Energy management strategy based on convex optimization for fuel cell/battery/ultracapacitor hybrid vehicle

For a fuel cell hybrid electric vehicle (FCHEV) powered by a fuel cell (FC), a battery (BAT) and an ultracapacitor (UC), an improved convex-optimization-based energy management strategy (EMS) is proposed in this article. To protect the fuel cell and the battery from peak power, an adaptive fuzzy fil...

Full description

Saved in:
Bibliographic Details
Published inEngineering optimization Vol. 56; no. 3; pp. 447 - 467
Main Authors Liu, Jinpeng, Fu, Zhumu, Tao, Fazhan, Jiao, Longyin, Chen, Qihong
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 03.03.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For a fuel cell hybrid electric vehicle (FCHEV) powered by a fuel cell (FC), a battery (BAT) and an ultracapacitor (UC), an improved convex-optimization-based energy management strategy (EMS) is proposed in this article. To protect the fuel cell and the battery from peak power, an adaptive fuzzy filter is used to complete the frequency decoupling of the power demand. Subsequently, an adaptive equivalent consumption minimization strategy (A-ECMS) is introduced to improve fuel economy. To improve the optimality of the EMS obtained, an improved convex optimization method is utilized by introducing a slack variable and a barrier function. Finally, based on experimental data and an improved convex optimization algorithm, the optimal EMS is calculated and verified by a series of simulations under different driving cycles. Simulation results confirm that, compared with the traditional ECMS-based EMS, the proposed EMS can improve fuel economy and achieve lower power fluctuation and optimal FC efficiency for the FCHEV.
AbstractList For a fuel cell hybrid electric vehicle (FCHEV) powered by a fuel cell (FC), a battery (BAT) and an ultracapacitor (UC), an improved convex-optimization-based energy management strategy (EMS) is proposed in this article. To protect the fuel cell and the battery from peak power, an adaptive fuzzy filter is used to complete the frequency decoupling of the power demand. Subsequently, an adaptive equivalent consumption minimization strategy (A-ECMS) is introduced to improve fuel economy. To improve the optimality of the EMS obtained, an improved convex optimization method is utilized by introducing a slack variable and a barrier function. Finally, based on experimental data and an improved convex optimization algorithm, the optimal EMS is calculated and verified by a series of simulations under different driving cycles. Simulation results confirm that, compared with the traditional ECMS-based EMS, the proposed EMS can improve fuel economy and achieve lower power fluctuation and optimal FC efficiency for the FCHEV.
Author Liu, Jinpeng
Tao, Fazhan
Jiao, Longyin
Fu, Zhumu
Chen, Qihong
Author_xml – sequence: 1
  givenname: Jinpeng
  surname: Liu
  fullname: Liu, Jinpeng
