Energy management strategy based on convex optimization for fuel cell/battery/ultracapacitor hybrid vehicle
For a fuel cell hybrid electric vehicle (FCHEV) powered by a fuel cell (FC), a battery (BAT) and an ultracapacitor (UC), an improved convex-optimization-based energy management strategy (EMS) is proposed in this article. To protect the fuel cell and the battery from peak power, an adaptive fuzzy fil...
Saved in:
Published in | Engineering optimization Vol. 56; no. 3; pp. 447 - 467 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
03.03.2024
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For a fuel cell hybrid electric vehicle (FCHEV) powered by a fuel cell (FC), a battery (BAT) and an ultracapacitor (UC), an improved convex-optimization-based energy management strategy (EMS) is proposed in this article. To protect the fuel cell and the battery from peak power, an adaptive fuzzy filter is used to complete the frequency decoupling of the power demand. Subsequently, an adaptive equivalent consumption minimization strategy (A-ECMS) is introduced to improve fuel economy. To improve the optimality of the EMS obtained, an improved convex optimization method is utilized by introducing a slack variable and a barrier function. Finally, based on experimental data and an improved convex optimization algorithm, the optimal EMS is calculated and verified by a series of simulations under different driving cycles. Simulation results confirm that, compared with the traditional ECMS-based EMS, the proposed EMS can improve fuel economy and achieve lower power fluctuation and optimal FC efficiency for the FCHEV. |
---|---|
AbstractList | For a fuel cell hybrid electric vehicle (FCHEV) powered by a fuel cell (FC), a battery (BAT) and an ultracapacitor (UC), an improved convex-optimization-based energy management strategy (EMS) is proposed in this article. To protect the fuel cell and the battery from peak power, an adaptive fuzzy filter is used to complete the frequency decoupling of the power demand. Subsequently, an adaptive equivalent consumption minimization strategy (A-ECMS) is introduced to improve fuel economy. To improve the optimality of the EMS obtained, an improved convex optimization method is utilized by introducing a slack variable and a barrier function. Finally, based on experimental data and an improved convex optimization algorithm, the optimal EMS is calculated and verified by a series of simulations under different driving cycles. Simulation results confirm that, compared with the traditional ECMS-based EMS, the proposed EMS can improve fuel economy and achieve lower power fluctuation and optimal FC efficiency for the FCHEV. |
Author | Liu, Jinpeng Tao, Fazhan Jiao, Longyin Fu, Zhumu Chen, Qihong |
