10_1088_2058_8585_ac49db crossref_primary_10_1016_j_cplett_2020_137904 crossref_primary_10_1016_j_cplett_2020_137726 crossref_primary_10_1016_j_jallcom_2020_154623 crossref_primary_10_1088_1361_6528_ab0467 crossref_primary_10_1021_acsaelm_2c00931 crossref_primary_10_1016_j_ceramint_2022_12_005 crossref_primary_10_1016_j_enmm_2021_100493 crossref_primary_10_1039_D4TC02028F crossref_primary_10_1007_s11664_022_09922_y crossref_primary_10_1021_acs_iecr_0c04251 crossref_primary_10_1021_acsaelm_4c01257 crossref_primary_10_1016_j_cis_2021_102578 crossref_primary_10_1007_s11664_018_6631_9 crossref_primary_10_1016_j_colsurfa_2020_124567 crossref_primary_10_1088_1361_6528_ab68b9 crossref_primary_10_3390_polym14173467 crossref_primary_10_1002_adma_202006792 crossref_primary_10_1088_1361_6528_aae677 crossref_primary_10_3390_nano10091689 crossref_primary_10_1088_2058_8585_aa89bb crossref_primary_10_1186_s40580_021_00265_8 crossref_primary_10_1007_s10854_022_08210_z crossref_primary_10_1039_D5NJ00553A |
Cites_doi | 10.1002/smll.201303000 10.1021/cm400635z 10.1021/jp1104196 10.1016/j.jcis.2004.01.019 10.1088/0957-4484/19/41/415604 10.1039/c0jm00264j 10.1021/cm021804b 10.1039/c3tc00904a 10.1021/cm070182x 10.1039/b821327e 10.1016/j.matchemphys.2008.01.013 10.1039/C4CC08749F 10.1002/adma.200901141 10.1021/la0635092 10.1016/j.matlet.2007.03.014 10.1021/la104136w 10.1002/adfm.200700902 10.1088/0957-4484/24/26/265602 10.1021/ja053659j 10.1021/la802182y 10.1007/s11051-007-9324-5 10.1016/j.tsf.2006.11.142 10.1039/c4tc00509k 10.1007/s11664-014-3588-1 10.1016/j.colsurfa.2010.02.011 10.1108/03056121211280413 10.1007/s11051-008-9441-9 10.3390/ma3094626 10.1007/s11051-005-9065-2 10.1186/1556-276X-8-101 10.1039/c4nr00102h 10.1016/j.matchemphys.2014.02.045 10.2174/1874183501104010019 10.1016/j.powtec.2014.04.064 10.1002/admi.201400448 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.colsurfa.2016.08.026 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-4359 |
EndPage | 280 |
ExternalDocumentID | 10_1016_j_colsurfa_2016_08_026 S0927775716306641 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABNUV ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCE SDF SDG SDP SES SPC SPD SSG SSK SSM SSQ SSZ T5K WH7 ~02 ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AI. AIIUN ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCB SEW SSH VH1 WUQ 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c338t-52bff15879853bbc0d80108a24bf8d5878fe7d9c9092255d0afa65a3365effa83 |
IEDL.DBID | .~1 |
ISSN | 0927-7757 |
IngestDate | Tue Aug 05 09:50:37 EDT 2025 Thu Apr 24 23:08:39 EDT 2025 Tue Jul 01 00:42:10 EDT 2025 Fri Feb 23 02:26:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Conductivity Cu@Ag core-shell particles Metallic ink Sintering |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c338t-52bff15879853bbc0d80108a24bf8d5878fe7d9c9092255d0afa65a3365effa83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2000394138 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000394138 crossref_primary_10_1016_j_colsurfa_2016_08_026 crossref_citationtrail_10_1016_j_colsurfa_2016_08_026 elsevier_sciencedirect_doi_10_1016_j_colsurfa_2016_08_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-20 |
PublicationDateYYYYMMDD | 2017-05-20 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-20 day: 20 |
PublicationDecade | 2010 |
