Nonparametric independence screening for ultra-high-dimensional longitudinal data under additive models
Ultra-high-dimensional data are frequently seen in many contemporary statistical studies, which pose challenges both theoretically and methodologically. To address this issue under longitudinal data setting, we propose a marginal nonparametric screening method to hunt for the relevant covariates in...
Saved in:
Published in | Journal of nonparametric statistics Vol. 30; no. 4; pp. 884 - 905 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
02.10.2018
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1048-5252 1029-0311 |
DOI | 10.1080/10485252.2018.1497797 |
Cover
Loading…
Abstract | Ultra-high-dimensional data are frequently seen in many contemporary statistical studies, which pose challenges both theoretically and methodologically. To address this issue under longitudinal data setting, we propose a marginal nonparametric screening method to hunt for the relevant covariates in additive models. A new data-driven thresholding and an iterative procedure are developed. Especially, a sample splitting method is proposed to further reduce the false selection rates. Although the repeated measurements within each subjects are correlated, the sure screening property is theoretically established. To the best of our knowledge, screening for longitudinal data rarely appeared in the literatures, and our method can be regarded as a nontrivial extension of nonparametric independence screening method. An extensive simulation study is conducted to illustrate the finite sample performance of the proposed method and procedure. Finally, the proposed method is applied to a yeast cycle gene expression data set to identify cell cycle-regulated genes and transcription factors. |
---|---|
AbstractList | Ultra-high-dimensional data are frequently seen in many contemporary statistical studies, which pose challenges both theoretically and methodologically. To address this issue under longitudinal data setting, we propose a marginal nonparametric screening method to hunt for the relevant covariates in additive models. A new data-driven thresholding and an iterative procedure are developed. Especially, a sample splitting method is proposed to further reduce the false selection rates. Although the repeated measurements within each subjects are correlated, the sure screening property is theoretically established. To the best of our knowledge, screening for longitudinal data rarely appeared in the literatures, and our method can be regarded as a nontrivial extension of nonparametric independence screening method. An extensive simulation study is conducted to illustrate the finite sample performance of the proposed method and procedure. Finally, the proposed method is applied to a yeast cycle gene expression data set to identify cell cycle-regulated genes and transcription factors. |
Author | Li, Huapeng Liu, Jicai Niu, Yong Zhang, Riquan |
