Differential algebraic observer-based trajectory tracking for parallel robots via linear matrix inequalities

This paper develops a novel observer-based trajectory tracking technique for parallel robots, modelled as differential algebraic equations, which assumes that only positions are available for control purposes while joint velocities should be estimated. Based on the direct Lyapunov method and a recen...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of systems science Vol. 53; no. 10; pp. 2149 - 2164
Main Authors Álvarez, J., Servín, J., Díaz, J. A., Bernal, M.
Format Journal Article
LanguageEnglish
Published London Taylor & Francis 27.07.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper develops a novel observer-based trajectory tracking technique for parallel robots, modelled as differential algebraic equations, which assumes that only positions are available for control purposes while joint velocities should be estimated. Based on the direct Lyapunov method and a recently appeared factorisation for expressions in the differential mean value theorem, convex modelling and Finsler's lemma are combined to incorporate restrictions into the analysis. Two generalisations are thus achieved: the inner-loop feedback is allowed to use velocity estimates instead of the real values and the outer-loop feedback becomes fully nonlinear while taking into account the parallel characteristics of mechanisms. Moreover, both the observer and the controller design conditions are linear matrix inequalities, which can be efficiently solved via commercially available software. Illustrative examples are provided that show the advantages of the proposal against former works on the subject.
AbstractList This paper develops a novel observer-based trajectory tracking technique for parallel robots, modelled as differential algebraic equations, which assumes that only positions are available for control purposes while joint velocities should be estimated. Based on the direct Lyapunov method and a recently appeared factorisation for expressions in the differential mean value theorem, convex modelling and Finsler's lemma are combined to incorporate restrictions into the analysis. Two generalisations are thus achieved: the inner-loop feedback is allowed to use velocity estimates instead of the real values and the outer-loop feedback becomes fully nonlinear while taking into account the parallel characteristics of mechanisms. Moreover, both the observer and the controller design conditions are linear matrix inequalities, which can be efficiently solved via commercially available software. Illustrative examples are provided that show the advantages of the proposal against former works on the subject.
Author Bernal, M.
Díaz, J. A.
Servín, J.
Álvarez, J.
Author_xml – sequence: 1
  givenname: J.
  orcidid: 0000-0001-6439-6049
  surname: Álvarez
  fullname: Álvarez, J.
  organization: Sonora Institute of Technology
– sequence: 2
  givenname: J.
  surname: Servín
  fullname: Servín, J.
  organization: Sonora Institute of Technology
– sequence: 3
  givenname: J. A.
  surname: Díaz
  fullname: Díaz, J. A.
  organization: Sonora Institute of Technology
– sequence: 4
  givenname: M.
  orcidid: 0000-0003-3488-6180
  surname: Bernal
  fullname: Bernal, M.
  email: miguel.bernal@itson.edu.mx
  organization: Sonora Institute of Technology