PublicationTitle | Colloids and surfaces. A, Physicochemical and engineering aspects |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Rivero, Goicoechea, Urrutia, Arregui (bib0205) 2013; 8 Chee, Lee (bib0150) 2014; 2 Rosen, Grouchko, Magdassi (bib0055) 2015; 2 Wu, Mosher, Zeng (bib0120) 2006; 8 Grouchko, Kamyshny, Magdassi (bib0165) 2009; 19 Jeong, Woo, Kim, Lim, Kim, Shin, Xia, Moon (bib0190) 2008; 18 Perelaer, Schubert (bib0020) 2012 Panaćek, Prucek, Hrbać, Nevecnǎ, Šteffkova, Zboril, Kvítek (bib0200) 2014; 26 Singh, Haverinen, Dhagat, Jabbour (bib0015) 2010; 22 Khanna, Khale, Shaikh, Rao (bib0180) 2008; 110 Grouchko, Kamyshny, Magdassi (bib0135) 2009; 19 Chen, Mochizuki, Maitani, Wada (bib0210) 2013; 24 Kamyshny, Magdassi (bib0005) 2014; 10 Tsai, Chang, Chen, Chung, Liang, Ma, Yang (bib0095) 2015; 10 Kim, Lee, Lee, Rhee (bib0145) 2014; 263 Jeong, Woo, Kim, Lim, Kim, Shin, Xia, Moon (bib0105) 2008; 18 Carrol, Reveles, Shultz, Khanna, Carpenter (bib0090) 2011; 115 Grouchko, Kamyshny, Ben-Ami, Magdassi (bib0160) 2009; 11 Lee, Kim, Choi, Park, Ko, Oh, Cheon (bib0125) 2005; 127 Song, Sun, Zhang, Yin (bib0060) 2004; 273 Cummins, Desmulliez (bib0025) 2012; 38 Khanna, More, Jawalkar, Patil, Rao (bib0185) 2009; 11 Subramanian (bib0030) 2012 Woo, Kim, Kim, Lim, Moon (bib0195) 2009; 25 Chen, Li, Shi, Du, Zhao, Sheng, Liu (bib0130) 2007; 19 Kamyshny, Steinke, Magdassi (bib0010) 2011; 4 Magdassi, Grouchko, Kamyshny (bib0100) 2010; 3 Farraj, Grouchko, Magdassi (bib0050) 2015; 51 Tang, Yang, Wang (bib0085) 2010; 360 Khanna, Gaikwad, Adhyapak, Singh, Marimuthu (bib0175) 2007; 61 Lee, Kim, Koo, Lee, Lee (bib0140) 2015; 26 Kamyshny, Magdassi (bib0045) 2010 Li, Li, Wei, Tan, Chen (bib0110) 2014; 146 Magdassi, Bassa, Vinetsky, Kamyshny (bib0170) 2003; 15 Lee, Choi, Lee, Stott, Kim (bib0080) 2008; 19 Jeong, Lee, Jo, Lee, Seo, Ahn, Kim, Jang, Park, Ryu, Choi (bib0070) 2013; 1 Jeong, Song, Lee, Lee, Choi, Son, Kim, Paik, Oh, Ryu (bib0065) 2011; 27 Perelaer, Smith, Mager, Soltman, Volkman, Subramanian, Korvink, Schubert (bib0035) 2010; 20 Hong, Kim (bib0155) 2015; 44 Park, Kim, Jeong, Moon, Kim (bib0115) 2007; 515 Mott, Galkowski, Wang, Luo, Zhong (bib0075) 2007; 23 Layani, Kamyshny, Magdassi (bib0040) 2014; 6 Chen (10.1016/j.colsurfa.2016.08.026_bib0130) 2007; 19 Magdassi (10.1016/j.colsurfa.2016.08.026_bib0170) 2003; 15 Woo (10.1016/j.colsurfa.2016.08.026_bib0195) 2009; 25 Panaćek (10.1016/j.colsurfa.2016.08.026_bib0200) 2014; 26 Jeong (10.1016/j.colsurfa.2016.08.026_bib0105) 2008; 18 Perelaer (10.1016/j.colsurfa.2016.08.026_bib0020) 2012 Hong (10.1016/j.colsurfa.2016.08.026_bib0155) 2015; 44 Khanna (10.1016/j.colsurfa.2016.08.026_bib0175) 2007; 61 Jeong (10.1016/j.colsurfa.2016.08.026_bib0065) 2011; 27 Magdassi (10.1016/j.colsurfa.2016.08.026_bib0100) 2010; 3 Kamyshny (10.1016/j.colsurfa.2016.08.026_bib0045) 2010 Song (10.1016/j.colsurfa.2016.08.026_bib0060) 2004; 273 Lee (10.1016/j.colsurfa.2016.08.026_bib0125) 2005; 127 Grouchko (10.1016/j.colsurfa.2016.08.026_bib0135) 2009; 19 Khanna (10.1016/j.colsurfa.2016.08.026_bib0180) 2008; 110 Cummins (10.1016/j.colsurfa.2016.08.026_bib0025) 2012; 38 Mott (10.1016/j.colsurfa.2016.08.026_bib0075) 2007; 23 Singh (10.1016/j.colsurfa.2016.08.026_bib0015) 2010; 22 Kamyshny (10.1016/j.colsurfa.2016.08.026_bib0005) 2014; 10 Kim (10.1016/j.colsurfa.2016.08.026_bib0145) 2014; 263 Park (10.1016/j.colsurfa.2016.08.026_bib0115) 2007; 515 Grouchko (10.1016/j.colsurfa.2016.08.026_bib0160) 2009; 11 Subramanian (10.1016/j.colsurfa.2016.08.026_bib0030) 2012 Rosen (10.1016/j.colsurfa.2016.08.026_bib0055) 2015; 2 Rivero (10.1016/j.colsurfa.2016.08.026_bib0205) 2013; 8 Layani (10.1016/j.colsurfa.2016.08.026_bib0040) 2014; 6 Farraj (10.1016/j.colsurfa.2016.08.026_bib0050) 2015; 51 Tang (10.1016/j.colsurfa.2016.08.026_bib0085) 2010; 360 Chen (10.1016/j.colsurfa.2016.08.026_bib0210) 2013; 24 Wu (10.1016/j.colsurfa.2016.08.026_bib0120) 