  organization: Henan University of Science and Technology
– sequence: 2
  givenname: Zhumu
  surname: Fu
  fullname: Fu, Zhumu
  email: fuzhumu@haust.edu.cn
  organization: Henan University of Science and Technology
– sequence: 3
  givenname: Fazhan
  surname: Tao
  fullname: Tao, Fazhan
  organization: Henan University of Science and Technology
– sequence: 4
  givenname: Longyin
  surname: Jiao
  fullname: Jiao, Longyin
  organization: Henan University of Science and Technology
– sequence: 5
  givenname: Qihong
  surname: Chen
  fullname: Chen, Qihong
  organization: Wuhan University of Technology
BookMark eNqFkE1rGzEQhkVIoM7HTygs9Ly2PlbrXXppMWlaCOSSQG5iVjsby9FKriQ73fz6ynV6yaE9jRieZ0bznpNT5x0S8pHROaMNXVBBJWfycc4p5_P8kqKSJ2TGKG9LypfilMwOTHmAPpDzGDeUMkFpMyPP1w7D01SM4OAJR3SpiClAwtzrIGJfeFdo7_b4q_DbZEbzCsnk3uBDMezQFhqtXXSQEoZpsbNZ1rAFbVIG1lMXTF_scW20xUtyNoCNePVWL8jDt-v71ffy9u7mx-rrbamFaFJZtQz0QFkvAGuKXd3KJYMOpV5iDVy0tQY2tJWEqu8ZgOZd03eMty1bdn0ziAvy6Th3G_zPHcakNn4XXF6peCulZBWteaY-HykdfIwBB5X__Oe2fIKxilF1SFf9TVcd0lVv6WZbvrO3wYwQpv96X46ecTnBEV58sL1KMFkfhgBOm6jEv0f8BiyMlhs
CitedBy_id crossref_primary_10_1080_15567036_2024_2336173
crossref_primary_10_1016_j_energy_2024_132771
crossref_primary_10_1016_j_ijhydene_2024_07_237
Cites_doi 10.1109/TVT.2020.3040376
10.1016/j.apenergy.2013.06.056
10.1016/j.ic.2018.09.012
10.1016/j.ijhydene.2017.12.150
10.1109/TVT.2021.3121129
10.1109/TVT.2014.2304137
10.1109/TVT.2020.3046520
10.1109/TCST.2003.815606
10.1109/TITS.2021.3121550
10.1109/TVT.2018.2866801
10.1016/j.energy.2021.120856
10.1016/j.jpowsour.2017.08.107
10.3390/en7020834
10.1109/VTC.2002.1002989
10.1109/TITS.2017.2672542
10.1016/j.energy.2020.117327
10.1016/j.mechatronics.2011.12.001
10.1017/CBO9780511804441
10.1016/j.enpol.2018.01.006
10.1109/TVT.2015.2504510
10.1109/TVT.2013.2276432
10.1109/ITEC.2017.7993328
10.1109/TVT.2019.2902485
10.1109/TVT.2005.844683
10.1016/j.ijhydene.2019.01.190
10.1177/0036850419874992
10.1109/TCST.2019.2933793
10.1016/j.jpowsour.2020.227964
10.1016/j.ifacol.2016.08.041
10.1109/TVT.2021.3138440
10.3166/ejc.11.509-524
10.1007/s40684-019-00046-z
10.1109/TPEL.2013.2262003
10.1109/TSMC.2020.3042876
10.1016/j.apenergy.2016.02.026
10.1016/j.jclepro.2019.04.374
10.1016/j.ijhydene.2020.01.017
10.1109/TTE.2019.2915689
10.1016/j.apenergy.2020.114553
10.1109/TIE.2009.2021177
10.1109/TCST.2017.2740836
10.1016/j.est.2020.101760
10.1016/j.energy.2020.118064
10.1016/j.jpowsour.2014.05.067
10.1109/TIE.2014.2308148
10.1007/s11590-014-0732-z
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/0305215X.2022.2155345
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-0273
EndPage 467
ExternalDocumentID 10_1080_0305215X_2022_2155345
2155345
Genre Research Article
GrantInformation_xml – fundername: Program for Science and Technology Innovation Talents in the University of Henan Province
  grantid: 23HASTIT021
– fundername: Postdoctoral Research Grants in Henan Province
  grantid: 202003077