Author_xml | – sequence: 1 givenname: Jinpeng surname: Liu fullname: Liu, Jinpeng organization: Henan University of Science and Technology – sequence: 2 givenname: Zhumu surname: Fu fullname: Fu, Zhumu email: fuzhumu@haust.edu.cn organization: Henan University of Science and Technology – sequence: 3 givenname: Fazhan surname: Tao fullname: Tao, Fazhan organization: Henan University of Science and Technology – sequence: 4 givenname: Longyin surname: Jiao fullname: Jiao, Longyin organization: Henan University of Science and Technology – sequence: 5 givenname: Qihong surname: Chen fullname: Chen, Qihong organization: Wuhan University of Technology |
BookMark | eNqFkE1rGzEQhkVIoM7HTygs9Ly2PlbrXXppMWlaCOSSQG5iVjsby9FKriQ73fz6ynV6yaE9jRieZ0bznpNT5x0S8pHROaMNXVBBJWfycc4p5_P8kqKSJ2TGKG9LypfilMwOTHmAPpDzGDeUMkFpMyPP1w7D01SM4OAJR3SpiClAwtzrIGJfeFdo7_b4q_DbZEbzCsnk3uBDMezQFhqtXXSQEoZpsbNZ1rAFbVIG1lMXTF_scW20xUtyNoCNePVWL8jDt-v71ffy9u7mx-rrbamFaFJZtQz0QFkvAGuKXd3KJYMOpV5iDVy0tQY2tJWEqu8ZgOZd03eMty1bdn0ziAvy6Th3G_zPHcakNn4XXF6peCulZBWteaY-HykdfIwBB5X__Oe2fIKxilF1SFf9TVcd0lVv6WZbvrO3wYwQpv96X46ecTnBEV58sL1KMFkfhgBOm6jEv0f8BiyMlhs |
CitedBy_id | crossref_primary_10_1080_15567036_2024_2336173 crossref_primary_10_1016_j_energy_2024_132771 crossref_primary_10_1016_j_ijhydene_2024_07_237 |
Cites_doi | 10.1109/TVT.2020.3040376 10.1016/j.apenergy.2013.06.056 10.1016/j.ic.2018.09.012 10.1016/j.ijhydene.2017.12.150 10.1109/TVT.2021.3121129 10.1109/TVT.2014.2304137 10.1109/TVT.2020.3046520 10.1109/TCST.2003.815606 10.1109/TITS.2021.3121550 10.1109/TVT.2018.2866801 10.1016/j.energy.2021.120856 10.1016/j.jpowsour.2017.08.107 10.3390/en7020834 10.1109/VTC.2002.1002989 10.1109/TITS.2017.2672542 10.1016/j.energy.2020.117327 10.1016/j.mechatronics.2011.12.001 10.1017/CBO9780511804441 10.1016/j.enpol.2018.01.006 10.1109/TVT.2015.2504510 10.1109/TVT.2013.2276432 10.1109/ITEC.2017.7993328 10.1109/TVT.2019.2902485 10.1109/TVT.2005.844683 10.1016/j.ijhydene.2019.01.190 10.1177/0036850419874992 10.1109/TCST.2019.2933793 10.1016/j.jpowsour.2020.227964 10.1016/j.ifacol.2016.08.041 10.1109/TVT.2021.3138440 10.3166/ejc.11.509-524 10.1007/s40684-019-00046-z 10.1109/TPEL.2013.2262003 10.1109/TSMC.2020.3042876 10.1016/j.apenergy.2016.02.026 10.1016/j.jclepro.2019.04.374 10.1016/j.ijhydene.2020.01.017 10.1109/TTE.2019.2915689 10.1016/j.apenergy.2020.114553 10.1109/TIE.2009.2021177 10.1109/TCST.2017.2740836 10.1016/j.est.2020.101760 10.1016/j.energy.2020.118064 10.1016/j.jpowsour.2014.05.067 10.1109/TIE.2014.2308148 10.1007/s11590-014-0732-z |
ContentType | Journal Article |
Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 2022 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/0305215X.2022.2155345 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1029-0273 |
EndPage | 467 |
ExternalDocumentID | 10_1080_0305215X_2022_2155345 2155345 |
Genre | Research Article |