2006; 8 Jeong (10.1016/j.colsurfa.2016.08.026_bib0190) 2008; 18 Lee (10.1016/j.colsurfa.2016.08.026_bib0140) 2015; 26 Li (10.1016/j.colsurfa.2016.08.026_bib0110) 2014; 146 Chee (10.1016/j.colsurfa.2016.08.026_bib0150) 2014; 2 Grouchko (10.1016/j.colsurfa.2016.08.026_bib0165) 2009; 19 Khanna (10.1016/j.colsurfa.2016.08.026_bib0185) 2009; 11 Jeong (10.1016/j.colsurfa.2016.08.026_bib0070) 2013; 1 Carrol (10.1016/j.colsurfa.2016.08.026_bib0090) 2011; 115 Lee (10.1016/j.colsurfa.2016.08.026_bib0080) 2008; 19 Kamyshny (10.1016/j.colsurfa.2016.08.026_bib0010) 2011; 4 Perelaer (10.1016/j.colsurfa.2016.08.026_bib0035) 2010; 20 Tsai (10.1016/j.colsurfa.2016.08.026_bib0095) 2015; 10 |
References_xml | – volume: 8 start-page: 1 year: 2013 end-page: 9 ident: bib0205 article-title: Effect of both protective and reducing agents in the synthesis of multicolor silver nanoparticles publication-title: Nanoscale Res. Lett. – volume: 11 start-page: 713 year: 2009 end-page: 716 ident: bib0160 article-title: Synthesis of copper nanoparticles catalyzed by pre-formed silver nanoparticles publication-title: J. Nanopart. Res. – volume: 61 start-page: 4711 year: 2007 end-page: 4714 ident: bib0175 article-title: Synthesis and characterization of copper nanoparticles publication-title: Mater. Lett. – volume: 8 start-page: 965 year: 2006 end-page: 969 ident: bib0120 article-title: One-step green route to narrowly dispersed copper nanocrystals publication-title: J. Nanopart. Res. – volume: 2 start-page: 1 year: 2015 end-page: 5 ident: bib0055 article-title: Printing a self-reducing copper precursor on 2D and 3D objects to yield copper patterns with 50% copper's bulk conductivity publication-title: Adv. Mater. Interfaces – volume: 1 start-page: 2704 year: 2013 end-page: 2710 ident: bib0070 article-title: Air-stable, surface-oxide free Cu nanoparticles for highly conductive Cu ink and their application to printed graphene transistors publication-title: J. Mater. Chem. C – volume: 20 start-page: 8446 year: 2010 end-page: 8453 ident: bib0035 article-title: Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials publication-title: J. Mater. Chem. – volume: 6 start-page: 5581 year: 2014 end-page: 5591 ident: bib0040 article-title: Transparent conductors composed of nanomaterials publication-title: Nanoscale – volume: 25 start-page: 429 year: 2009 end-page: 433 ident: bib0195 article-title: Ink-jet printing of Cu-Ag based highly conductive tracks on a transparent substrate publication-title: Langmuir – start-page: 747 year: 2010 end-page: 778 ident: bib0045 article-title: Aqueous dispersions of metallic nanoparticles. Preparation, stabilization, and application publication-title: Nanoscience: Colloidal and Interfacial Aspects – volume: 51 start-page: 1587 year: 2015 end-page: 1590 ident: bib0050 article-title: Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics publication-title: Chem. Commun. – volume: 515 start-page: 7706 year: 2007 end-page: 7711 ident: bib0115 article-title: Direct writing of copper conductive patterns by ink-jet printing publication-title: Thin Solid Films – volume: 3 start-page: 4626 year: 2010 end-page: 4638 ident: bib0100 article-title: Copper nanoparticles for printed electronics: routes towards achieving oxidation stability publication-title: Materials – volume: 19 start-page: 3057 year: 2009 end-page: 3062 ident: bib0165 article-title: Formation of air-stable copper-silver core-shell nanoparticles for ink-jet printing publication-title: J. Mater. Chem. – start-page: 347 year: 2012 end-page: 364 ident: bib0020 article-title: Inkjet printing of interconnects and contacts