– fundername: Scientific and Technological Project of Henan Province
  grantid: Grants 212102210153 and 222102240009
– fundername: Key Scientific Research Projects of Universities in Henan Province
  grantid: 22A413002
– fundername: Open Fund of Inner Mongolia Key Laboratory of Electromechanical Control
  grantid: IMMEC2022001; IMMEC2022002
– fundername: Postgraduate Education Reform and Quality Improvement Project of Henan Province
  grantid: YJS2021AL035
– fundername: National Natural Science Foundation of China
  grantid: 62201200
– fundername: Science and Technology Development Plan of the Joint Research Program of Henan
  grantid: 222103810036
– fundername: Academic Degrees & Graduate Education Reform Project of Henan Province
  grantid: 2021SJGLX141Y
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29G
2DF
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
ADYSH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
AFRVT
AIYEW
AMPGV
ARCSS
CITATION
H13
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-491acf01d3ae60eb69571abe5c7e6a2396ca1f945a4dd1aac2b8db129917bd8f3
ISSN 0305-215X
IngestDate Wed Aug 13 02:29:09 EDT 2025
Tue Jul 01 04:11:38 EDT 2025
Thu Apr 24 23:05:47 EDT 2025
Wed Mar 05 04:38:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-491acf01d3ae60eb69571abe5c7e6a2396ca1f945a4dd1aac2b8db129917bd8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2955514062
PQPubID 53195
PageCount 21
ParticipantIDs informaworld_taylorfrancis_310_1080_0305215X_2022_2155345
crossref_citationtrail_10_1080_0305215X_2022_2155345
proquest_journals_2955514062
crossref_primary_10_1080_0305215X_2022_2155345
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-03
PublicationDateYYYYMMDD 2024-03-03
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-03
  day: 03
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Engineering optimization
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_4_4_1
e_1_3_4_3_1
e_1_3_4_2_1
e_1_3_4_9_1
e_1_3_4_8_1
e_1_3_4_42_1
e_1_3_4_7_1
e_1_3_4_20_1
e_1_3_4_41_1
e_1_3_4_6_1
e_1_3_4_40_1
e_1_3_4_5_1
e_1_3_4_23_1
e_1_3_4_46_1
e_1_3_4_24_1
e_1_3_4_45_1
e_1_3_4_21_1
e_1_3_4_44_1
e_1_3_4_22_1
e_1_3_4_43_1
e_1_3_4_27_1
e_1_3_4_28_1
e_1_3_4_25_1
e_1_3_4_26_1
e_1_3_4_47_1
e_1_3_4_29_1
e_1_3_4_31_1
e_1_3_4_30_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_13_1
e_1_3_4_34_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_11_1
e_1_3_4_32_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_17_1
e_1_3_4_38_1
e_1_3_4_14_1
e_1_3_4_37_1
e_1_3_4_15_1
e_1_3_4_36_1
e_1_3_4_18_1
e_1_3_4_19_1
References_xml – ident: e_1_3_4_41_1
  doi: 10.1109/TVT.2020.3040376
– ident: e_1_3_4_15_1
  doi: 10.1016/j.apenergy.2013.06.056
– ident: e_1_3_4_5_1
  doi: 10.1016/j.ic.2018.09.012
– ident: e_1_3_4_12_1
  doi: 10.1016/j.ijhydene.2017.12.150
– ident: e_1_3_4_43_1
  doi: 10.1109/TVT.2021.3121129
– ident: e_1_3_4_4_1
  doi: 10.1109/TVT.2014.2304137
– ident: e_1_3_4_39_1
  doi: 10.1109/TVT.2020.3046520
– ident: e_1_3_4_22_1