BookMark eNqFkEtrHDEQhEVwIGsnPyEgyHkcveZFLgl-xAFDLr6LXk3LaKOV1i2t4_33mWHtiw_xpbsLqqrhO2UnKSdk7LMU51IM4qsQSvS9kudKKDUPo82g3rGVNJ1pWi3HE7ZaPM1i-sBOS9kIIdpWiRWLl8F7JEw1QOQQ73FNEBzP64L0iNSsoeDEK8EGXc10WE73J6R77jPxHRDEiJFTXuda-GMAHkNCIL6FSuGJz-JhDzHUgOUje-8hFvz0vM_Y3fXV3cVNc_v756-LH7eN03qojRkRQKoeeunVJJzQsp3Aj8PojUCNi-qkF6MzPaDWDlrtu8mjlGjQ6TP25Vi7o_ywx1LtJu8pzR-t6obRaGlUN7vao8tRLoXQ2x2FLdDBSmEXrvaFq1242meuc-7bq5wLFWrIaSYT4pvp78d0SDO_LfzNFCdb4RAzeYLkQrH6_xX_AGAIlWM
CitedBy_id crossref_primary_10_1088_1402_4896_ad8486
crossref_primary_10_1109_TAES_2023_3262504
Cites_doi 10.1137/S1064827595289996
10.1109/87.974334
10.1115/1.2801180
10.1177/027836499801701205
10.5220/0005015403030310
10.1109/CCE50788.2020.9299150
10.1016/j.isatra.2016.02.016
10.1002/0471224596
10.1007/978-1-84628-615-5
10.1007/s11431-017-9181-9
10.1201/9781420042337
10.1007/BFb0110624
10.1177/1729881416687112
10.1109/TIE.2020.2965501
10.1109/TAC.1985.1104009
10.1007/978-1-4419-6397-0
10.1109/TAC.2018.2854651
10.1109/91.940966
10.1109/TMECH.2009.2024682
10.1109/WCICA.2004.1343670
10.1137/0909014
10.5772/55102
10.1137/1.9781611970777
10.1016/j.ifacol.2019.09.109
10.1109/TMECH.2003.820006
10.1504/IJMIC.2017.086563
10.1145/2700586
10.1109/91.824768
10.1016/j.isatra.2012.04.001
10.1016/j.mechatronics.2009.04.002
10.1016/j.isatra.2019.07.030
10.1109/TASE.2018.2790900
10.1201/9780203026953
10.1007/s00500-002-0257-8
10.1016/S1570-8659(02)08004-3
10.1243/09544062JMES1684
10.1016/j.fss.2020.04.012
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00207721.2022.2043482
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1464-5319
EndPage 2164
ExternalDocumentID 10_1080_00207721_2022_2043482
2043482
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACNCT
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MS~
NA5
NX~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~02
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-49eaa127a71f2d0c0315daf989f40e3e15da61f09c47ae33ca53f6dfe11e4ec3
ISSN 0020-7721
IngestDate Fri Jul 25 04:04:41 EDT 2025
Tue Jul 01 01:02:48 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
Wed Dec 25 09:05:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-49eaa127a71f2d0c0315daf989f40e3e15da61f09c47ae33ca53f6dfe11e4ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3488-6180
0000-0001-6439-6049
PQID 2689431426
PQPubID 2045514
PageCount 16
ParticipantIDs crossref_primary_10_1080_00207721_2022_2043482
crossref_citationtrail_10_1080_00207721_2022_2043482
proquest_journals_2689431426
informaworld_taylorfrancis_310_1080_00207721_2022_2043482
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-27
PublicationDateYYYYMMDD 2022-07-27
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of systems science
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Litim M. (CIT0029) 2015; 17
CIT0030
CIT0032
Lewis F. (CIT0027) 1994; 39
CIT0034
CIT0033
Udawatta L. (CIT0047) 2002; 4
CIT0035
CIT0038
CIT0037
CIT0039
Åström K. (CIT0006) 2013
CIT0041
CIT0040
Zhao D. (CIT0053) 2008; 6
CIT0043
Craig J. J. (CIT0015) 2005
CIT0042
CIT0001
CIT0045
CIT0044
Gahinet P. (CIT0020) 1995
CIT0003
CIT0002
CIT0005
CIT0049
CIT0048
CIT0007
CIT0009
CIT0008
CIT0050
CIT0052
CIT0010
CIT0012
CIT0011
CIT0014
Merlet J. P. (CIT0031) 2006; 128
CIT0013
CIT0016
Tsai L. W. (CIT0046) 1999
Yang T. (CIT0051) 2021
CIT0018
CIT0017
CIT0019
Khalil H. (CIT0024) 2014
Piltan F. (CIT0036) 2012; 3
CIT0021
CIT0023
CIT0022
Arceo J. C. (CIT0004) 2021; 31
