Nonparametric independence screening for ultra-high-dimensional longitudinal data under additive models

Ultra-high-dimensional data are frequently seen in many contemporary statistical studies, which pose challenges both theoretically and methodologically. To address this issue under longitudinal data setting, we propose a marginal nonparametric screening method to hunt for the relevant covariates in...

Full description

Saved in:
Bibliographic Details
Published inJournal of nonparametric statistics Vol. 30; no. 4; pp. 884 - 905
Main Authors Niu, Yong, Zhang, Riquan, Liu, Jicai, Li, Huapeng
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 02.10.2018
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1048-5252
1029-0311
DOI10.1080/10485252.2018.1497797

Cover

Loading…
Abstract Ultra-high-dimensional data are frequently seen in many contemporary statistical studies, which pose challenges both theoretically and methodologically. To address this issue under longitudinal data setting, we propose a marginal nonparametric screening method to hunt for the relevant covariates in additive models. A new data-driven thresholding and an iterative procedure are developed. Especially, a sample splitting method is proposed to further reduce the false selection rates. Although the repeated measurements within each subjects are correlated, the sure screening property is theoretically established. To the best of our knowledge, screening for longitudinal data rarely appeared in the literatures, and our method can be regarded as a nontrivial extension of nonparametric independence screening method. An extensive simulation study is conducted to illustrate the finite sample performance of the proposed method and procedure. Finally, the proposed method is applied to a yeast cycle gene expression data set to identify cell cycle-regulated genes and transcription factors.
AbstractList Ultra-high-dimensional data are frequently seen in many contemporary statistical studies, which pose challenges both theoretically and methodologically. To address this issue under longitudinal data setting, we propose a marginal nonparametric screening method to hunt for the relevant covariates in additive models. A new data-driven thresholding and an iterative procedure are developed. Especially, a sample splitting method is proposed to further reduce the false selection rates. Although the repeated measurements within each subjects are correlated, the sure screening property is theoretically established. To the best of our knowledge, screening for longitudinal data rarely appeared in the literatures, and our method can be regarded as a nontrivial extension of nonparametric independence screening method. An extensive simulation study is conducted to illustrate the finite sample performance of the proposed method and procedure. Finally, the proposed method is applied to a yeast cycle gene expression data set to identify cell cycle-regulated genes and transcription factors.
Author Li, Huapeng
Liu, Jicai
Niu, Yong
Zhang, Riquan
Author_xml – sequence: 1
  givenname: Yong
  surname: Niu
  fullname: Niu, Yong