Author_xml | – sequence: 1 givenname: Yong surname: Niu fullname: Niu, Yong organization: Department of Mathematics and Physics, Hefei University – sequence: 2 givenname: Riquan surname: Zhang fullname: Zhang, Riquan email: zhangriquan@163.com organization: School of Finance and Statistics, East China Normal University – sequence: 3 givenname: Jicai surname: Liu fullname: Liu, Jicai organization: College of Mathematics and Sciences, Shanghai Normal University – sequence: 4 givenname: Huapeng surname: Li fullname: Li, Huapeng organization: School of Mathematics and Computer Sciences, Shanxi Datong University |
BookMark | eNqFkE1LxDAQhoMouK7-BKHguWs-GpviRVn8gkUveg5pMl0jbbImqbL_3pTViwe9zEzgfYbMc4T2nXeA0CnBC4IFPie4EpxyuqCYiAWpmrpu6j00I5g2JWaE7E9zJcopdIiOYnzDmLALhmdo_ejdRgU1QApWF9YZ2EAuTkMRdQBw1q2Lzodi7FNQ5atdv5bGDuCi9U71Re_d2qbR2OlhVFLFmPFQKGNssh9QDN5AH4_RQaf6CCfffY5ebm-el_fl6unuYXm9KjVjIpWciBqY5u0FB4GBtxqbWjWY0oo2gmlFKAgDbQPAMTWt0UzopmqV4SKXjs3R2W7vJvj3EWKSb34M-W9RUkJrXhGBaU5d7lI6-BgDdFLbpFK-KN9oe0mwnMzKH7NyMiu_zWaa_6I3wQ4qbP_lrnacdVnooD596I1Matv70AXltI2S_b3iCxd8lGY |
CitedBy_id | crossref_primary_10_1002_bimj_70005 crossref_primary_10_1080_00949655_2020_1783666 |
Cites_doi | 10.1214/13-AOS1087 10.1091/mbc.9.12.3273 10.1093/bioinformatics/btm125 10.1111/j.1467-9868.2009.00723.x 10.1093/oso/9780198524847.001.0001 10.1093/biomet/73.1.13 10.1111/j.1467-9868.2008.00674.x 10.1080/01621459.2013.879828 10.1214/aos/1176349548 10.1214/14-AOS1236 10.1007/978-1-4757-2545-2 10.1126/science.1075090 10.1016/j.jmva.2011.08.002 10.1214/10-AOS798 10.1214/09-AOS692 10.1111/j.1467-9868.2005.00532.x 10.1214/09-AOS781 10.1214/009053607000000505 10.1080/01621459.2012.695654 10.1080/01621459.2014.887012 10.1198/jasa.2011.tm09779 10.1111/j.1467-9868.2009.00718.x |
ContentType | Journal Article |
Copyright | American Statistical Association and Taylor & Francis 2018 2018 American Statistical Association and Taylor & Francis 2018 |
Copyright_xml | – notice: American Statistical Association and Taylor & Francis 2018 2018 – notice: American Statistical Association and Taylor & Francis 2018 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1080/10485252.2018.1497797 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1029-0311 |
EndPage | 905 |
ExternalDocumentID | 10_1080_10485252_2018_1497797 1497797 |
Genre | Article |
GrantInformation_xml | – fundername: Natural Science Fund of Education Department of Anhui province grantid: KJ2013B233 – fundername: Project of National Social Science Fund grantid: 15BTJ027 – fundername: 111 Project of China grantid: B14019 – fundername: Key construction discipline Funds of Hefei University grantid: 2014XK08 – fundername: Doctoral Fund of Ministry of Education of China grantid: 20130076110004 – fundername: Fundamental Research Funds of Hefei University grantid: 10KY01ZD – fundername: Program of Shanghai Subject Chief Scientist grantid: 14XD1401600 – fundername: National Natural Science Foundation of China grantid: 11501372, 11571112, 11171112, 11201190 funderid: 10.13039/501100001809 |
GroupedDBID | .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B F5P GTTXZ H13 HF~ HZ~ H~9 H~P IPNFZ J.P KYCEM M4Z NA5 NY~ O9- PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7SC 8FD JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c338t-5187e3c5b65e80e5bc0d7a902242983ca12e8deb9ee502dbdc38c94bad58badf3 |