based on inorganic nanoparticles for printed electronic applications publication-title: Inkjet-Based Micromanufactoring – volume: 38 start-page: 193 year: 2012 end-page: 213 ident: bib0025 article-title: Inkjet printing of conductive materials: a review publication-title: Circuit Word – volume: 19 start-page: 415604 year: 2008 ident: bib0080 article-title: Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics publication-title: Nanotechnology – volume: 127 start-page: 16090 year: 2005 end-page: 16097 ident: bib0125 article-title: Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 793 year: 2009 end-page: 799 ident: bib0185 article-title: Synthesis of hydrophilic copper nanoparticles: effect of reaction temperature publication-title: J. Nanopart. Res. – volume: 27 start-page: 3144 year: 2011 end-page: 3149 ident: bib0065 article-title: Stable aqueous based Cu nanoparticle ink for printing well-defined highly conductive features on a plastic substrate publication-title: Langmuir – volume: 26 start-page: 1332 year: 2014 end-page: 1339 ident: bib0200 article-title: Polyacrylate-assisted size control of silver nanoparticles and their catalytic activity publication-title: Chem. Mater – volume: 19 start-page: 3057 year: 2009 end-page: 3062 ident: bib0135 article-title: Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing publication-title: J. Mater. Chem. – volume: 24 start-page: 265602 year: 2013 ident: bib0210 article-title: Facile synthesis of bimetallic Cu-Ag nanoparticles under microwave irradiation and their oxidation resisintance publication-title: Nanotechnol – volume: 273 start-page: 463 year: 2004 end-page: 469 ident: bib0060 article-title: A method for the synthesis of spherical copper nanoparticles in the organic phase publication-title: J. Colloid Interface Sci. – volume: 18 start-page: 679 year: 2008 end-page: 686 ident: bib0190 article-title: Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing publication-title: Adv. Funct. Mater. – volume: 44 start-page: 823 year: 2015 end-page: 830 ident: bib0155 article-title: Synthesis of 3D printable Cu-Ag core-shell materials: kinetics of CuO film removal publication-title: J. Electron. Mater. – volume: 2 start-page: 5372 year: 2014 end-page: 5381 ident: bib0150 article-title: Preparation and oxidation behavior of Ag-coated Cu nanoparticles less than 20 publication-title: J. Mater. Chem. C – volume: 4 start-page: 19 year: 2011 end-page: 36 ident: bib0010 article-title: Metal-based inkjet inks for printed electronics publication-title: Open Appl. Phys. J. – volume: 18 start-page: 679 year: 2008 end-page: 686 ident: bib0105 article-title: J. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing publication-title: Adv. Funct. Mater. – volume: 15 start-page: 2208 year: 2003 end-page: 2217 ident: bib0170 article-title: Silver nanoparticles as pigments for water-based ink-jet inks publication-title: Chem. Mater. – volume: 360 start-page: 99 year: 2010 end-page: 104 ident: bib0085 article-title: A simple way of preparing high-concentration and high-purity nano copper colloid for conductive ink in inkjet printing technology publication-title: Colloids Surf. A – volume: 146 start-page: 82 year: 2014 end-page: 87 ident: bib0110 article-title: Preparation of conductive Cu patterns by directly writing using nano-Cu ink publication-title: Mater. Chem. Phys. – volume: 115 start-page: 2656 year: 2011 end-page: 2664 ident: bib0090 article-title: Preparation of elemental Cu and Ni nanoparticles by the polyol method: an experimental and theoretical approach publication-title: J. Phys. Chem. C – volume: 110 start-page: 21 