Clinical Feasibility of Noninvasive Visualization of Lymphatic Flow with Principles of Spin Labeling MR Imaging: Implications for Lymphedema Assessment

To extend a commonly used noninvasive arterial spin labeling magnetic resonance (MR) imaging method for measuring blood flow to evaluate lymphatic flow. All volunteers (n = 12) provided informed consent in accordance with institutional review board and HIPAA regulations. Quantitative relaxation time...

Full description

Saved in:
Bibliographic Details
Published inRadiology Vol. 269; no. 3; pp. 893 - 902
Main Authors Rane, Swati, Donahue, Paula M. C., Towse, Ted, Ridner, Sheila, Chappell, Michael, Jordi, John, Gore, John, Donahue, Manus J.
Format Journal Article
LanguageEnglish
Published United States 01.12.2013
Subjects
Online AccessGet full text
ISSN0033-8419
1527-1315
1527-1315
DOI10.1148/radiol.13120145

Cover

Loading…
Abstract To extend a commonly used noninvasive arterial spin labeling magnetic resonance (MR) imaging method for measuring blood flow to evaluate lymphatic flow. All volunteers (n = 12) provided informed consent in accordance with institutional review board and HIPAA regulations. Quantitative relaxation time (T1 and T2) measurements were made in extracted human lymphatic fluid at 3.0 T. Guided by these parameters, an arterial spin labeling MR imaging approach was adapted to measure lymphatic flow (flow-alternating inversion-recovery lymphatic water labeling, 3 × 3 × 5 mm) in healthy subjects (n = 6; mean age, 30 years ± 1 [standard deviation]; recruitment duration, 2 months). Lymphatic flow velocity was quantified by performing spin labeling measurements as a function of postlabeling delay time and by measuring time to peak signal intensity in axillary lymph nodes. Clinical feasibility was evaluated in patients with stage II lymphedema (three women; age range, 43-64 years) and in control subjects with unilateral cuff-induced lymphatic stenosis (one woman, two men; age range, 31-35 years). Mean T1 and T2 relaxation times of lymphatic fluid at 3.0 T were 3100 msec ± 160 (range, 2930-3210 msec; median, 3200 msec) and 610 msec ± 12 (range, 598-618 msec; median, 610 msec), respectively. Healthy lymphatic flow (afferent vessel to axillary node) velocity was 0.61 cm/min ± 0.13 (n = 6). A reduction (P < .005) in lymphatic flow velocity in the affected arms of patients and the affected arms of healthy subjects with manipulated cuff-induced flow reduction was observed. The ratio of unaffected to affected axilla lymphatic velocity (1.24 ± 0.18) was significantly (P < .005) higher than the left-to-right ratio in healthy subjects (0.91 ± 0.18). This work provides a foundation for clinical investigations whereby lymphedema etiogenesis and therapies may be interrogated without exogenous agents and with clinically available imaging equipment. Online supplemental material is available for this article.
AbstractList To extend a commonly used noninvasive arterial spin labeling magnetic resonance (MR) imaging method for measuring blood flow to evaluate lymphatic flow.PURPOSETo extend a commonly used noninvasive arterial spin labeling magnetic resonance (MR) imaging method for measuring blood flow to evaluate lymphatic flow.All volunteers (n = 12) provided informed consent in accordance with institutional review board and HIPAA regulations. Quantitative relaxation time (T1 and T2) measurements were made in extracted human lymphatic fluid at 3.0 T. Guided by these parameters, an arterial spin labeling MR imaging approach was adapted to measure lymphatic flow (flow-alternating inversion-recovery lymphatic water labeling, 3 × 3 × 5 mm) in healthy subjects (n = 6; mean age, 30 years ± 1 [standard deviation]; recruitment duration, 2 months). Lymphatic flow velocity was quantified by performing spin labeling measurements as a function of postlabeling delay time and by measuring time to peak signal intensity in axillary lymph nodes. Clinical feasibility was evaluated in patients with stage II lymphedema (three women; age range, 43-64 years) and in control subjects with unilateral cuff-induced lymphatic stenosis (one woman, two men; age range, 31-35 years).MATERIALS AND METHODSAll volunteers (n = 12) provided informed consent in accordance with institutional review board and HIPAA regulations. Quantitative relaxation time (T1 and T2) measurements were made in extracted human lymphatic fluid at 3.0 T. Guided by these parameters, an arterial spin labeling MR imaging approach was adapted to measure lymphatic flow (flow-alternating inversion-recovery lymphatic water labeling, 3 × 3 × 5 mm) in healthy subjects (n = 6; mean