  organization: Department of Mathematics and Physics, Hefei University
– sequence: 2
  givenname: Riquan
  surname: Zhang
  fullname: Zhang, Riquan
  email: zhangriquan@163.com
  organization: School of Finance and Statistics, East China Normal University
– sequence: 3
  givenname: Jicai
  surname: Liu
  fullname: Liu, Jicai
  organization: College of Mathematics and Sciences, Shanghai Normal University
– sequence: 4
  givenname: Huapeng
  surname: Li
  fullname: Li, Huapeng
  organization: School of Mathematics and Computer Sciences, Shanxi Datong University
BookMark eNqFkE1LxDAQhoMouK7-BKHguWs-GpviRVn8gkUveg5pMl0jbbImqbL_3pTViwe9zEzgfYbMc4T2nXeA0CnBC4IFPie4EpxyuqCYiAWpmrpu6j00I5g2JWaE7E9zJcopdIiOYnzDmLALhmdo_ejdRgU1QApWF9YZ2EAuTkMRdQBw1q2Lzodi7FNQ5atdv5bGDuCi9U71Re_d2qbR2OlhVFLFmPFQKGNssh9QDN5AH4_RQaf6CCfffY5ebm-el_fl6unuYXm9KjVjIpWciBqY5u0FB4GBtxqbWjWY0oo2gmlFKAgDbQPAMTWt0UzopmqV4SKXjs3R2W7vJvj3EWKSb34M-W9RUkJrXhGBaU5d7lI6-BgDdFLbpFK-KN9oe0mwnMzKH7NyMiu_zWaa_6I3wQ4qbP_lrnacdVnooD596I1Matv70AXltI2S_b3iCxd8lGY
CitedBy_id crossref_primary_10_1002_bimj_70005
crossref_primary_10_1080_00949655_2020_1783666
Cites_doi 10.1214/13-AOS1087
10.1091/mbc.9.12.3273
10.1093/bioinformatics/btm125
10.1111/j.1467-9868.2009.00723.x
10.1093/oso/9780198524847.001.0001
10.1093/biomet/73.1.13
10.1111/j.1467-9868.2008.00674.x
10.1080/01621459.2013.879828
10.1214/aos/1176349548
10.1214/14-AOS1236
10.1007/978-1-4757-2545-2
10.1126/science.1075090
10.1016/j.jmva.2011.08.002
10.1214/10-AOS798
10.1214/09-AOS692
10.1111/j.1467-9868.2005.00532.x
10.1214/09-AOS781
10.1214/009053607000000505
10.1080/01621459.2012.695654
10.1080/01621459.2014.887012
10.1198/jasa.2011.tm09779
10.1111/j.1467-9868.2009.00718.x
ContentType Journal Article
Copyright American Statistical Association and Taylor & Francis 2018 2018
American Statistical Association and Taylor & Francis 2018
Copyright_xml – notice: American Statistical Association and Taylor & Francis 2018 2018
– notice: American Statistical Association and Taylor & Francis 2018
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/10485252.2018.1497797
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1029-0311
EndPage 905
ExternalDocumentID 10_1080_10485252_2018_1497797
1497797
Genre Article
GrantInformation_xml – fundername: Natural Science Fund of Education Department of Anhui province
  grantid: KJ2013B233
– fundername: Project of National Social Science Fund
  grantid: 15BTJ027
– fundername: 111 Project of China
  grantid: B14019
– fundername: Key construction discipline Funds of Hefei University
  grantid: 2014XK08
– fundername: Doctoral Fund of Ministry of Education of China
  grantid: 20130076110004
– fundername: Fundamental Research Funds of Hefei University
  grantid: 10KY01ZD
– fundername: Program of Shanghai Subject Chief Scientist
  grantid: 14XD1401600
– fundername: National Natural Science Foundation of China
  grantid: 11501372, 11571112, 11171112, 11201190
  funderid: 10.13039/501100001809
GroupedDBID .7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~9
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-5187e3c5b65e80e5bc0d7a902242983ca12e8deb9ee502dbdc38c94bad58badf3