GrantInformation_xml | – fundername: Program for Science and Technology Innovation Talents in the University of Henan Province grantid: 23HASTIT021 – fundername: Postdoctoral Research Grants in Henan Province grantid: 202003077 – fundername: Scientific and Technological Project of Henan Province grantid: Grants 212102210153 and 222102240009 – fundername: Key Scientific Research Projects of Universities in Henan Province grantid: 22A413002 – fundername: Open Fund of Inner Mongolia Key Laboratory of Electromechanical Control grantid: IMMEC2022001; IMMEC2022002 – fundername: Postgraduate Education Reform and Quality Improvement Project of Henan Province grantid: YJS2021AL035 – fundername: National Natural Science Foundation of China grantid: 62201200 – fundername: Science and Technology Development Plan of the Joint Research Program of Henan grantid: 222103810036 – fundername: Academic Degrees & Graduate Education Reform Project of Henan Province grantid: 2021SJGLX141Y |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29G 2DF 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE ADYSH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B GTTXZ HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NX~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX AFRVT AIYEW AMPGV ARCSS CITATION H13 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c338t-491acf01d3ae60eb69571abe5c7e6a2396ca1f945a4dd1aac2b8db129917bd8f3 |
ISSN | 0305-215X |
IngestDate | Wed Aug 13 02:29:09 EDT 2025 Tue Jul 01 04:11:38 EDT 2025 Thu Apr 24 23:05:47 EDT 2025 Wed Mar 05 04:38:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-491acf01d3ae60eb69571abe5c7e6a2396ca1f945a4dd1aac2b8db129917bd8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2955514062 |
PQPubID | 53195 |
PageCount | 21 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_0305215X_2022_2155345 crossref_citationtrail_10_1080_0305215X_2022_2155345 proquest_journals_2955514062 crossref_primary_10_1080_0305215X_2022_2155345 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-03 |
PublicationDateYYYYMMDD | 2024-03-03 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Engineering optimization |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_4_4_1 e_1_3_4_3_1 e_1_3_4_2_1 e_1_3_4_9_1 e_1_3_4_8_1 e_1_3_4_42_1 e_1_3_4_7_1 e_1_3_4_20_1 e_1_3_4_41_1 e_1_3_4_6_1 e_1_3_4_40_1 e_1_3_4_5_1 e_1_3_4_23_1 e_1_3_4_46_1 e_1_3_4_24_1 e_1_3_4_45_1 e_1_3_4_21_1 e_1_3_4_44_1 e_1_3_4_22_1 e_1_3_4_43_1 e_1_3_4_27_1 e_1_3_4_28_1 e_1_3_4_25_1 e_1_3_4_26_1 e_1_3_4_47_1 e_1_3_4_29_1 e_1_3_4_31_1 e_1_3_4_30_1 e_1_3_4_12_1 e_1_3_4_35_1 e_1_3_4_13_1 e_1_3_4_34_1 e_1_3_4_10_1 e_1_3_4_33_1 e_1_3_4_11_1 e_1_3_4_32_1 e_1_3_4_16_1 e_1_3_4_39_1 e_1_3_4_17_1 e_1_3_4_38_1 e_1_3_4_14_1 e_1_3_4_37_1 e_1_3_4_15_1 e_1_3_4_36_1 e_1_3_4_18_1 e_1_3_4_19_1 |