age, 30 years ± 1 [standard deviation]; recruitment duration, 2 months). Lymphatic flow velocity was quantified by performing spin labeling measurements as a function of postlabeling delay time and by measuring time to peak signal intensity in axillary lymph nodes. Clinical feasibility was evaluated in patients with stage II lymphedema (three women; age range, 43-64 years) and in control subjects with unilateral cuff-induced lymphatic stenosis (one woman, two men; age range, 31-35 years).Mean T1 and T2 relaxation times of lymphatic fluid at 3.0 T were 3100 msec ± 160 (range, 2930-3210 msec; median, 3200 msec) and 610 msec ± 12 (range, 598-618 msec; median, 610 msec), respectively. Healthy lymphatic flow (afferent vessel to axillary node) velocity was 0.61 cm/min ± 0.13 (n = 6). A reduction (P < .005) in lymphatic flow velocity in the affected arms of patients and the affected arms of healthy subjects with manipulated cuff-induced flow reduction was observed. The ratio of unaffected to affected axilla lymphatic velocity (1.24 ± 0.18) was significantly (P < .005) higher than the left-to-right ratio in healthy subjects (0.91 ± 0.18).RESULTSMean T1 and T2 relaxation times of lymphatic fluid at 3.0 T were 3100 msec ± 160 (range, 2930-3210 msec; median, 3200 msec) and 610 msec ± 12 (range, 598-618 msec; median, 610 msec), respectively. Healthy lymphatic flow (afferent vessel to axillary node) velocity was 0.61 cm/min ± 0.13 (n = 6). A reduction (P < .005) in lymphatic flow velocity in the affected arms of patients and the affected arms of healthy subjects with manipulated cuff-induced flow reduction was observed. The ratio of unaffected to affected axilla lymphatic velocity (1.24 ± 0.18) was significantly (P < .005) higher than the left-to-right ratio in healthy subjects (0.91 ± 0.18).This work provides a foundation for clinical investigations whereby lymphedema etiogenesis and therapies may be interrogated without exogenous agents and with clinically available imaging equipment. Online supplemental material is available for this article.CONCLUSIONThis work provides a foundation for clinical investigations whereby lymphedema etiogenesis and therapies may be interrogated without exogenous agents and with clinically available imaging equipment. Online supplemental material is available for this article.
To extend a commonly used noninvasive arterial spin labeling magnetic resonance (MR) imaging method for measuring blood flow to evaluate lymphatic flow. All volunteers (n = 12) provided informed consent in accordance with institutional review board and HIPAA regulations. Quantitative relaxation time (T1 and T2) measurements were made in extracted human lymphatic fluid at 3.0 T. Guided by these parameters, an arterial spin labeling MR imaging approach was adapted to measure lymphatic flow (flow-alternating inversion-recovery lymphatic water labeling, 3 × 3 × 5 mm) in healthy subjects (n = 6; mean age, 30 years ± 1 [standard deviation]; recruitment duration, 2 months). Lymphatic flow velocity was quantified by performing spin labeling measurements as a function of postlabeling delay time and by measuring time to peak signal intensity in axillary lymph nodes. Clinical feasibility was evaluated in patients with stage II lymphedema (three women; age range, 43-64 years) and in control subjects with unilateral cuff-induced lymphatic stenosis (one woman, two men; age range, 31-35 years). Mean T1 and T2 relaxation times of lymphatic fluid at 3.0 T were 3100 msec ± 160 (range, 2930-3210 msec; median, 3200 msec) and 610 msec ± 12 (range, 598-618 msec; median, 610 msec), respectively. Healthy lymphatic flow (afferent vessel to axillary node) velocity was 0.61 cm/min ± 0.13 (n = 6). A reduction (P < .005) in lymphatic flow velocity in the affected arms of patients and the affected arms of healthy subjects with manipulated cuff-induced flow reduction was observed. The ratio of unaffected to affected axilla lymphatic velocity (1.24 ± 0.18) was significantly (P < .005) higher than the left-to-right ratio in healthy subjects (0.91 ± 0.18). This work provides a foundation for clinical investigations whereby lymphedema etiogenesis and therapies may be interrogated without exogenous agents and with clinically available imaging equipment. Online supplemental material is available for this article.
Author Rane, Swati
Towse, Ted
Chappell, Michael
Donahue, Manus J.
Ridner, Sheila
Gore, John
Donahue, Paula M. C.
Jordi, John
Author_xml – sequence: 1
  givenname: Swati
  surname: Rane
  fullname: Rane, Swati
– sequence: 2
  givenname: Paula M. C.
  surname: Donahue
  fullname: Donahue, Paula M. C.