  doi: 10.1109/TCST.2003.815606
– ident: e_1_3_4_34_1
  doi: 10.1109/TITS.2021.3121550
– ident: e_1_3_4_32_1
  doi: 10.1109/TVT.2018.2866801
– ident: e_1_3_4_9_1
  doi: 10.1016/j.energy.2021.120856
– ident: e_1_3_4_46_1
  doi: 10.1016/j.jpowsour.2017.08.107
– ident: e_1_3_4_29_1
  doi: 10.3390/en7020834
– ident: e_1_3_4_31_1
  doi: 10.1109/VTC.2002.1002989
– ident: e_1_3_4_45_1
  doi: 10.1109/TITS.2017.2672542
– ident: e_1_3_4_19_1
  doi: 10.1016/j.energy.2020.117327
– ident: e_1_3_4_27_1
  doi: 10.1016/j.mechatronics.2011.12.001
– ident: e_1_3_4_2_1
  doi: 10.1017/CBO9780511804441
– ident: e_1_3_4_23_1
  doi: 10.1016/j.enpol.2018.01.006
– ident: e_1_3_4_30_1
  doi: 10.1109/TVT.2015.2504510
– ident: e_1_3_4_44_1
  doi: 10.1109/TVT.2013.2276432
– ident: e_1_3_4_20_1
  doi: 10.1109/ITEC.2017.7993328
– ident: e_1_3_4_38_1
  doi: 10.1109/TVT.2019.2902485
– ident: e_1_3_4_40_1
  doi: 10.1109/TVT.2005.844683
– ident: e_1_3_4_42_1
  doi: 10.1016/j.ijhydene.2019.01.190
– ident: e_1_3_4_18_1
  doi: 10.1177/0036850419874992
– ident: e_1_3_4_3_1
  doi: 10.1109/TCST.2019.2933793
– ident: e_1_3_4_36_1
  doi: 10.1016/j.jpowsour.2020.227964
– ident: e_1_3_4_11_1
  doi: 10.1016/j.ifacol.2016.08.041
– ident: e_1_3_4_10_1
  doi: 10.1109/TVT.2021.3138440
– ident: e_1_3_4_28_1
  doi: 10.3166/ejc.11.509-524
– ident: e_1_3_4_17_1
  doi: 10.1007/s40684-019-00046-z
– ident: e_1_3_4_14_1
  doi: 10.1109/TPEL.2013.2262003
– ident: e_1_3_4_24_1
  doi: 10.1109/TSMC.2020.3042876
– ident: e_1_3_4_37_1
  doi: 10.1016/j.apenergy.2016.02.026
– ident: e_1_3_4_25_1
  doi: 10.1016/j.jclepro.2019.04.374
– ident: e_1_3_4_6_1
  doi: 10.1016/j.ijhydene.2020.01.017
– ident: e_1_3_4_21_1
  doi: 10.1109/TTE.2019.2915689
– ident: e_1_3_4_47_1
  doi: 10.1016/j.apenergy.2020.114553
– ident: e_1_3_4_7_1
  doi: 10.1109/TIE.2009.2021177
– ident: e_1_3_4_33_1
  doi: 10.1109/TCST.2017.2740836
– ident: e_1_3_4_8_1
  doi: 10.1016/j.est.2020.101760
– ident: e_1_3_4_35_1
  doi: 10.1016/j.energy.2020.118064
– ident: e_1_3_4_13_1
  doi: 10.1016/j.jpowsour.2014.05.067
– ident: e_1_3_4_26_1
  doi: 10.1109/TIE.2014.2308148
– ident: e_1_3_4_16_1
  doi: 10.1007/s11590-014-0732-z
SSID ssj0013008
Score 2.384252
Snippet For a fuel cell hybrid electric vehicle (FCHEV) powered by a fuel cell (FC), a battery (BAT) and an ultracapacitor (UC), an improved convex-optimization-based...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 447
SubjectTerms adaptive fuzzy filter
Algorithms
Convex analysis
convex optimization
Convexity
Decoupling
Energy efficiency
Energy management
energy management strategy
equivalent consumption minimization strategy
Fuel cell hybrid electric vehicle
Fuel cells
Fuel consumption
Fuel economy
Hybrid electric vehicles
Optimization
Slack variables
Supercapacitors
Title Energy management strategy based on convex optimization for fuel cell/battery/ultracapacitor hybrid vehicle
URI https://www.tandfonline.com/doi/abs/10.1080/0305215X.2022.2155345