ISSN 1048-5252
IngestDate Wed Aug 13 11:09:20 EDT 2025
Thu Apr 24 22:51:13 EDT 2025
Tue Jul 01 01:04:58 EDT 2025
Wed Dec 25 09:08:48 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-5187e3c5b65e80e5bc0d7a902242983ca12e8deb9ee502dbdc38c94bad58badf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2127541802
PQPubID 53053
PageCount 22
ParticipantIDs proquest_journals_2127541802
crossref_citationtrail_10_1080_10485252_2018_1497797
crossref_primary_10_1080_10485252_2018_1497797
informaworld_taylorfrancis_310_1080_10485252_2018_1497797
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-02
PublicationDateYYYYMMDD 2018-10-02
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-02
  day: 02
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of nonparametric statistics
PublicationYear 2018
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0012
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
Huang J.Z. (CIT0011) 2004; 14
CIT0021
CIT0020
CIT0001
CIT0023
Fan J. (CIT0007) 2009; 10
CIT0022
Diggle P. (CIT0003) 2002
CIT0025
CIT0002
CIT0005
CIT0004
CIT0026
CIT0006
CIT0009
CIT0008
Xue L. (CIT0024) 2009; 19
References_xml – ident: CIT0009
  doi: 10.1214/13-AOS1087
– ident: CIT0019
  doi: 10.1091/mbc.9.12.3273
– ident: CIT0023
  doi: 10.1093/bioinformatics/btm125
– ident: CIT0002
  doi: 10.1111/j.1467-9868.2009.00723.x
– volume-title: Analysis of Longitudinal Data
  year: 2002
  ident: CIT0003
  doi: 10.1093/oso/9780198524847.001.0001
– ident: CIT0015
  doi: 10.1093/biomet/73.1.13
– ident: CIT0005
  doi: 10.1111/j.1467-9868.2008.00674.x
– ident: CIT0006
  doi: 10.1080/01621459.2013.879828
– volume: 14
  start-page: 763
  year: 2004
  ident: CIT0011
  publication-title: Statisttica Sinica
– ident: CIT0020
  doi: 10.1214/aos/1176349548
– volume: 10
  start-page: 1829
  year: 2009
  ident: CIT0007
  publication-title: Journal of Machine Learning Research
– ident: CIT0001
  doi: 10.1214/14-AOS1236
– ident: CIT0022
  doi: 10.1007/978-1-4757-2545-2
– ident: CIT0013
  doi: 10.1126/science.1075090
– ident: CIT0026
  doi: 10.1016/j.jmva.2011.08.002
– volume: 19
  start-page: 1281
  year: 2009
  ident: CIT0024
  publication-title: Statistica Sinica
– ident: CIT0008
  doi: 10.1214/10-AOS798
– ident: CIT0012
– ident: CIT0016
  doi: 10.1214/09-AOS692
– ident: CIT0025
  doi: 10.1111/j.1467-9868.2005.00532.x
– ident: CIT0010
  doi: 10.1214/09-AOS781
– ident: CIT0021
  doi: 10.1214/009053607000000505
– ident: CIT0014
  doi: 10.1080/01621459.2012.695654
– ident: CIT0018
  doi: 10.1080/01621459.2014.887012
– ident: CIT0004
  doi: 10.1198/jasa.2011.tm09779
– ident: CIT0017
  doi: 10.1111/j.1467-9868.2009.00718.x
SSID ssj0013630
Score 2.1286788
Snippet Ultra-high-dimensional data are frequently seen in many contemporary statistical studies, which pose challenges both theoretically and methodologically. To...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 884
SubjectTerms additive model
Cell cycle
Computer simulation
Correlation analysis
Gene expression
Iterative methods
longitudinal data
nonparametric independence screening
Nonparametric statistics
Screening
sparsity
sure screening property