– sequence: 3
  givenname: Ted
  surname: Towse
  fullname: Towse, Ted
– sequence: 4
  givenname: Sheila
  surname: Ridner
  fullname: Ridner, Sheila
– sequence: 5
  givenname: Michael
  surname: Chappell
  fullname: Chappell, Michael
– sequence: 6
  givenname: John
  surname: Jordi
  fullname: Jordi, John
– sequence: 7
  givenname: John
  surname: Gore
  fullname: Gore, John
– sequence: 8
  givenname: Manus J.
  surname: Donahue
  fullname: Donahue, Manus J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23864103$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1v3CAQhlGVqtmkPfdWcezFCWOwzfYWrbJtpO2H-nVFLB4SKgwueBNt_0j_bnE3e6nUEzPwzIPgPSMnIQYk5CWwCwAhL5PuXfQXwKFmIJonZAFN3VWlb07IgjHOKylgeUrOcv7BZkR2z8hpzWUrgPEF-b3yLjijPV2jzm7rvJv2NFr6IQYX7svWPdLvLu-0d7_05GKYDzf7YbwrnaFrHx_og5vu6KfkgnGjxzwTX0YX6EZvsehv6fvP9GbQt6V8U4rRlwtnVaY2poMMexw0vcoZcx4wTM_JU6t9xheP6zn5tr7-unpXbT6-vVldbSrDuZwqjsx2bdNLIZbYc951lvEa5RK46E1tobF8CbJp5bZrWwtS1NoYBtDWDRht-Dl5ffCOKf7cYZ7U4LJB73XAuMsKRFtUrG5lQV89orvtgL0akxt02qvjZxagOQAmxZwTWmXc9PehU9LOK2BqDk0dQlPH0Mrc5T9zR_X_Jv4AEuKcQQ
CitedBy_id crossref_primary_10_1002_jmri_24887
crossref_primary_10_1016_j_mvr_2014_06_006
crossref_primary_10_1089_lrb_2016_0020
crossref_primary_10_1089_lrb_2019_0088
crossref_primary_10_1007_s12032_024_02472_9
crossref_primary_10_1002_mrm_29858
crossref_primary_10_1007_s10585_018_9899_5
crossref_primary_10_1136_bmjopen_2021_053165
crossref_primary_10_1016_j_addr_2020_08_013
crossref_primary_10_1186_s12987_024_00542_8
crossref_primary_10_1186_s12987_023_00446_z
crossref_primary_10_1002_jmri_25670
crossref_primary_10_1007_s40262_015_0361_4
crossref_primary_10_1109_TUFFC_2024_3357140
crossref_primary_10_2214_AJR_14_12575
crossref_primary_10_1002_jmri_28281
crossref_primary_10_1093_bjr_tqaf029
crossref_primary_10_1007_s10549_020_05765_5
crossref_primary_10_1007_s10549_021_06419_w
crossref_primary_10_1186_s12968_021_00707_6
crossref_primary_10_1002_jmri_27542
crossref_primary_10_1016_j_crad_2024_06_009
crossref_primary_10_1002_mrm_28031
crossref_primary_10_1016_j_semcdb_2014_12_003
crossref_primary_10_1007_s10585_023_10232_8
crossref_primary_10_1002_nbm_4009
crossref_primary_10_14814_phy2_15697
crossref_primary_10_1002_jmri_28496
crossref_primary_10_1007_s10585_021_10096_w
crossref_primary_10_1111_micc_12780
crossref_primary_10_3390_medicina59112016
crossref_primary_10_1038_s41568_019_0221_x
crossref_primary_10_1002_mrm_25649
Cites_doi 10.1016/j.ejrad.2005.12.038
10.1016/j.jconrel.2005.12.019
10.1002/mrm.1910230106
10.1113/jphysiol.2007.130401
10.1002/(SICI)1099-1492(199706/08)10:4/5<237::AID-NBM475>3.0.CO;2-X
10.1016/j.neurad.2007.11.007
10.1002/1522-2594(200007)44:1<92::AID-MRM14>3.0.CO;2-M
10.1002/cmmi.116
10.1002/jmri.20462
10.1038/sj.jid.5700892
10.1002/mrm.21790
10.1097/01.sla.0000245472.47748.ec
10.1212/WNL.0b013e3181b7840c
10.1089/lrb.2009.0021
10.1002/mrm.1910220105
10.1161/STROKEAHA.111.635995
10.1002/(SICI)1522-2586(199911)10:5<870::AID-JMRI36>3.0.CO;2-D
10.1038/jcbfm.2009.107
10.2174/1874440001105010136
10.1002/mrm.1910220227
10.1093/cercor/bhq090
10.1002/mrm.20178
10.1148/radiol.11110639
10.1055/b-002-74287
10.1002/hep.1840210223
10.1093/annonc/mdl182
10.1097/01.sap.0000257149.42922.7e
10.2217/nnm.10.70
10.1136/bmj.b5396
ContentType Journal Article
Copyright RSNA, 2013.