year: 2008 end-page: 25 ident: bib0180 article-title: C.V.V. Satyanarayana, Synthesis of oleic acid capped copper nano-particles publication-title: Mater. Chem. Phys. – volume: 10 start-page: 1 year: 2015 end-page: 7 ident: bib0095 article-title: A study of the preparation and properties of antioxidative copper inks with high electrical conductivity publication-title: Nanoscale Res. Lett – volume: 19 start-page: 3399 year: 2007 end-page: 3405 ident: bib0130 article-title: Properties of core-shell Ni-Au nanoparticles synthesized through a redox-transmetalation method in reverse microemulsion publication-title: Chem. Mater. – volume: 23 start-page: 5740 year: 2007 end-page: 5745 ident: bib0075 article-title: Synthesis of size-controlled and shaped copper nanoparticles publication-title: Langmuir – volume: 263 start-page: 1 year: 2014 end-page: 6 ident: bib0145 article-title: A novel method to prepare Cu@Ag core-shell nanoparticles for printed flexible electronics publication-title: Powder Technol. – volume: 22 start-page: 673 year: 2010 end-page: 685 ident: bib0015 article-title: Inkjet printing – process and its applications publication-title: Adv. Mater. – start-page: 313 year: 2012 end-page: 329 ident: bib0030 article-title: Antennas for radio frequency identification tags publication-title: Inkjet-Based Micromanufactoring – volume: 10 start-page: 3515 year: 2014 end-page: 3535 ident: bib0005 article-title: Conductive nanomaterials for printed electronics publication-title: Small – volume: 26 start-page: 1 year: 2015 end-page: 9 ident: bib0140 article-title: Cu-Ag core–shell nanoparticles with enhanced oxidation stability for printed electronics publication-title: Nanotechnol – volume: 10 start-page: 3515 year: 2014 ident: 10.1016/j.colsurfa.2016.08.026_bib0005 article-title: Conductive nanomaterials for printed electronics publication-title: Small doi: 10.1002/smll.201303000 – volume: 26 start-page: 1332 year: 2014 ident: 10.1016/j.colsurfa.2016.08.026_bib0200 article-title: Polyacrylate-assisted size control of silver nanoparticles and their catalytic activity publication-title: Chem. Mater doi: 10.1021/cm400635z – volume: 115 start-page: 2656 year: 2011 ident: 10.1016/j.colsurfa.2016.08.026_bib0090 article-title: Preparation of elemental Cu and Ni nanoparticles by the polyol method: an experimental and theoretical approach publication-title: J. Phys. Chem. C doi: 10.1021/jp1104196 – volume: 273 start-page: 463 year: 2004 ident: 10.1016/j.colsurfa.2016.08.026_bib0060 article-title: A method for the synthesis of spherical copper nanoparticles in the organic phase publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.01.019 – volume: 19 start-page: 415604 issue: 1–7 year: 2008 ident: 10.1016/j.colsurfa.2016.08.026_bib0080 article-title: Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics publication-title: Nanotechnology doi: 10.1088/0957-4484/19/41/415604 – volume: 20 start-page: 8446 year: 2010 ident: 10.1016/j.colsurfa.2016.08.026_bib0035 article-title: Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials publication-title: J. Mater. Chem. doi: 10.1039/c0jm00264j – volume: 15 start-page: 2208 year: 2003 ident: 10.1016/j.colsurfa.2016.08.026_bib0170 article-title: Silver nanoparticles as pigments for water-based ink-jet inks publication-title: Chem. Mater. doi: 10.1021/cm021804b – volume: 1 start-page: 2704 year: 2013 ident: 10.1016/j.colsurfa.2016.08.026_bib0070 article-title: Air-stable, surface-oxide free Cu nanoparticles for highly conductive Cu ink and their application to printed graphene transistors publication-title: J. Mater. Chem. C doi: 