Ultra-high-dimensional
Yeast
Title Nonparametric independence screening for ultra-high-dimensional longitudinal data under additive models
URI https://www.tandfonline.com/doi/abs/10.1080/10485252.2018.1497797
https://www.proquest.com/docview/2127541802
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKdhmHCQaIjYF84Fal5Hec4wSbqmkrEqSi4hLFjjtV6lpokwt_AX8279lO4qiFARercms77ffV79l-_h4hb8FrSESI0VOw5HFCwbnDizBwmOeVrsvn4DTjfefbSTyehtezaDYY_LSiluqKj8SPvfdK_gdVqANc8ZbsPyDbdgoV8BrwhRIQhvKvMJ6sVyjdfY9ZscRw0Wa0RdlYgQE1TZhkvaw2hYPSxE6Jcv5aimO4XGO2orpUmbEwVlRlxd0MMchIhRSpPDnb3ziwq97oeDNJiz53Rx21muDXxjja29OfFt9rKxpIf_IaCLPo6pRVrAv4Snf23oSnhWK7lWy2kybEilXC2RamD1gJawnbkTR1furATOPZU7Q5ulnY-w_aWOv8cjt2QAdOYv_YPUbwMbAJ4OvqYOC-7vbkY341vbnJs8tZ9ogc-kmCB_6HF-MPX790J1JxYJQt9CM3t8GY-27vMD0_p6eCu2P1lSuTPSHHBkJ6oQn1lAzk6oQ8vm0FfLcn5OhzC-czctfjGbV5RlueURia7ucZtXlGkWdU8Yw2PKOaZ8_J9Ooyez92TIIORwQBq5zIY4kMRMTjSDJXRly4ZVKk6Bb6KQtE4fmSlZKnUkauX_JSBEykIS_KiEExD16QA-CqfEkoc_1Epn4cgQceyjJlbimSeSBdHkGDODklYfNz5sKo12MSlWXuGZHbBoUcUcgNCqdk1Db7puVbHmqQ2ljllaLwXLM3Dx5oe94Am5tZYpurDAoh6iye_fntV-So-wudk4NqU8vX4PBW_I3h4i_S6qp6
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T-QwEB5xUMAVwMEh3rig9SqJ7cQpTwi0PHYrkOis-BGEWHbRbra5X38zeSxwCFHQJEU0VuzY42-cme8DOEXUkDlJ2VMY8nDprOW2kILrOPZRZEsEzVTvPBim_Tt5da_u39TCUFolxdBlQxRR-2pa3HQY3aXE4V1qlSiqo4o1rnXEMHn2A1YUYnea5SIavv5JSEXLSKA52XRVPJ81825_esde-sFb11vQxQa47uWbzJOn3ryyPff3P17H7_VuE9ZbhMr-NFPqFyyF8Rb8HCzoXWdbsEYQtWF43oaH4WRMBOLPpM3l2ONCV9cFhj4J42TcHRl2kM1H1bTgRJDMPYkKNIQgbDQhzaS5J30uRhmrjArbpoxSncgZs1qtZ_Yb7i7Ob8_6vJVv4A7j3oqrWGdBOGVTFXQUlHWRz4qcQEOSa-GKOAnaB5uHoKLEW--Edrm0hVcaL6XYgeXxZBx2gWkMnkOepArxmQw-15F3WSlCZBUapNkeyO6jGddym5PExsjELQVqN6iGBtW0g7oHvYXZS0Pu8ZVB_nZGmKo-VSkbCRQjvrA97KaPaf3EzNT8-pJY-Pa_0fQJrPZvBzfm5nJ4fQBr9KjON0wOYbmazsMR4qbKHtcL4x9m-woy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkCp64NWiUhbqQ69eJbGdOMcKWPHornoAqTcrfgQhll20m73w65nJYykgxIFLcojGShx7_E3y-fsAfiFqyJwk9hSWPFw6a7ktpOA6jn0U2RJBM-13Ho7S0yt5_k91bMJ5S6ukGrpshCLqXE2T-96XHSMOz1KrRNE2qljjVEcIk2efYC1FeEKsPhGNnn4kpKIVJNCcYrpNPG8182x5eiZe-ipZ1yvQYBNsd-8N8eS2v6hs3z28kHX80MNtwUaLT9nvZkBtw0qY7MCX4VLcdb4D6wRQG33nr3A9mk5IPvyOnLkcu1m66rrAMCNhlYxrI8PnY4txNSs4ySNzT5YCjRwIG0_JMWnhyZ2LEV-V0ba2GSOiE6ViVnv1zL_B1eDk8uiUt-YN3GHVW3EV6ywIp2yqgo6Csi7yWZETZEhyLVwRJ0H7YPMQVJR4653QLpe28ErjoRS7sDqZTsJ3YBpL55AnqUJ0JoPPdeRdVooQWYUBabYHsntnxrXK5mSwMTZxK4DadaqhTjVtp-5Bfxl230h7vBeQ_z8gTFV_UykbAxQj3ontdaPHtFlibmp1fUkafD8-0PRP-Pz3eGD-nI0u9mGdrtRkw6QHq9VsEQ4QNFX2sJ4WjxDWCNY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonparametric+independence+screening+for+ultra-high-dimensional+longitudinal+data+under+additive+models&rft.jtitle=Journal+of+nonparametric+statistics&rft.au=Niu%2C+Yong&rft.au=Zhang%2C+Riquan&rft.au=Liu%2C+Jicai&rft.au=Li%2C+Huapeng&rft.date=2018-10-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1048-5252&rft.eissn=1029-0311&rft.volume=30&rft.issue=4&rft.spage=884&rft_id=info:doi/10.1080%2F10485252.2018.1497797&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1048-5252&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1048-5252&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1048-5252&client=summon