ISSN | 1048-5252 |
IngestDate | Wed Aug 13 11:09:20 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 Tue Jul 01 01:04:58 EDT 2025 Wed Dec 25 09:08:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-5187e3c5b65e80e5bc0d7a902242983ca12e8deb9ee502dbdc38c94bad58badf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2127541802 |
PQPubID | 53053 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2127541802 crossref_citationtrail_10_1080_10485252_2018_1497797 crossref_primary_10_1080_10485252_2018_1497797 informaworld_taylorfrancis_310_1080_10485252_2018_1497797 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-02 |
PublicationDateYYYYMMDD | 2018-10-02 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Journal of nonparametric statistics |
PublicationYear | 2018 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0010 CIT0012 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 Huang J.Z. (CIT0011) 2004; 14 CIT0021 CIT0020 CIT0001 CIT0023 Fan J. (CIT0007) 2009; 10 CIT0022 Diggle P. (CIT0003) 2002 CIT0025 CIT0002 CIT0005 CIT0004 CIT0026 CIT0006 CIT0009 CIT0008 Xue L. (CIT0024) 2009; 19 |
References_xml | – ident: CIT0009 doi: 10.1214/13-AOS1087 – ident: CIT0019 doi: 10.1091/mbc.9.12.3273 – ident: CIT0023 doi: 10.1093/bioinformatics/btm125 – ident: CIT0002 doi: 10.1111/j.1467-9868.2009.00723.x – volume-title: Analysis of Longitudinal Data year: 2002 ident: CIT0003 doi: 10.1093/oso/9780198524847.001.0001 – ident: CIT0015 doi: 10.1093/biomet/73.1.13 – ident: CIT0005 doi: 10.1111/j.1467-9868.2008.00674.x – ident: CIT0006 doi: 10.1080/01621459.2013.879828 – volume: 14 start-page: 763 year: 2004 ident: CIT0011 publication-title: Statisttica Sinica – ident: CIT0020 doi: 10.1214/aos/1176349548 – volume: 10 start-page: 1829 year: 2009 ident: CIT0007 publication-title: Journal of Machine Learning Research – ident: CIT0001 doi: 10.1214/14-AOS1236 – ident: CIT0022 doi: 10.1007/978-1-4757-2545-2 – ident: CIT0013 doi: 10.1126/science.1075090 – ident: CIT0026 doi: 10.1016/j.jmva.2011.08.002 – volume: 19 start-page: 1281 year: 2009 ident: CIT0024 publication-title: Statistica Sinica – ident: CIT0008 doi: 10.1214/10-AOS798 – ident: CIT0012 – ident: CIT0016 doi: 10.1214/09-AOS692 – ident: CIT0025 doi: 10.1111/j.1467-9868.2005.00532.x – ident: CIT0010 doi: 10.1214/09-AOS781 – ident: CIT0021 doi: 10.1214/009053607000000505 – ident: CIT0014 doi: 10.1080/01621459.2012.695654 – ident: CIT0018 doi: 10.1080/01621459.2014.887012 – ident: CIT0004 doi: 10.1198/jasa.2011.tm09779 – ident: CIT0017 doi: 10.1111/j.1467-9868.2009.00718.x |
SSID | ssj0013630 |
Score | 2.1286788 |
Snippet | Ultra-high-dimensional data are frequently seen in many contemporary statistical studies, which pose challenges both theoretically and methodologically. To... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 884 |
SubjectTerms | additive model Cell cycle Computer simulation Correlation analysis Gene expression Iterative methods longitudinal data nonparametric independence screening Nonparametric statistics Screening sparsity sure screening property Ultra-high-dimensional Yeast |