10.1039/c3tc00904a – volume: 19 start-page: 3399 year: 2007 ident: 10.1016/j.colsurfa.2016.08.026_bib0130 article-title: Properties of core-shell Ni-Au nanoparticles synthesized through a redox-transmetalation method in reverse microemulsion publication-title: Chem. Mater. doi: 10.1021/cm070182x – volume: 19 start-page: 3057 year: 2009 ident: 10.1016/j.colsurfa.2016.08.026_bib0135 article-title: Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing publication-title: J. Mater. Chem. doi: 10.1039/b821327e – volume: 110 start-page: 21 year: 2008 ident: 10.1016/j.colsurfa.2016.08.026_bib0180 article-title: C.V.V. Satyanarayana, Synthesis of oleic acid capped copper nano-particles via reduction of copper salt by SFS publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2008.01.013 – start-page: 313 year: 2012 ident: 10.1016/j.colsurfa.2016.08.026_bib0030 article-title: Antennas for radio frequency identification tags – volume: 51 start-page: 1587 year: 2015 ident: 10.1016/j.colsurfa.2016.08.026_bib0050 article-title: Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics publication-title: Chem. Commun. doi: 10.1039/C4CC08749F – volume: 22 start-page: 673 year: 2010 ident: 10.1016/j.colsurfa.2016.08.026_bib0015 article-title: Inkjet printing – process and its applications publication-title: Adv. Mater. doi: 10.1002/adma.200901141 – volume: 23 start-page: 5740 year: 2007 ident: 10.1016/j.colsurfa.2016.08.026_bib0075 article-title: Synthesis of size-controlled and shaped copper nanoparticles publication-title: Langmuir doi: 10.1021/la0635092 – volume: 19 start-page: 3057 year: 2009 ident: 10.1016/j.colsurfa.2016.08.026_bib0165 article-title: Formation of air-stable copper-silver core-shell nanoparticles for ink-jet printing publication-title: J. Mater. Chem. doi: 10.1039/b821327e – volume: 61 start-page: 4711 year: 2007 ident: 10.1016/j.colsurfa.2016.08.026_bib0175 article-title: Synthesis and characterization of copper nanoparticles publication-title: Mater. Lett. doi: 10.1016/j.matlet.2007.03.014 – volume: 27 start-page: 3144 year: 2011 ident: 10.1016/j.colsurfa.2016.08.026_bib0065 article-title: Stable aqueous based Cu nanoparticle ink for printing well-defined highly conductive features on a plastic substrate publication-title: Langmuir doi: 10.1021/la104136w – volume: 18 start-page: 679 year: 2008 ident: 10.1016/j.colsurfa.2016.08.026_bib0190 article-title: Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200700902 – volume: 24 start-page: 265602 issue: 1–9 year: 2013 ident: 10.1016/j.colsurfa.2016.08.026_bib0210 article-title: Facile synthesis of bimetallic Cu-Ag nanoparticles under microwave irradiation and their oxidation resisintance publication-title: Nanotechnol doi: 10.1088/0957-4484/24/26/265602 – start-page: 347 year: 2012 ident: 10.1016/j.colsurfa.2016.08.026_bib0020 article-title: Inkjet printing of interconnects and contacts based on inorganic nanoparticles for printed electronic applications – volume: 26 start-page: 1 issue: 455601 year: 2015 ident: 10.1016/j.colsurfa.2016.08.026_bib0140 article-title: Cu-Ag core–shell nanoparticles with enhanced oxidation stability for printed electronics publication-title: Nanotechnol – volume: 127 start-page: 16090 year: 2005 ident: 10.1016/j.colsurfa.2016.08.026_bib0125 article-title: Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja053659j – volume: 18 start-page: 679 year: 2008 ident: 10.1016/j.colsurfa.2016.08.026_bib0105 article-title: J. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200700902 – volume: 25 start-page: 429 year: 2009 ident: 10.1016/j.colsurfa.2016.08.026_bib0195 article-title: Ink-jet printing of Cu-Ag based highly conductive tracks on a transparent substrate publication-title: Langmuir doi: 10.1021/la802182y – volume: 11 start-page: 713 year: 2009 ident: 10.1016/j.colsurfa.2016.08.026_bib0160 article-title: Synthesis of copper nanoparticles catalyzed by pre-formed silver nanoparticles publication-title: J. Nanopart. Res. doi: 10.1007/s11051-007-9324-5 – volume: 515 start-page: 7706 year: 2007 ident: 10.1016/j.colsurfa.2016.08.026_bib0115 article-title: Direct writing of copper conductive patterns by ink-jet printing publication-title: Thin Solid Films doi: 10.1016/j.tsf.2006.11.142 – volume: 2 start-page: 5372 year: 2014 ident: 10.1016/j.colsurfa.2016.08.026_bib0150 article-title: Preparation and oxidation behavior of Ag-coated Cu nanoparticles less than 20nm in size publication-title: J. Mater. Chem. C doi: 10.1039/c4tc00509k – volume: 44 start-page: 823 year: 2015 ident: 10.1016/j.colsurfa.2016.08.026_bib0155 article-title: Synthesis of 3D printable Cu-Ag core-shell materials: kinetics of CuO film removal publication-title: J. Electron. Mater. doi: 10.1007/s11664-014-3588-1 – volume: 360 start-page: 99 year: 2010 ident: 10.1016/j.colsurfa.2016.08.026_bib0085 article-title: A simple way of preparing high-concentration and high-purity nano copper colloid for conductive ink in inkjet printing technology publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2010.02.011 – volume: 38 start-page: 193 year: 2012 ident: 10.1016/j.colsurfa.2016.08.026_bib0025 article-title: Inkjet printing of conductive materials: a review publication-title: Circuit Word doi: 10.1108/03056121211280413 – volume: 11 start-page: 793 year: 2009 ident: 10.1016/j.colsurfa.2016.08.026_bib0185 article-title: Synthesis of hydrophilic copper nanoparticles: effect of reaction temperature publication-title: J. Nanopart. Res. doi: 10.1007/s11051-008-9441-9 – volume: 3 start-page: 4626 year: 2010 ident: 10.1016/j.colsurfa.2016.08.026_bib0100 article-title: Copper nanoparticles for printed electronics: routes towards achieving oxidation stability publication-title: Materials doi: 10.3390/ma3094626 – volume: 8 start-page: 965 year: 2006 ident: 10.1016/j.colsurfa.2016.08.026_bib0120 article-title: One-step green route to narrowly dispersed copper nanocrystals publication-title: J. Nanopart. Res. doi: 10.1007/s11051-005-9065-2 – volume: 8 start-page: 1 year: 2013 ident: 10.1016/j.colsurfa.2016.08.026_bib0205 article-title: Effect of both protective and reducing agents in the synthesis of multicolor silver nanoparticles publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-8-101 – volume: 6 start-page: 5581 year: 2014 ident: 10.1016/j.colsurfa.2016.08.026_bib0040 article-title: Transparent conductors composed of nanomaterials publication-title: Nanoscale doi: 10.1039/c4nr00102h – volume: 10 start-page: 1 issue: 357 year: 2015 ident: 10.1016/j.colsurfa.2016.08.026_bib0095 article-title: A study of the preparation and properties of antioxidative copper inks with high electrical conductivity publication-title: Nanoscale Res. Lett – volume: 146 start-page: 82 year: 2014 ident: 10.1016/j.colsurfa.2016.08.026_bib0110 article-title: Preparation of conductive Cu patterns by directly writing using nano-Cu ink publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2014.02.045 – volume: 4 start-page: 19 year: 2011 ident: 10.1016/j.colsurfa.2016.08.026_bib0010 article-title: Metal-based inkjet inks for printed electronics publication-title: Open Appl. Phys. J. doi: 10.2174/1874183501104010019 – start-page: 747 year: 2010 ident: 10.1016/j.colsurfa.2016.08.026_bib0045 article-title: Aqueous