References_xml | – ident: e_1_3_4_41_1 doi: 10.1109/TVT.2020.3040376 – ident: e_1_3_4_15_1 doi: 10.1016/j.apenergy.2013.06.056 – ident: e_1_3_4_5_1 doi: 10.1016/j.ic.2018.09.012 – ident: e_1_3_4_12_1 doi: 10.1016/j.ijhydene.2017.12.150 – ident: e_1_3_4_43_1 doi: 10.1109/TVT.2021.3121129 – ident: e_1_3_4_4_1 doi: 10.1109/TVT.2014.2304137 – ident: e_1_3_4_39_1 doi: 10.1109/TVT.2020.3046520 – ident: e_1_3_4_22_1 doi: 10.1109/TCST.2003.815606 – ident: e_1_3_4_34_1 doi: 10.1109/TITS.2021.3121550 – ident: e_1_3_4_32_1 doi: 10.1109/TVT.2018.2866801 – ident: e_1_3_4_9_1 doi: 10.1016/j.energy.2021.120856 – ident: e_1_3_4_46_1 doi: 10.1016/j.jpowsour.2017.08.107 – ident: e_1_3_4_29_1 doi: 10.3390/en7020834 – ident: e_1_3_4_31_1 doi: 10.1109/VTC.2002.1002989 – ident: e_1_3_4_45_1 doi: 10.1109/TITS.2017.2672542 – ident: e_1_3_4_19_1 doi: 10.1016/j.energy.2020.117327 – ident: e_1_3_4_27_1 doi: 10.1016/j.mechatronics.2011.12.001 – ident: e_1_3_4_2_1 doi: 10.1017/CBO9780511804441 – ident: e_1_3_4_23_1 doi: 10.1016/j.enpol.2018.01.006 – ident: e_1_3_4_30_1 doi: 10.1109/TVT.2015.2504510 – ident: e_1_3_4_44_1 doi: 10.1109/TVT.2013.2276432 – ident: e_1_3_4_20_1 doi: 10.1109/ITEC.2017.7993328 – ident: e_1_3_4_38_1 doi: 10.1109/TVT.2019.2902485 – ident: e_1_3_4_40_1 doi: 10.1109/TVT.2005.844683 – ident: e_1_3_4_42_1 doi: 10.1016/j.ijhydene.2019.01.190 – ident: e_1_3_4_18_1 doi: 10.1177/0036850419874992 – ident: e_1_3_4_3_1 doi: 10.1109/TCST.2019.2933793 – ident: e_1_3_4_36_1 doi: 10.1016/j.jpowsour.2020.227964 – ident: e_1_3_4_11_1 doi: 10.1016/j.ifacol.2016.08.041 – ident: e_1_3_4_10_1 doi: 10.1109/TVT.2021.3138440 – ident: e_1_3_4_28_1 doi: 10.3166/ejc.11.509-524 – ident: e_1_3_4_17_1 doi: 10.1007/s40684-019-00046-z – ident: e_1_3_4_14_1 doi: 10.1109/TPEL.2013.2262003 – ident: e_1_3_4_24_1 doi: 10.1109/TSMC.2020.3042876 – ident: e_1_3_4_37_1 doi: 10.1016/j.apenergy.2016.02.026 – ident: e_1_3_4_25_1 doi: 10.1016/j.jclepro.2019.04.374 – ident: e_1_3_4_6_1 doi: 10.1016/j.ijhydene.2020.01.017 – ident: e_1_3_4_21_1 doi: 10.1109/TTE.2019.2915689 – ident: e_1_3_4_47_1 doi: 10.1016/j.apenergy.2020.114553 – ident: e_1_3_4_7_1 doi: 10.1109/TIE.2009.2021177 – ident: e_1_3_4_33_1 doi: 10.1109/TCST.2017.2740836 – ident: e_1_3_4_8_1 doi: 10.1016/j.est.2020.101760 – ident: e_1_3_4_35_1 doi: 10.1016/j.energy.2020.118064 – ident: e_1_3_4_13_1 doi: 10.1016/j.jpowsour.2014.05.067 – ident: e_1_3_4_26_1 doi: 10.1109/TIE.2014.2308148 – ident: e_1_3_4_16_1 doi: 10.1007/s11590-014-0732-z |
SSID | ssj0013008 |
Score | 2.384252 |
Snippet | For a fuel cell hybrid electric vehicle (FCHEV) powered by a fuel cell (FC), a battery (BAT) and an ultracapacitor (UC), an improved convex-optimization-based... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 447 |
SubjectTerms | adaptive fuzzy filter Algorithms Convex analysis convex optimization Convexity Decoupling Energy efficiency Energy management energy management strategy equivalent consumption minimization strategy Fuel cell hybrid electric vehicle Fuel cells Fuel consumption Fuel economy Hybrid electric vehicles Optimization Slack variables Supercapacitors |
Title | Energy management strategy based on convex optimization for fuel cell/battery/ultracapacitor hybrid vehicle |