Title | Nonparametric independence screening for ultra-high-dimensional longitudinal data under additive models |
URI | https://www.tandfonline.com/doi/abs/10.1080/10485252.2018.1497797 https://www.proquest.com/docview/2127541802 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKdhmHCQaIjYF84Fal5Hec4wSbqmkrEqSi4hLFjjtV6lpokwt_AX8279lO4qiFARercms77ffV79l-_h4hb8FrSESI0VOw5HFCwbnDizBwmOeVrsvn4DTjfefbSTyehtezaDYY_LSiluqKj8SPvfdK_gdVqANc8ZbsPyDbdgoV8BrwhRIQhvKvMJ6sVyjdfY9ZscRw0Wa0RdlYgQE1TZhkvaw2hYPSxE6Jcv5aimO4XGO2orpUmbEwVlRlxd0MMchIhRSpPDnb3ziwq97oeDNJiz53Rx21muDXxjja29OfFt9rKxpIf_IaCLPo6pRVrAv4Snf23oSnhWK7lWy2kybEilXC2RamD1gJawnbkTR1furATOPZU7Q5ulnY-w_aWOv8cjt2QAdOYv_YPUbwMbAJ4OvqYOC-7vbkY341vbnJs8tZ9ogc-kmCB_6HF-MPX790J1JxYJQt9CM3t8GY-27vMD0_p6eCu2P1lSuTPSHHBkJ6oQn1lAzk6oQ8vm0FfLcn5OhzC-czctfjGbV5RlueURia7ucZtXlGkWdU8Yw2PKOaZ8_J9Ooyez92TIIORwQBq5zIY4kMRMTjSDJXRly4ZVKk6Bb6KQtE4fmSlZKnUkauX_JSBEykIS_KiEExD16QA-CqfEkoc_1Epn4cgQceyjJlbimSeSBdHkGDODklYfNz5sKo12MSlWXuGZHbBoUcUcgNCqdk1Db7puVbHmqQ2ljllaLwXLM3Dx5oe94Am5tZYpurDAoh6iye_fntV-So-wudk4NqU8vX4PBW_I3h4i_S6qp6 |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T-QwEB5xUMAVwMEh3rig9SqJ7cQpTwi0PHYrkOis-BGEWHbRbra5X38zeSxwCFHQJEU0VuzY42-cme8DOEXUkDlJ2VMY8nDprOW2kILrOPZRZEsEzVTvPBim_Tt5da_u39TCUFolxdBlQxRR-2pa3HQY3aXE4V1qlSiqo4o1rnXEMHn2A1YUYnea5SIavv5JSEXLSKA52XRVPJ81825_esde-sFb11vQxQa47uWbzJOn3ryyPff3P17H7_VuE9ZbhMr-NFPqFyyF8Rb8HCzoXWdbsEYQtWF43oaH4WRMBOLPpM3l2ONCV9cFhj4J42TcHRl2kM1H1bTgRJDMPYkKNIQgbDQhzaS5J30uRhmrjArbpoxSncgZs1qtZ_Yb7i7Ob8_6vJVv4A7j3oqrWGdBOGVTFXQUlHWRz4qcQEOSa-GKOAnaB5uHoKLEW--Edrm0hVcaL6XYgeXxZBx2gWkMnkOepArxmQw-15F3WSlCZBUapNkeyO6jGddym5PExsjELQVqN6iGBtW0g7oHvYXZS0Pu8ZVB_nZGmKo-VSkbCRQjvrA97KaPaf3EzNT8-pJY-Pa_0fQJrPZvBzfm5nJ4fQBr9KjON0wOYbmazsMR4qbKHtcL4x9m-woy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkCp64NWiUhbqQ69eJbGdOMcKWPHornoAqTcrfgQhll20m73w65nJYykgxIFLcojGShx7_E3y-fsAfiFqyJwk9hSWPFw6a7ktpOA6jn0U2RJBM-13Ho7S0yt5_k91bMJ5S6ukGrpshCLqXE2T-96XHSMOz1KrRNE2qljjVEcIk2efYC1FeEKsPhGNnn4kpKIVJNCcYrpNPG8182x5eiZe-ipZ1yvQYBNsd-8N8eS2v6hs3z28kHX80MNtwUaLT9nvZkBtw0qY7MCX4VLcdb4D6wRQG33nr3A9mk5IPvyOnLkcu1m66rrAMCNhlYxrI8PnY4txNSs4ySNzT5YCjRwIG0_JMWnhyZ2LEV-V0ba2GSOiE6ViVnv1zL_B1eDk8uiUt-YN3GHVW3EV6ywIp2yqgo6Csi7yWZETZEhyLVwRJ0H7YPMQVJR4653QLpe28ErjoRS7sDqZTsJ3YBpL55AnqUJ0JoPPdeRdVooQWYUBabYHsntnxrXK5mSwMTZxK4DadaqhTjVtp-5Bfxl230h7vBeQ_z8gTFV_UykbAxQj3ontdaPHtFlibmp1fUkafD8-0PRP-Pz3eGD-nI0u9mGdrtRkw6QHq9VsEQ4QNFX2sJ4WjxDWCNY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonparametric+independence+screening+for+ultra-high-dimensional+longitudinal+data+under+additive+models&rft.jtitle=Journal+of+nonparametric+statistics&rft.au=Niu%2C+Yong&rft.au=Zhang%2C+Riquan&rft.au=Liu%2C+Jicai&rft.au=Li%2C+Huapeng&rft.date=2018-10-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1048-5252&rft.eissn=1029-0311&rft.volume=30&rft.issue=4&rft.spage=884&rft_id=info:doi/10.1080%2F10485252.2018.1497797&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1048-5252&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1048-5252&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1048-5252&client=summon |