Copyright_xml – notice: RSNA, 2013.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1148/radiol.13120145
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-1315
EndPage 902
ExternalDocumentID 23864103
10_1148_radiol_13120145
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: T32 EB001628
– fundername: NINR NIH HHS
  grantid: R01 NR015079
GroupedDBID ---
.55
.GJ
123
18M
1CY
1KJ
29P
2WC
34G
39C
4.4
53G
5RE
6NX
6PF
7FM
AAEJM
AAQQT
AAWTL
AAYXX
ABDPE
ABHFT
ABOCM
ACFQH
ACGFO
ACJAN
ADBBV
AENEX
AENYM
AFFNX
AFOSN
AJJEV
AJWWR
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
J5H
KO8
L7B
LMP
LSO
MJL
MV1
N4W
OK1
P2P
R.V
RKKAF
RXW
SJN
TAE
TR2
TRS
TWZ
W8F
WH7
WOQ
X7M
YQI
YQJ
ZGI
ZVN
ZXP
ACRZS
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
ZKG
7X8
ID FETCH-LOGICAL-c338t-3e0f765d8449ed3377f032e89134dc2f15f3918568b766f1842acc0116251cac3
ISSN 0033-8419
1527-1315
IngestDate Fri Jul 11 06:51:26 EDT 2025
Wed Feb 19 02:22:28 EST 2025
Thu Apr 24 23:03:51 EDT 2025
Tue Jul 01 02:16:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License RSNA, 2013.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-3e0f765d8449ed3377f032e89134dc2f15f3918568b766f1842acc0116251cac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4485559
PMID 23864103
PQID 1461340268
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1461340268
pubmed_primary_23864103
crossref_citationtrail_10_1148_radiol_13120145
crossref_primary_10_1148_radiol_13120145
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-00
2013-Dec
20131201
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Radiology
PublicationTitleAlternate Radiology
PublicationYear 2013
References r3
Armer J (r2) 2004; 37
r4
r5
r6
r7
Swartz MA (r28) 1996; 270
r8
r9
r30
r10
r32
r31
r12
r11
r33
r14
r13
r16
r15
r18
r17
r19
Fischer M (r26) 1996; 270
r21
r20
r23
r22
r25
Berk DA (r27) 1996; 270
r24
r29
r1
References_xml – ident: r8
  doi: 10.1016/j.ejrad.2005.12.038
– volume: 37
  start-page: 73
  issue: 2
  year: 2004
  ident: r2
  publication-title: Lymphology
– ident: r11
  doi: 10.1016/j.jconrel.2005.12.019
– ident: r12
  doi: 10.1002/mrm.1910230106
– ident: r7
  doi: 10.1113/jphysiol.2007.130401
– ident: r22
  doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<237::AID-NBM475>3.0.CO;2-X
– ident: r15
  doi: 10.1016/j.neurad.2007.11.007
– ident: r32
  doi: 10.1002/1522-2594(200007)44:1<92::AID-MRM14>3.0.CO;2-M
– ident: r9
  doi: 10.1002/cmmi.116
– ident: r23
  doi: 10.1002/jmri.20462
– ident: r10
  doi: 10.1038/sj.jid.5700892
– ident: r24
  doi: 10.1002/mrm.21790
– ident: r3
  doi: 10.1097/01.sla.0000245472.47748.ec
– ident: r16
  doi: 10.1212/WNL.0b013e3181b7840c
– volume: 270
  start-page: H324
  issue: 1
  year: 1996
  ident: r28
  publication-title: Am J Physiol
– ident: r6
  doi: 10.1089/lrb.2009.0021
– ident: r14
  doi: 10.1002/mrm.1910220105
– ident: r18
  doi: 10.1161/STROKEAHA.111.635995
– ident: r17
  doi: 10.1002/(SICI)1522-2586(199911)10:5<870::AID-JMRI36>3.0.CO;2-D
– ident: r20
  doi: 10.1038/jcbfm.2009.107
– ident: r33
  doi: 10.2174/1874440001105010136
– ident: r13
  doi: 10.1002/mrm.1910220227
– ident: r19
  doi: 10.1093/cercor/bhq090
– ident: r21
  doi: 10.1002/mrm.20178
– ident: r29
  doi: 10.1148/radiol.11110639
– ident: r25
  doi: 10.1055/b-002-74287
– volume: 270
  start-page: H358
  issue: 1
  year: 1996
  ident: r26
  publication-title: Am J Physiol
– ident: r30
  doi: 10.1002/hep.1840210223
– ident: r1
  doi: 10.1093/annonc/mdl182
– ident: r4
  doi: 10.1097/01.sap.0000257149.42922.7e
– volume: 270
  start-page: H330
  issue: 1
  year: 1996
  ident: r27
  publication-title: Am J Physiol
– ident: r31
  doi: 10.2217/nnm.10.70
– ident: r5
  doi: 10.1136/bmj.b5396
SSID ssj0014587
Score 2.2974994
Snippet To extend a commonly used noninvasive arterial spin labeling magnetic resonance (MR) imaging method for measuring blood flow to evaluate lymphatic flow. All...
