Real-Time Seismic Damage Prediction and Comparison of Various Ground Motion Intensity Measures Based on Machine Learning
After earthquakes, an accurate and efficient seismic-damage prediction is indispensable for emergency response. Existing methods face the dilemma between accuracy and efficiency. A real-time and accurate seismic-damage prediction method based on machine-learning algorithms and multiple intensity mea...
Saved in:
Published in | Journal of earthquake engineering : JEE Vol. 26; no. 8; pp. 4259 - 4279 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
11.06.2022
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1363-2469 1559-808X |
DOI | 10.1080/13632469.2020.1826371 |
Cover
Loading…
Abstract | After earthquakes, an accurate and efficient seismic-damage prediction is indispensable for emergency response. Existing methods face the dilemma between accuracy and efficiency. A real-time and accurate seismic-damage prediction method based on machine-learning algorithms and multiple intensity measures (IMs) is proposed here. 48 IMs are used for representing the ground-motion characteristics comprehensively, and the workload of the nonlinear time-history analysis (NLTHA) method is replaced by model training in the non-urgent stage to promote efficiency. Case studies with various buildings prove the accuracy and efficiency of the proposed method, and corresponding key IMs are identified by iterative optimization. |
---|---|
AbstractList | After earthquakes, an accurate and efficient seismic-damage prediction is indispensable for emergency response. Existing methods face the dilemma between accuracy and efficiency. A real-time and accurate seismic-damage prediction method based on machine-learning algorithms and multiple intensity measures (IMs) is proposed here. 48 IMs are used for representing the ground-motion characteristics comprehensively, and the workload of the nonlinear time-history analysis (NLTHA) method is replaced by model training in the non-urgent stage to promote efficiency. Case studies with various buildings prove the accuracy and efficiency of the proposed method, and corresponding key IMs are identified by iterative optimization. |
Author | Lu, Xinzheng Tian, Yuan Xu, Yongjia Huang, Yuli |
Author_xml | – sequence: 1 givenname: Yongjia orcidid: 0000-0003-1492-9673 surname: Xu fullname: Xu, Yongjia organization: Tsinghua University – sequence: 2 givenname: Xinzheng orcidid: 0000-0002-3313-7420 surname: Lu fullname: Lu, Xinzheng email: luxz@tsinghua.edu.cn organization: Tsinghua University – sequence: 3 givenname: Yuan orcidid: 0000-0002-6217-3228 surname: Tian fullname: Tian, Yuan organization: Tsinghua University – sequence: 4 givenname: Yuli orcidid: 0000-0002-0645-5255 surname: Huang fullname: Huang, Yuli organization: Tsinghua University |