https://www.proquest.com/docview/2955514062
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gIHxFMUCvKBW5Tt2k6c5FhBV6sKOLVi1UtkOw67oput2gSx_TP8VcaPPJZWlHKJVpY8m2S-jGfsmW8Qep8AKnQmWEhIocKIUhKmRSrDVCWSJ6zg3J7ofv7CZ6fR8Tyej0a_BllLTS3H6vrWupL_0SqMgV5Nlew9NNsJhQH4DfqFK2gYrv-k4yNXuLfqUliCK0c2uwnM6lSYkwCbVv4zWINpWPmaS5taWDb6PFD21GEqLckmvG4ISEGAggVUwZd-GSw2pqAr-KEX3V-3u_g9j-GW7C7BZ9lYgCyrC-0XR4MSO3i2aFZNv2VgN2un4nrRA_V46UY_ratvG88N7rcmaGRzs9jAgoExCcGnmLvFxllYk29jSHSGJthxi3uosYE9jRwdp1-aI9e544bV92mSzBQix3MI-ikdU9MQyTFVbrNs_7H6dTmJpCVL9WJyIyb3Yh6gXQpxCBjS3cPZx7Ov_UHVxDY97J60LRIz9O233c-W-7NFjnvDGbAezskT9NiHJvjQ4ewpGunqGXo0UPRz9N0hDveIwy3isEUcXlfYIQ4PUYHhBrBBHDaIO_B4O9hGG3Zowx5tL9Dp9Ojkwyz07TpCxVhah1FGhConpGBC84mWPIsTIqSOVaK5oCzjSpAyi2IRFQURQlGZFhL8zYwkskhL9hLtVOtKv0IYvEolwLgwU7qtUi0FRAqZSXzlpSxjuYei9i3mynPZm5Yq5_lftbiHxt20C0fmcteEbKiivLa7aKVreZOzO-but_rMvc24ymkWmxBlwunr-97LG_Sw_8b20U592ei34BDX8p0H5W8GdLDq
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTuQwELVYDjAHthnEjg9zTXfsJE58RAjUbH0CqW-WtwiJXhCkR9Pz9VQ5CTSMEAfOUVm2U67FrveKkN85aIWXOokYczZKOWdR4QoTFTY3Ik-cEOFF96Yvenfp5SAbzGFhsKwSc-iyJooIthoPN15GtyVxXVRScFUDSO8473BsfZNmi2Q5kzA8wjji_ttLQhy60qFIhDItiuezYd75p3fspf9Z6-CCzteJbSdfV548dKaV6dh_H3gdv7e6DbLWRKj0pFapTbLgx1vkxxxv4U_ycBYQg3T0WjtDn2uW2xlFt-joZExDPftfOgGbNGrAnhSWScupH1J8L-iawO05606HIGzBa1swL0_0foYoMvrH3-MEfpG787Pb017UdG2ILKS7VZRKpm0ZM5doL2JvhMxypo3PbO6F5okUVrNSpplOnWNaW24KZyDsgMTRuKJMtsnSeDL2O4RCcGE16FiCCF5beKMhYJRY_yhKU2Zml6Ttv1K2oTTHzhpDxVrm02YvFe6lavZyl3RexR5rTo-vBOS8IqgqXKaUdecTlXwhe9BqjWrMw7PiMsNINRZ87xtDH5OV3u3Ntbq-6F_tk1X4lIbquOSALFVPU38I4VJljsJ5eAH-3Ag3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYJAQHdsSOD1zTxk7iJEcEVKwVByr1ZnkVEqVFNEWUr8fjJIWCEAfO0Vi2M57FfvMGoePUaYXJRRQQolUQU0qCTGcyyFQqWRppxvyL7m2bXXTiq25SowmHFawScmhbEkV4Ww2H-1nbGhHXBB11nqrrsjtKGxQ638TJLJpnUGgJVRxh-_MhIfRN6UAkAJm6iOe3Yabc0xR56Q9j7T1QawXJeu4l8OSxMSpkQ71_o3X81-JW0XIVn-KTUqHW0Izpr6OlL6yFG-jx3NcL4qcJcgYPS47bMQanqPGgjz2a_Q0PnEV6qko9sVsltiPTw_Ba0JSe2XPcHPWcsHI-Wznj8oIfxlBDhl_NA0xgE3Va5_enF0HVsyFQLtktgjgnQtmQ6EgYFhrJ8iQlQppEpYYJGuVMCWLzOBGx1kQIRWWmpQs6XNoodWajLTTXH_TNNsIutFDCaVgE9bsqM1K4cDEH9COz0iZyB8X1r-KqIjSHvho9Tmre02ovOewlr_ZyBzUmYs8lo8dfAvlXPeCFv0qxZd8THv0hu18rDa-Mw5DTPIE4NWR09x9DH6GFu7MWv7lsX--hRfcl9tC4aB_NFS8jc-BipUIe-tPwAbO8Bts
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+management+strategy+based+on+convex+optimization+for+fuel+cell%2Fbattery%2Fultracapacitor+hybrid+vehicle&rft.jtitle=Engineering+optimization&rft.au=Liu%2C+Jinpeng&rft.au=Fu%2C+Zhumu&rft.au=Tao%2C+Fazhan&rft.au=Jiao%2C+Longyin&rft.date=2024-03-03&rft.issn=0305-215X&rft.eissn=1029-0273&rft.volume=56&rft.issue=3&rft.spage=447&rft.epage=467&rft_id=info:doi/10.1080%2F0305215X.2022.2155345&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_0305215X_2022_2155345
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-215X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-215X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-215X&client=summon