CIT0025
CIT0026
CIT0028
References_xml – ident: CIT0011
  doi: 10.1137/S1064827595289996
– volume: 39
  start-page: 1773
  issue: 8
  year: 1994
  ident: CIT0027
  publication-title: IEEE Transactions on Automatic Control
– ident: CIT0008
  doi: 10.1109/87.974334
– ident: CIT0009
  doi: 10.1115/1.2801180
– ident: CIT0014
  doi: 10.1177/027836499801701205
– ident: CIT0028
  doi: 10.5220/0005015403030310
– ident: CIT0040
  doi: 10.1109/CCE50788.2020.9299150
– ident: CIT0030
  doi: 10.1016/j.isatra.2016.02.016
– ident: CIT0016
– ident: CIT0044
  doi: 10.1002/0471224596
– volume: 3
  start-page: 167
  issue: 3
  year: 2012
  ident: CIT0036
  publication-title: International Journal of Robotics and Automation
– ident: CIT0022
  doi: 10.1007/978-1-84628-615-5
– ident: CIT0052
  doi: 10.1007/s11431-017-9181-9
– ident: CIT0050
  doi: 10.1201/9781420042337
– volume-title: Nonlinear control
  year: 2014
  ident: CIT0024
– ident: CIT0033
  doi: 10.1007/BFb0110624
– ident: CIT0002
  doi: 10.1177/1729881416687112
– ident: CIT0023
  doi: 10.1109/TIE.2020.2965501
– ident: CIT0042
  doi: 10.1109/TAC.1985.1104009
– ident: CIT0019
  doi: 10.1007/978-1-4419-6397-0
– volume: 31
  start-page: 5
  issue: 1
  year: 2021
  ident: CIT0004
  publication-title: Archives of Control Sciences
– ident: CIT0005
  doi: 10.1109/TAC.2018.2854651
– ident: CIT0045
  doi: 10.1109/91.940966
– ident: CIT0001
  doi: 10.1109/TMECH.2009.2024682
– ident: CIT0043
  doi: 10.1109/WCICA.2004.1343670
– ident: CIT0035
  doi: 10.1137/0909014
– volume-title: LMI control toolbox
  year: 1995
  ident: CIT0020
– ident: CIT0025
  doi: 10.5772/55102
– ident: CIT0017
– ident: CIT0010
  doi: 10.1137/1.9781611970777
– ident: CIT0003
  doi: 10.1016/j.ifacol.2019.09.109
– ident: CIT0013
  doi: 10.1109/TMECH.2003.820006
– volume-title: Introduction to robotics: mechanics and control, 3/e
  year: 2005
  ident: CIT0015
– ident: CIT0007
  doi: 10.1504/IJMIC.2017.086563
– volume: 128
  volume-title: Parallel robots
  year: 2006
  ident: CIT0031
– ident: CIT0032
  doi: 10.1145/2700586
– ident: CIT0012
  doi: 10.1109/91.824768
– volume: 17
  start-page: 90
  issue: 2
  year: 2015
  ident: CIT0029
  publication-title: CEAI]
– volume: 4
  start-page: 347
  issue: 4
  year: 2002
  ident: CIT0047
  publication-title: Transactions on Control, Automation and Systems Engineering
– ident: CIT0018
– ident: CIT0049
  doi: 10.1016/j.isatra.2012.04.001
– ident: CIT0041
  doi: 10.1016/j.mechatronics.2009.04.002
– ident: CIT0021
  doi: 10.1016/j.isatra.2019.07.030
– volume-title: Computer-controlled systems: Theory and design
  year: 2013
  ident: CIT0006
– ident: CIT0039
  doi: 10.1109/TASE.2018.2790900
– ident: CIT0026
  doi: 10.1201/9780203026953
– ident: CIT0048
  doi: 10.1007/s00500-002-0257-8
– ident: CIT0038
  doi: 10.1016/S1570-8659(02)08004-3
– volume-title: Robot analysis: The mechanics of serial and parallel manipulators
  year: 1999
  ident: CIT0046
– ident: CIT0034
  doi: 10.1243/09544062JMES1684
– ident: CIT0037
  doi: 10.1016/j.fss.2020.04.012
– year: 2021
  ident: CIT0051
  publication-title: IEEE Transactions on Cybernetics
– volume: 6
  start-page: 689
  issue: 5
  year: 2008
  ident: CIT0053
  publication-title: International Journal of Control, Automation, and Systems
SSID ssj0005520
Score 2.3282714