BookMark | eNqFkElPHDEQRq0IpLDkJ0SylHMTL724lUtgEhZpRiACKDerxl0mRt32YHcrzL_Hw5BLDnByuep9VdLbJzs-eCTkM2dHnCn2lctairJujwQTuaVELRv-gezxqmoLxdTvnVxnpthAH8l-Sg-M8bKR9R55ukboixs3IP2FLg3O0B8wwD3Sq4idM6MLnoLv6CwMK4gu5W-w9C6XYUr0LIYpDxfhhbvwI_rkxjVdIKQpYqInkLCjebYA88d5pHOE6J2_PyS7FvqEn17fA3J7-vNmdl7ML88uZsfzwkipxkKathTKguFVwzrLBW9VA1JIyzu7VNAKNBJLBsu6NssGq65EiVWtygpYKVp5QL5s965ieJwwjfohTNHnk1rUipVVo5jIVLWlTAwpRbR6Fd0Aca050xvJ-p9kvZGsXyXn3Lf_csaNsJExRnD9u-nv27TzNsQB_obYd3qEdR-ijeCNS1q-veIZMR2X2A |
CitedBy_id | crossref_primary_10_1016_j_autcon_2023_105142 crossref_primary_10_1016_j_engstruct_2024_118020 crossref_primary_10_1785_0120240108 crossref_primary_10_1063_5_0191442 crossref_primary_10_1016_j_engstruct_2025_119636 crossref_primary_10_1080_13632469_2024_2400194 crossref_primary_10_1186_s13677_024_00660_6 crossref_primary_10_1016_j_soildyn_2024_108504 crossref_primary_10_1016_j_soildyn_2024_108995 crossref_primary_10_1155_2021_8969389 crossref_primary_10_1515_nleng_2022_0365 crossref_primary_10_1016_j_asej_2024_102989 crossref_primary_10_1002_eqe_3796 crossref_primary_10_1016_j_jcsr_2024_109147 crossref_primary_10_1016_j_ymssp_2023_111058 crossref_primary_10_1038_s43247_024_01436_1 crossref_primary_10_1002_eqe_3567 crossref_primary_10_1016_j_ijcip_2023_100639 crossref_primary_10_1016_j_engstruct_2025_119621 crossref_primary_10_1016_j_jobe_2024_111330 crossref_primary_10_1111_mice_13338 crossref_primary_10_3390_s22176426 crossref_primary_10_1007_s11831_023_10025_y crossref_primary_10_3389_fbuil_2021_660103 crossref_primary_10_1016_j_compstruc_2024_107617 crossref_primary_10_1016_j_jobe_2025_112131 crossref_primary_10_1016_j_rcns_2024_03_001 crossref_primary_10_1002_eqe_4213 crossref_primary_10_1002_eqe_3415 crossref_primary_10_3390_rs16224263 crossref_primary_10_3799_dqkx_2022_338 crossref_primary_10_1016_j_compstruc_2024_107385 crossref_primary_10_1007_s11803_024_2280_6 crossref_primary_10_1016_j_istruc_2024_107716 crossref_primary_10_1016_j_istruc_2024_107913 crossref_primary_10_1016_j_autcon_2024_105641 crossref_primary_10_1016_j_ijdrr_2024_105044 crossref_primary_10_1016_j_engstruct_2023_116824 crossref_primary_10_3390_s25020399 crossref_primary_10_1061_NHREFO_NHENG_1681 crossref_primary_10_1016_j_ijdrr_2025_105293 crossref_primary_10_1002_eqe_4068 crossref_primary_10_1080_13632469_2024_2339390 crossref_primary_10_1002_eqe_4264 crossref_primary_10_1093_jcde_qwac098 crossref_primary_10_1088_1755_1315_676_1_012072 crossref_primary_10_1002_eqe_3869 crossref_primary_10_3389_fbuil_2021_627058 crossref_primary_10_1016_j_engappai_2024_109007 crossref_primary_10_1016_j_ijdrr_2025_105294 crossref_primary_10_1016_j_engstruct_2024_118815 crossref_primary_10_1080_13632469_2021_1927909 crossref_primary_10_3799_dqkx_2022_481 crossref_primary_10_1007_s10518_022_01461_5 crossref_primary_10_1016_j_engappai_2025_110097 crossref_primary_10_1080_13632469_2021_1987354 crossref_primary_10_1080_13632469_2023_2252521 crossref_primary_10_1785_0220220167 crossref_primary_10_3390_app122312089 |