dispersions of metallic nanoparticles. Preparation, stabilization, and application – volume: 263 start-page: 1 year: 2014 ident: 10.1016/j.colsurfa.2016.08.026_bib0145 article-title: A novel method to prepare Cu@Ag core-shell nanoparticles for printed flexible electronics publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.04.064 – volume: 2 start-page: 1 year: 2015 ident: 10.1016/j.colsurfa.2016.08.026_bib0055 article-title: Printing a self-reducing copper precursor on 2D and 3D objects to yield copper patterns with 50% copper's bulk conductivity publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201400448 |
SSID | ssj0004579 |
Score | 2.3913348 |
Snippet | [Display omitted]
•The air-stable Cu@Ag particles were synthesized.•The conductive inks containing Cu@Ag particles with optimal coating characteristics were... We report on the synthesis of copper-silver core-shell (Cu@Ag) particles with about 1μm-diameter Cu core coated with a thin (∼20nm) silver shell, for... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 272 |
SubjectTerms | air ambient temperature coatings Conductivity copper Cu@Ag core-shell particles electronics energy-dispersive X-ray analysis glass ions Metallic ink oxidation propylene glycol reducing agents scanning electron microscopy silicone silver Sintering stabilizers X-ray diffraction |
Title | Air stable copper-silver core-shell submicron particles: Synthesis and conductive ink formulation |
URI | https://dx.doi.org/10.1016/j.colsurfa.2016.08.026 https://www.proquest.com/docview/2000394138 |
Volume | 521 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lHtSDaFWsjxLBa-y-sg9vpViqQi-10NuSbBLYUrbLbnvw4m93ZrsrVYQevIYkLJPhm2_YmW8IeZDKdhSgHLOFTCBB4TaTrquZx-1Eu44KHFmpfU788cx7nfN5iwybXhgsq6yxf4vpFVrXK_3amv08TftTK3KCIOBA-IH2-lXzuucF6OWPn_aOYnitt-cEDHfvdAkv4O5luSkM6g_ZfiXliSILfweoX1BdxZ_RKTmpiSMdbL_tjLR01iGHw2ZeW4cc70gLnhMxSAsKzE8uNU1Wea4LVqZYBU1Rt5KVWP9JSwiGWJCX0bwpkHui048MSGGZllRkCnZnqAgLmEgha6VIceuBXxdkNnp-H45ZPU6BJZCHriHllMbYPAwiCNFSJpaC6GSFwvGkCRWsh0YHKkoisBUkGsoSRvhcuK7PtTEidC9JO1tl-opQbLtMQgu8UGqPKyk0yrCZSFnaRKFQXcIbG8ZJrTWOIy-WcVNUtogb28do-xhnYTp-l_S_z-VbtY29J6LmieIffhNDSNh79r550xjeCv-UiEyvNiXO5rTcCOJ7eP2P-2_IkYMkwOKARbekvS42-g4ozFr2Kh_tkYPBy9t48gXAafRb |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lHqoH0apYnxG8rt1X9uGtFKVq9WILvYVkk8CWsl267cGLv92Z7a5UEXrwGpKwTJKZb9iZ7yPkVirHVeDlLEfIBBIU5ljS87TlMyfRnqtCV5Zsn2_BYOw_T9ikQfp1LwyWVVa-f-3TS29djXQra3bzNO2-27EbhiEDwA-wN8Dm9R0fni_KGNx9OhuU4RXhnhtaOH2jTXgKm8-K1cIgAZETlFyeyLLwd4T65avLAPR4QPYr5Eh76487JA2dtUmrXwu2tcneBrfgERG9dEEB-smZpsk8z_XCKlIsg6ZIXGkVWABKC4iGWJGX0byukLun7x8ZoMIiLajIFMzOkBIWnCKFtJUixq0Uv47J-PFh1B9YlZ6ClUAiuoScUxrjsCiMIUZLmdgKwpMdCdeXJlIwHhkdqjiJwVaQaShbGBEw4XkB08aIyDshzWye6VNCse8yiWy4hlL7TEmhkYfNxMrWJo6E6hBW25AnFdk4al7MeF1VNuW17TnanqMYpht0SPd7Xb6m29i6Iq6PiP-4OBxiwta1N_WZcjgr_FUiMj1fFSjOaXsxBPjo7B_7X5PWYPQ65MOnt5dzsusiIrAZOKYL0lwuVvoS8MxSXpX39QtTIfXp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Air+stable+copper-silver+core-shell+submicron+particles%3A+Synthesis+and+conductive+ink+formulation&rft.jtitle=Colloids+and+surfaces.+A%2C+Physicochemical+and+engineering+aspects&rft.au=Pajor-%C5%9Awierzy%2C+Anna&rft.au=Farraj%2C+Yousef&rft.au=Kamyshny%2C+Alexander&rft.au=Magdassi%2C+Shlomo&rft.date=2017-05-20&rft.issn=0927-7757&rft.volume=521&rft.spage=272&rft.epage=280&rft_id=info:doi/10.1016%2Fj.colsurfa.2016.08.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_colsurfa_2016_08_026 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7757&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7757&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7757&client=summon |