Snippet This paper develops a novel observer-based trajectory tracking technique for parallel robots, modelled as differential algebraic equations, which assumes that...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2149
SubjectTerms Algebra
computed-torque
Control systems design
Differential algebraic equation
Differential calculus
Differential equations
Feedback
Linear matrix inequalities
Mathematical analysis
observer-based controller design
parallel robots
Robots
Tracking
trajectory tracking
Title Differential algebraic observer-based trajectory tracking for parallel robots via linear matrix inequalities
URI https://www.tandfonline.com/doi/abs/10.1080/00207721.2022.2043482
https://www.proquest.com/docview/2689431426
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOiKcoFOQDtyirOHYePlZsqxUq5ZKKFZfIcRypJeyi3bQCfhM_kpnY2STaigKXKHHijdfz2Z6MZ74h5G2qRJJGEgZSlCS-QD8aGejAr0wkdRVXsGihaeDDeby4EO-X0XIy-TXwWrpuipn-eWtcyf9IFcpArhgl-w-S3f0oFMA5yBeOIGE4_pWM5y67SYNmb0zYAZ--l9pbF2hqNRsfl6gSs0Bctbb5H3iqv3S-k8j6Xdem9jbrYt1svZtL5aHSqTbeVyTu_-7BhQ267DwNr3q_996MOCCfsLzQW8-tq500cTc-ZfWN2lh7db8VBe1st-rnq1H53BYq-_TA3toyVvdGXGeuCFvXVhv93wIs28scMnBfstEFAWr8Fm_GTsoiFj7OFcNZ21IMd-gMRnOwJUF163nILE363lrROVeGAb5vho2dYaSwsNmQxtzc5x_z04uzszw7WWb3yEEIVcIpOThezD9_6l2KIkcD6v5DFzGGXO63vWakC42Ycvc0g1bdyR6Rh-47hR5b0D0mE7N6Qh4M2CufknoIP7qDHx3Dj_bwox38KDSBdvCjFn4U4Ect_KiFHx3C7xnJTk-ydwvfJe_wNedp4wtplGJhohJWhSUMf86iUlUylZUIDDd4FbMqkFokynCuVcSruKwMY0YYzZ-T6Wq9Mi8I5aEEHbtUrBSlKEolTSRkXEAPhkGkmT4kouvFXDtie8yvUudsx39rOz_Hzs9d5x-S2a7aN8vsclcFORRR3rRQriyKc35H3aNOnrkblds8jDH5AQMd-eWfb78i9_uhdESmzebavAZduCneOAj-BpHdr7Y
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYDsCBHbHjA9dUcWwn9RGxqCztqUi9WY5jS0BoUJoi4OvxZIEWhHrgFisayxnbs2XmDUKnbcWiNhfuIvEo8hjk0Qhf-541XGgbWqe0IDTQ7YWde3Yz4IOJWhhIqwQf2lZAEaWshssNwegmJQ5KuH1nFYJ7F0AxFQOElnm0yEUYQRcD6ve-0zx4Dc3o3CSgaap4_ppmSj9NoZf-ktalCrpaQ7pZfJV58tQaF3FLf_zAdfzf162j1dpCxWfVkdpAc2a4iVYmcAu3UHpRt1Vx4iHF0CnE-dwPGmcxxHhN7oFuTHCRq8fyp8A7PGoIymP3oRjgxtPUpDjP4qwY4dcHhWGhKsfP0DHgDbtBVe3p_Pht1L-67J93vLptg6edv1t4TBilSBCpiNggcRtPCU-UFW1hmW-ogVFIrC80i5ShVCtObZhYQ4hhRtMdtDDMhmYXYRoIZ10liiQsYXGihHHebBg7hgQ-10TvIdbsldQ1pDl01kgl-UI-rXgpgZey5uUean2RvVSYHrMIxORBkEUZTLFV5xNJZ9AeNqdG1uJhJIMQYO-Js472_zH1CVrq9Lt38u66d3uAluEVRJ2D6BAtFPnYHDlzqYiPy_vwCZ-jBms
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYJAQHdsSOD1xTxYmd1EcEVGWrOIDEzXK8SIXQVmmKgK_Hk6VQEOqht1jRWM7Yni0zbxA6bUoaNxl3F4nFsUchj4b7yvesYVzZyDqlBaGBu07UfqTXT6zOJhxWaZXgQ9sSKKKQ1XC5B9rWGXFQwe07oxC8uwBqqSgAtMyjxQjAw6GKw-98Z3mwCpnReUlAUxfx_DfNhHqaAC_9I6wLDdRaQ0m99jLx5KUxypOG-vwF6zjTx62j1co-xWflgdpAc6a3iVZ-oBZuofSiaqrihEOKoU-I87i7CvcTiPCazAPNqHGeyefil8AHPCoIyWP3nRjAxtPUpDjrJ_18iN-6EsM6ZYZfoV_AO3aDstbTefHb6KF1-XDe9qqmDZ5y3m7uUW6kJEEsY2ID7bY9JExLy5vcUt-EBkYRsT5XNJYmDJVkoY20NYQYalS4gxZ6_Z7ZRTgMuLOttCSaappoyY3zZaPEMSTwmSJqD9F6q4SqAM2hr0YqyBj3tOSlAF6Kipd7qDEmG5SIHtMI-M9zIPIilGLLvicinEJ7WB8aUQmHoQgiAL0nzjban2HqE7R0f9ESt1edmwO0DG8g5BzEh2ghz0bmyNlKeXJc3IYvVzEFDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+algebraic+observer-based+trajectory+tracking+for+parallel+robots+via+linear+matrix+inequalities&rft.jtitle=International+journal+of+systems+science&rft.au=%C3%81lvarez%2C+J&rft.au=Serv%C3%ADn%2C+J&rft.au=D%C3%ADaz%2C+J+A&rft.au=Bernal%2C+M&rft.date=2022-07-27&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0020-7721&rft.eissn=1464-5319&rft.volume=53&rft.issue=10&rft.spage=2149&rft.epage=2164&rft_id=info:doi/10.1080%2F00207721.2022.2043482&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7721&client=summon