Cites_doi | 10.1145/1656274.1656278 10.1002/eqe.695 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 10.1002/eqe.386 10.1002/eqe.474 10.1007/s11069-016-2307-z 10.1002/stc.2488 10.1016/j.aei.2019.101025 10.1007/s10518-018-00522-y 10.1016/j.soildyn.2017.11.021 10.1080/13632460409350521 10.1007/s10518-012-9350-2 10.1002/eqe.93 10.1016/j.soildyn.2017.05.011 10.1016/j.soildyn.2005.07.001 10.1016/0029-5493(90)90259-Z 10.1201/9781315139470 10.1007/s11589-005-0072-2 10.1145/2487575.2488200 10.1080/13632469909350343 10.1002/eqe.2240 10.1080/13632469.2016.1160009 10.1002/eqe.2678 10.3390/rs8100868 10.1061/(ASCE)0733-9445(1985)111:4(740) 10.1061/(ASCE)0733-9445(1997)123:11(1454) 10.1613/jair.4272 10.1002/eqe.3205 10.1002/stc.2514 10.1145/1242572.1242660 10.1109/TPAMI.2004.1273918 10.3390/app9173497 10.1016/j.soildyn.2018.08.027 10.1002/eqe.645 10.1088/0004-637X/697/2/1071 10.1007/s10518-017-0168-9 10.1193/1.2723158 10.1186/1471-2105-7-3 10.1016/S0267-7261(05)80002-8 10.1016/j.engstruct.2018.05.084 10.1002/9781118548387 10.1016/j.scient.2011.09.013 10.1007/s10518-012-9402-7 10.1007/978-981-10-3087-1 10.1002/eqe.646 10.1145/1961189.1961199 10.3133/fs20103036 10.1016/j.soildyn.2016.09.041 |
ContentType | Journal Article |
Copyright | 2020 Taylor & Francis Group, LLC 2020 2020 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2020 Taylor & Francis Group, LLC 2020 – notice: 2020 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI |
DOI | 10.1080/13632469.2020.1826371 |
DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1559-808X |
EndPage | 4279 |
ExternalDocumentID | 10_1080_13632469_2020_1826371 1826371 |
Genre | Research Article |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRAH AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWJ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~02 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI TASJS |
ID | FETCH-LOGICAL-c338t-3c9428fac1570df121987a323f1dfb8a92ec3e40ab66cb7e5d4e3e56845a04293 |
ISSN | 1363-2469 |
IngestDate | Wed Aug 13 06:54:35 EDT 2025 Tue Jul 01 04:15:03 EDT 2025 Thu Apr 24 22:57:20 EDT 2025 Wed Dec 25 09:07:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-3c9428fac1570df121987a323f1dfb8a92ec3e40ab66cb7e5d4e3e56845a04293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6217-3228 0000-0003-1492-9673 0000-0002-3313-7420 0000-0002-0645-5255 |
PQID | 2680457802 |
PQPubID | 53172 |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_1080_13632469_2020_1826371 crossref_citationtrail_10_1080_13632469_2020_1826371 informaworld_taylorfrancis_310_1080_13632469_2020_1826371 proquest_journals_2680457802 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-11 |