URI | https://www.tandfonline.com/doi/abs/10.1080/0305215X.2022.2155345 https://www.proquest.com/docview/2955514062 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gIHxFMUCvKBW5Tt2k6c5FhBV6sKOLVi1UtkOw67oput2gSx_TP8VcaPPJZWlHKJVpY8m2S-jGfsmW8Qep8AKnQmWEhIocKIUhKmRSrDVCWSJ6zg3J7ofv7CZ6fR8Tyej0a_BllLTS3H6vrWupL_0SqMgV5Nlew9NNsJhQH4DfqFK2gYrv-k4yNXuLfqUliCK0c2uwnM6lSYkwCbVv4zWINpWPmaS5taWDb6PFD21GEqLckmvG4ISEGAggVUwZd-GSw2pqAr-KEX3V-3u_g9j-GW7C7BZ9lYgCyrC-0XR4MSO3i2aFZNv2VgN2un4nrRA_V46UY_ratvG88N7rcmaGRzs9jAgoExCcGnmLvFxllYk29jSHSGJthxi3uosYE9jRwdp1-aI9e544bV92mSzBQix3MI-ikdU9MQyTFVbrNs_7H6dTmJpCVL9WJyIyb3Yh6gXQpxCBjS3cPZx7Ov_UHVxDY97J60LRIz9O233c-W-7NFjnvDGbAezskT9NiHJvjQ4ewpGunqGXo0UPRz9N0hDveIwy3isEUcXlfYIQ4PUYHhBrBBHDaIO_B4O9hGG3Zowx5tL9Dp9Ojkwyz07TpCxVhah1FGhConpGBC84mWPIsTIqSOVaK5oCzjSpAyi2IRFQURQlGZFhL8zYwkskhL9hLtVOtKv0IYvEolwLgwU7qtUi0FRAqZSXzlpSxjuYei9i3mynPZm5Yq5_lftbiHxt20C0fmcteEbKiivLa7aKVreZOzO-but_rMvc24ymkWmxBlwunr-97LG_Sw_8b20U592ei34BDX8p0H5W8GdLDq |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTuQwELVYDjAHthnEjg9zTXfsJE58RAjUbH0CqW-WtwiJXhCkR9Pz9VQ5CTSMEAfOUVm2U67FrveKkN85aIWXOokYczZKOWdR4QoTFTY3Ik-cEOFF96Yvenfp5SAbzGFhsKwSc-iyJooIthoPN15GtyVxXVRScFUDSO8473BsfZNmi2Q5kzA8wjji_ttLQhy60qFIhDItiuezYd75p3fspf9Z6-CCzteJbSdfV548dKaV6dh_H3gdv7e6DbLWRKj0pFapTbLgx1vkxxxv4U_ycBYQg3T0WjtDn2uW2xlFt-joZExDPftfOgGbNGrAnhSWScupH1J8L-iawO05606HIGzBa1swL0_0foYoMvrH3-MEfpG787Pb017UdG2ILKS7VZRKpm0ZM5doL2JvhMxypo3PbO6F5okUVrNSpplOnWNaW24KZyDsgMTRuKJMtsnSeDL2O4RCcGE16FiCCF5beKMhYJRY_yhKU2Zml6Ttv1K2oTTHzhpDxVrm02YvFe6lavZyl3RexR5rTo-vBOS8IqgqXKaUdecTlXwhe9BqjWrMw7PiMsNINRZ87xtDH5OV3u3Ntbq-6F_tk1X4lIbquOSALFVPU38I4VJljsJ5eAH-3Ag3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYJAQHdsSOD1zTxk7iJEcEVKwVByr1ZnkVEqVFNEWUr8fjJIWCEAfO0Vi2M57FfvMGoePUaYXJRRQQolUQU0qCTGcyyFQqWRppxvyL7m2bXXTiq25SowmHFawScmhbEkV4Ww2H-1nbGhHXBB11nqrrsjtKGxQ638TJLJpnUGgJVRxh-_MhIfRN6UAkAJm6iOe3Yabc0xR56Q9j7T1QawXJeu4l8OSxMSpkQ71_o3X81-JW0XIVn-KTUqHW0Izpr6OlL6yFG-jx3NcL4qcJcgYPS47bMQanqPGgjz2a_Q0PnEV6qko9sVsltiPTw_Ba0JSe2XPcHPWcsHI-Wznj8oIfxlBDhl_NA0xgE3Va5_enF0HVsyFQLtktgjgnQtmQ6EgYFhrJ8iQlQppEpYYJGuVMCWLzOBGx1kQIRWWmpQs6XNoodWajLTTXH_TNNsIutFDCaVgE9bsqM1K4cDEH9COz0iZyB8X1r-KqIjSHvho9Tmre02ovOewlr_ZyBzUmYs8lo8dfAvlXPeCFv0qxZd8THv0hu18rDa-Mw5DTPIE4NWR09x9DH6GFu7MWv7lsX--hRfcl9tC4aB_NFS8jc-BipUIe-tPwAbO8Bts |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+management+strategy+based+on+convex+optimization+for+fuel+cell%2Fbattery%2Fultracapacitor+hybrid+vehicle&rft.jtitle=Engineering+optimization&rft.au=Liu%2C+Jinpeng&rft.au=Fu%2C+Zhumu&rft.au=Tao%2C+Fazhan&rft.au=Jiao%2C+Longyin&rft.date=2024-03-03&rft.issn=0305-215X&rft.eissn=1029-0273&rft.volume=56&rft.issue=3&rft.spage=447&rft.epage=467&rft_id=info:doi/10.1080%2F0305215X.2022.2155345&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_0305215X_2022_2155345 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-215X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-215X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-215X&client=summon |