To extend a commonly used noninvasive arterial spin labeling magnetic resonance (MR) imaging method for measuring blood flow to evaluate lymphatic...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 893
SubjectTerms Adult
Feasibility Studies
Female
Humans
Lymph - physiology
Lymphedema - pathology
Magnetic Resonance Imaging - methods
Male
Middle Aged
Spin Labels
Title Clinical Feasibility of Noninvasive Visualization of Lymphatic Flow with Principles of Spin Labeling MR Imaging: Implications for Lymphedema Assessment
URI https://www.ncbi.nlm.nih.gov/pubmed/23864103
https://www.proquest.com/docview/1461340268
Volume 269
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZB2MvY_dlNzTYw8A4syXZlvdWspVmq8tI09G3IMsyDbRJaZOV9Y_st-zf7ehmOyWFbi_GOPZJlPP56NwPQu95IkCrL5MwLzMwUISUYUl4FEYiIUymVAquC5yL_XT3kH09So56vT-drKXVshzIq411Jf_DVbgGfNVVsv_A2YYoXIBz4C8cgcNwvBWPh76sERQ5l-ZqAub72sf6U5jM9B-zC103edWohnu_gIGmT-vOyeLSOmK_e5e7Sew4OJvNgz1R2lL1YhyMTs0sI-09GHUz0HWKoiGnKnUqgu2my2dX5R2Larbmux-79NqDSyDTKNJgERyvlE9WFEExCIaDjg_cDoCcuFos03a78lPDjtXsRHT9FzHt5II4mUxpyJkTnMqJYZKFMbWFnl5OEzvTxQGSdqQut0MW3QaemxLuDXsD0_UO52bRAyBOdES13QZ96P_a7tjkLNoKbj61BKaewB10l4CFoveEz6NvTQCLJdy2a3WLc12lgMDHa79gXSG6wcox2s7kIXrgzBS8bTH3CPXU_DG6V7hEjCfot4ce7kAPL2rcgR5eg57-sIEe1tDDGnq4hZ6-Q0MPe-jhYowd9D7hLvAwAA-3wMMt8J6iw50vk-Fu6GZ8hJJSvgypiuosTSrOWK4qSrOsjihROnjOKknqOKlpDjplysssTeuYMwLyREcPQTGXQtJnaGu-mKsXCAuRVyJWKuZCsKpUHIRTVpJEJjzOeCr6aOD_6Kl0DfD1HBbg5WbW9tGH5oEz2_vl5lvfec5NQT7roBu8S4vVhTatYSkRSXkfPbcsbYiBupyyOKIvb_9Fr9D99iV6jbaW5yv1BtTiZfnWAPAv3qa8mA
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinical+Feasibility+of+Noninvasive+Visualization+of+Lymphatic+Flow+with+Principles+of+Spin+Labeling+MR+Imaging%3A+Implications+for+Lymphedema+Assessment&rft.jtitle=Radiology&rft.au=Rane%2C+Swati&rft.au=Donahue%2C+Paula+M.+C.&rft.au=Towse%2C+Ted&rft.au=Ridner%2C+Sheila&rft.date=2013-12-01&rft.issn=0033-8419&rft.eissn=1527-1315&rft.volume=269&rft.issue=3&rft.spage=893&rft.epage=902&rft_id=info:doi/10.1148%2Fradiol.13120145&rft.externalDBID=n%2Fa&rft.externalDocID=10_1148_radiol_13120145
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8419&client=summon