PublicationDateYYYYMMDD | 2022-06-11 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Journal of earthquake engineering : JEE |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | cit0033 cit0034 cit0031 cit0075 cit0032 cit0076 Buratti N. (cit0012) 2012 cit0073 cit0030 Housner G. W. (cit0040) 1975 cit0074 cit0071 cit0072 Arias A. (cit0004) 1970 cit0070 Lu X. Z. (cit0047) 2019; 36 Liu T. T. (cit0044) 2018 Haselton C. B. (cit0036) 2006 cit0037 cit0038 cit0035 cit0079 cit0022 cit0066 cit0023 cit0067 cit0020 cit0064 cit0021 cit0065 cit0062 cit0063 cit0060 cit0061 Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD (cit0057) 2010 Conte J. P. (cit0017) 2003 Aptikaev F. F. (cit0003) 1982 Housner G. W. (cit0039) 1970; 75 Yang C. (cit0077) 2015; 37 cit0028 cit0029 cit0026 cit0027 Cosenza E. (cit0019) 1998 cit0024 cit0068 cit0025 cit0069 cit0011 cit0055 cit0056 cit0053 cit0010 cit0054 cit0051 cit0052 cit0050 Ye L. P. (cit0078) 2009; 29 Cheng G. Y. (cit0014) 2008; 25 cit0018 cit0015 cit0059 cit0016 cit0013 Lu X. Z. (cit0049) 2020 cit0058 cit0001 cit0045 cit0042 cit0043 cit0041 cit0080 cit0081 cit0008 cit0009 cit0006 cit0007 cit0048 cit0005 cit0002 cit0046 |
References_xml | – ident: cit0033 doi: 10.1145/1656274.1656278 – ident: cit0038 – ident: cit0053 doi: 10.1002/eqe.695 – ident: cit0015 – ident: cit0035 doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 – ident: cit0030 doi: 10.1002/eqe.386 – ident: cit0006 doi: 10.1002/eqe.474 – ident: cit0002 – ident: cit0081 doi: 10.1007/s11069-016-2307-z – ident: cit0064 doi: 10.1002/stc.2488 – ident: cit0075 doi: 10.1016/j.aei.2019.101025 – ident: cit0073 doi: 10.1007/s10518-018-00522-y – ident: cit0025 – ident: cit0042 doi: 10.1016/j.soildyn.2017.11.021 – volume: 37 start-page: 508 issue: 3 year: 2015 ident: cit0077 publication-title: Acta Seismologica Sinica – ident: cit0009 doi: 10.1080/13632460409350521 – ident: cit0058 – ident: cit0068 doi: 10.1007/s10518-012-9350-2 – ident: cit0063 doi: 10.1002/eqe.93 – ident: cit0007 doi: 10.1016/j.soildyn.2017.05.011 – ident: cit0070 doi: 10.1016/j.soildyn.2005.07.001 – ident: cit0062 doi: 10.1016/0029-5493(90)90259-Z – volume: 29 start-page: 9 issue: 4 year: 2009 ident: cit0078 publication-title: Journal of Earthquake Engineering and Engineering Vibration – ident: cit0041 – volume: 36 issue: 1 year: 2019 ident: cit0047 publication-title: Engineering Mechanics – ident: cit0045 – volume-title: Proceedings of US National Conference on Earthquake Engineering year: 1975 ident: cit0040 – ident: cit0066 – ident: cit0011 doi: 10.1201/9781315139470 – ident: cit0034 doi: 10.1007/s11589-005-0072-2 – ident: cit0056 doi: 10.1145/2487575.2488200 – start-page: 95 volume-title: The 7th European conference on earthquake engineering year: 1982 ident: cit0003 – ident: cit0008 doi: 10.1080/13632469909350343 – volume: 25 start-page: 28 issue: 2 year: 2008 ident: cit0014 publication-title: Engineering Mechanics – ident: cit0046 doi: 10.1002/eqe.2240 – ident: cit0072 – ident: cit0074 doi: 10.1080/13632469.2016.1160009 – year: 2020 ident: cit0049 publication-title: Earthquake Spectra – ident: cit0054 doi: 10.1002/eqe.2678 – volume-title: Measure of earthquake intensity year: 1970 ident: cit0004 – ident: cit0018 doi: 10.3390/rs8100868 – ident: cit0024 – ident: cit0060 doi: 10.1061/(ASCE)0733-9445(1985)111:4(740) – ident: cit0032 doi: 10.1061/(ASCE)0733-9445(1997)123:11(1454) – ident: cit0043 doi: 10.1613/jair.4272 – ident: cit0020 doi: 10.1002/eqe.3205 – ident: cit0059 – ident: cit0031 doi: 10.1002/stc.2514 – volume-title: The Ninth International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP9) year: 2003 ident: cit0017 – ident: cit0028 doi: 10.1145/1242572.1242660 – ident: cit0055 doi: 10.1109/TPAMI.2004.1273918 – volume: 75 start-page: 91 year: 1970 ident: cit0039 publication-title: Earthquake Engineering – ident: cit0050 doi: 10.3390/app9173497 – ident: cit0061 – ident: cit0010 doi: 10.1016/j.soildyn.2018.08.027 – ident: cit0080 doi: 10.1002/eqe.645 – ident: cit0005 doi: 10.1088/0004-637X/697/2/1071 – ident: cit0051 doi: 10.1007/s10518-017-0168-9 – ident: cit0052 doi: 10.1193/1.2723158 – ident: cit0027 – ident: cit0021 doi: 10.1186/1471-2105-7-3 – ident: cit0023 doi: 10.1016/S0267-7261(05)80002-8 – ident: cit0065 doi: 10.1016/j.engstruct.2018.05.084 – ident: cit0037 doi: 10.1002/9781118548387 – start-page: 6 volume-title: The 11th European Conference on Earthquake Engineering year: 1998 ident: cit0019 – ident: cit0076 doi: 10.1016/j.scient.2011.09.013 – ident: cit0071 – start-page: 24 volume-title: The 15th World Conference on Earthquake Engineering year: 2012 ident: cit0012 – volume-title: Code for seismic design of buildings (GB 50011-2010 year: 2010 ident: cit0057 – ident: cit0016 – ident: cit0029 doi: 10.1007/s10518-012-9402-7 – ident: cit0048 doi: 10.1007/978-981-10-3087-1 – ident: cit0079 doi: 10.1002/eqe.646 – year: 2018 ident: cit0044 publication-title: Journal of Earthquake Engineering – ident: cit0026 – ident: cit0001 – ident: cit0013 doi: 10.1145/1961189.1961199 – ident: cit0022 – start-page: 18 volume-title: The 8th National Conference on Earthquake Engineering year: 2006 ident: cit0036 – ident: cit0069 doi: 10.3133/fs20103036 – ident: cit0067 doi: 10.1016/j.soildyn.2016.09.041 |
SSID | ssj0014736 |
Score | 2.5680594 |
Snippet | After earthquakes, an accurate and efficient seismic-damage prediction is indispensable for emergency response. Existing methods face the dilemma between... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4259 |
SubjectTerms | Accuracy Algorithms Earthquake damage Earthquake prediction Earthquakes Efficiency Emergency preparedness Emergency response Ground motion intensity measure Iterative methods Learning algorithms Machine learning Methods Optimization Post-earthquake emergency response Predictions Real time Seismic activity seismic damage prediction Seismic response |
Title | Real-Time Seismic Damage Prediction and Comparison of Various Ground Motion Intensity Measures Based on Machine Learning |
URI | https://www.tandfonline.com/doi/abs/10.1080/13632469.2020.1826371 https://www.proquest.com/docview/2680457802 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLaG6QUOqGURhVL5wG2UIbGd7dgNjSqGA5rClEvkOHY7pWSgk0iov4ifyfOSpUxRWS5RZMtJlO_z8_PzWxB6pQoZ5CJKPZ6nuQfrMfFSlnAvFjSKCxVEudSBwtN30eSEHc_D-WDwo-e1VFf5WFzfGlfyL6hCG-Cqo2T_Atn2odAA94AvXAFhuP4Rxu9By_N0EAdM-cVKe7kf8i_GCedKn79UjavxQb_Y4OgD3GrHV2120l4Wpo7PyPmyg04-tWbD1WgfVrhCnyZMjcelbJKxnv1Go4Xe6vxbzT_LkezSHBqjw_FRG_Ewr43YX5ZnF4t2TXhrGueL8vpcuucb32Brnj2tOw5PamfhPq0vF32bBWx3dbGfzmYxWysf0pPA-mCZMFu_ZSydVNa2St_UIG7Ftg20d_RMejIYpFDaW88ZsdVq1tYK61yp36dfN4bvhEbYbVFbE-aXNNyu5x7aILAhIUO0sTc5_PSxPbFisSlH2X5-Ey2W-K9vfcUNPehGltw1rcCoOrNN9NAhivcs4bbQQJaP0INe5srH6HtLPeyohy31cEc9DNTDHfXwUmFHPWyphy31cEs93FAPG-ph6HPUww31nqCTN0ezg4nninh4gtKk8qhIYYeruAjC2IfJT7SVi1NCVVCoPOEpkYJK5vM8ikQey7BgksowSljItbJEn6JhuSzlM4SVn1LoCwThIWMq4SBHQg4apyqYCuNgG7Hml2bCZbjXhVYus8Alwm2QyDQSmUNiG43bYV9tipe7BqR9vLLK0FlZJmf0jrE7DbiZkySrjEQJ7KzixCfP_-PRL9D9bq7toGF1VcuXoDFX-a4j60_LOrvA |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQORQOQHmIllJ84OolfiY50pZqC82qKi3qzbIdu6qgu1U3KwG_npk8VlsQ6qG3KNZYiT32jMcz30fI-1RH7oMpmfOlZ2CPBStV4VgepMnrxI2PWChcTcz4TH0-1-crtTCYVoln6NQBRbR7NS5uDEYPKXEfuESQcYN1JgJegYcssYz8oS5NjiwGMpssbxJU3tIEoghDmaGK53_d3LJPt9BL_9mtWxN08JSE4eO7zJPvo0XjR-H3X7iO9_u7Z-RJ76HSj51KbZAHcfqcPF7BLXxBfp6Ae8mweoR-jZfzq8tA990V7Ez0-AYvfnCyKXwA3VuyHNJZot_gcbaYU4x3QWPVEgjRPom--UWrLl45p7tgWmsKbVWb6hlpjwJ78ZKcHXw63RuznsKBBTj7NkyGEs43yQWu8wymXmCMw0khE6-TL1wpYpBRZc4bE3weda2ijNoUSjs0lfIVWZvOpvE1oSkrJbTxIJxWKhUOtEg78DdSrZLO-SZRw8TZ0OObI83GD8t7GNRhYC0OrO0HdpOMlmLXHcDHXQLlqlbYpo2spI4Gxco7ZLcHFbL9XjG3whTgV-dFJrbu0fU7sj4-rY7s0eHkyxvySGCVBlIs8W2y1tws4lvwnRq_0y6OP3-6Ctg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqVqrgAJSHKLTUB65e4kec5Egfq9Kyqwoo4mbZjl1V0N2qyUrQX9-ZxFm1INRDb1GscWJ7PDMez3xDyPtYB-68rph1lWOgjwWrVGlZ4aUu6si1C5goPJnqw1N19CMfogmbFFaJZ-jYA0V0sho392Udh4i4D1wixrjGNBMBr8BAlphFvqYRPByzOLLp8iJBFV2VQCRhSDMk8fyvmzvq6Q546T_CutNA46fEDf_eB578HC1aN_LXf8E6Pmhwz8iTZJ_Sjz1DbZCVMHtOHt9CLXxBfn8B45Jh7gj9Gs6bi3NP9-0FyCV6coXXPrjUFL5P95Y1Duk80u_wOF80FL1d0DjpygfRFELf_qGT3lvZ0F1QrDWFtkkX6BlowoA9e0lOxwff9g5ZKuDAPJx8WyZ9BaebaD3PiwwWXqCHw0ohI6-jK20lgpdBZdZp7V0R8loFGXJdqtyiopSvyOpsPguvCY1ZJaGNe2FzpWJpgYdyC9ZGrFXMC75J1LBuxid0cyyy8cvwBII6TKzBiTVpYjfJaEl22cN73EdQ3WYK03Z-ldgXQTHyHtqtgYNMkhSNEboEq7ooM_HmAV3vkPWT_bH5_Gl6_JY8EpiigfWV-BZZba8WYRsMp9a967bGDSLpCXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Seismic+Damage+Prediction+and+Comparison+of+Various+Ground+Motion+Intensity+Measures+Based+on+Machine+Learning&rft.jtitle=Journal+of+earthquake+engineering+%3A+JEE&rft.au=Xu%2C+Yongjia&rft.au=Lu%2C+Xinzheng&rft.au=Tian%2C+Yuan&rft.au=Huang%2C+Yuli&rft.date=2022-06-11&rft.pub=Taylor+%26+Francis&rft.issn=1363-2469&rft.eissn=1559-808X&rft.volume=26&rft.issue=8&rft.spage=4259&rft.epage=4279&rft_id=info:doi/10.1080%2F13632469.2020.1826371&rft.externalDocID=1826371 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1363-2469&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1363-2469&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1363-2469&client=summon |