Reconstruction of Finite Rate of Innovation Signals with Model-Fitting Approach
Finite rate of innovation (FRI) is a recent framework for sampling and reconstruction of a large class of parametric signals that are characterized by finite number of innovations (parameters) per unit interval. In the absence of noise, exact recovery of FRI signals has been demonstrated. In the noi...
Saved in:
Published in | IEEE transactions on signal processing Vol. 63; no. 22; pp. 6024 - 6036 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
15.11.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1053-587X 1941-0476 |
DOI | 10.1109/TSP.2015.2461513 |
Cover
Loading…
Abstract | Finite rate of innovation (FRI) is a recent framework for sampling and reconstruction of a large class of parametric signals that are characterized by finite number of innovations (parameters) per unit interval. In the absence of noise, exact recovery of FRI signals has been demonstrated. In the noisy scenario, there exist techniques to deal with non-ideal measurements. Yet, the accuracy and resiliency to noise and model mismatch are still challenging problems for real-world applications. We address the reconstruction of FRI signals, specifically a stream of Diracs, from few signal samples degraded by noise and we propose a new FRI reconstruction method that is based on a model-fitting approach related to the structured-TLS problem. The model-fitting method is based on minimizing the training error, that is, the error between the computed and the recovered moments (i.e., the FRI-samples of the signal), subject to an annihilation system. We present our framework for three different constraints of the annihilation system. Moreover, we propose a model order selection framework to determine the innovation rate of the signal; i.e., the number of Diracs by estimating the noise level through the training error curve. We compare the performance of the model-fitting approach with known FRI reconstruction algorithms and Cramér-Rao's lower bound (CRLB) to validate these contributions. |
---|---|
AbstractList | Finite rate of innovation (FRI) is a recent framework for sampling and reconstruction of a large class of parametric signals that are characterized by finite number of innovations (parameters) per unit interval. In the absence of noise, exact recovery of FRI signals has been demonstrated. In the noisy scenario, there exist techniques to deal with non-ideal measurements. Yet, the accuracy and resiliency to noise and model mismatch are still challenging problems for real-world applications. We address the reconstruction of FRI signals, specifically a stream of Diracs, from few signal samples degraded by noise and we propose a new FRI reconstruction method that is based on a model-fitting approach related to the structured-TLS problem. The model-fitting method is based on minimizing the training error, that is, the error between the computed and the recovered moments (i.e., the FRI-samples of the signal), subject to an annihilation system. We present our framework for three different constraints of the annihilation system. Moreover, we propose a model order selection framework to determine the innovation rate of the signal; i.e., the number of Diracs by estimating the noise level through the training error curve. We compare the performance of the model-fitting approach with known FRI reconstruction algorithms and Cramér-Rao's lower bound (CRLB) to validate these contributions. Finite rate of innovation (FRI) is a recent framework for sampling and reconstruction of a large class of parametric signals that are characterized by finite number of innovations (parameters) per unit interval. In the absence of noise, exact recovery of FRI signals has been demonstrated. In the noisy scenario, there exist techniques to deal with non-ideal measurements. Yet, the accuracy and resiliency to noise and model mismatch are still challenging problems for real-world applications. We address the reconstruction of FRI signals, specifically a stream of Diracs, from few signal samples degraded by noise and we propose a new FRI reconstruction method that is based on a model-fitting approach related to the structured-TLS problem. The model-fitting method is based on minimizing the training error, that is, the error between the computed and the recovered moments (i.e., the FRI-samples of the signal), subject to an annihilation system. We present our framework for three different constraints of the annihilation system. Moreover, we propose a model order selection framework to determine the innovation rate of the signal; i.e., the number of Diracs by estimating the noise level through the training error curve. We compare the performance of the model-fitting approach with known FRI reconstruction algorithms and Cramer-Rao's lower bound (CRLB) to validate these contributions. |
Author | Van De Ville, Dimitri Dogan, Zafer Blu, Thierry Gilliam, Christopher |
Author_xml | – sequence: 1 givenname: Zafer surname: Dogan fullname: Dogan, Zafer email: zafer.dogan@epfl.ch organization: Inst. of Bioeng., Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland – sequence: 2 givenname: Christopher surname: Gilliam fullname: Gilliam, Christopher email: cgilliam@ee.cuhk.edu.hk organization: Dept. of Electron. Eng., Chinese Univ. of Hong Kong, Hong Kong, China – sequence: 3 givenname: Thierry surname: Blu fullname: Blu, Thierry email: thierry.blu@m4x.org organization: Dept. of Electron. Eng., Chinese Univ. of Hong Kong, Hong Kong, China – sequence: 4 givenname: Dimitri surname: Van De Ville fullname: Van De Ville, Dimitri email: dimitri.vandeville@epfl.ch organization: Inst. of Bioeng., Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland |
BookMark | eNp9UMtOAjEUbYwmAro3cTNLN4O908dMl4SIkmAwgIm7ppSO1gwtTovGv7c84sKFm_s85z5OF5067wxCV4D7AFjcLuZP_QID6xeUAwNygjogKOSYlvw0xZiRnFXlyznqhvCOMVAqeAdNZ0Z7F2K71dF6l_k6G1lno8lmKpmUjp3zn2rfnNtXp5qQfdn4lj36lWnykY3RutdssNm0Xum3C3RWJ4i5PPoeeh7dLYYP-WR6Px4OJrkmpIo5EboynBHQNWEcOBcrUVEhuBCpUEGdvDJCUaUEW5a6gNJQTFhRLDXXS0566OYwN6392JoQ5doGbZpGOeO3QUJZVphhTnZQfoDq1ofQmlpqG_cPxVbZRgKWOwVlUlDuFJRHBRMR_yFuWrtW7fd_lOsDxRpjfuElcMHTLT_UsX1P |
CODEN | ITPRED |
CitedBy_id | crossref_primary_10_1109_TSP_2016_2625274 crossref_primary_10_1109_TSP_2017_2733484 crossref_primary_10_1007_s10444_019_09692_y crossref_primary_10_1109_TIM_2022_3144213 crossref_primary_10_1109_TMI_2019_2942765 crossref_primary_10_1016_j_sigpro_2018_07_001 crossref_primary_10_1016_j_sigpro_2021_108061 crossref_primary_10_1109_TIM_2023_3320730 crossref_primary_10_1109_ACCESS_2018_2828799 crossref_primary_10_1109_TSP_2018_2876328 crossref_primary_10_1016_j_sigpro_2023_109231 crossref_primary_10_1109_TCI_2020_3000086 crossref_primary_10_1109_TSP_2019_2928982 |
Cites_doi | 10.1109/TIP.2007.891064 10.1109/29.32276 10.1109/TASSP.1986.1164949 10.1109/TSP.2013.2276411 10.1007/978-3-642-10984-3_7 10.1109/78.143451 10.1109/LSP.2015.2411154 10.1017/CBO9780511815850 10.1109/29.56027 10.1109/TSP.2002.807000 10.1109/TSP.2003.819984 10.1109/TSP.2013.2292033 10.1109/TSP.2009.2031717 10.1109/JRPROC.1949.232969 10.1109/ICASSP.2014.6853556 10.1109/TSP.2005.850321 10.1109/TSP.2005.843700 10.1109/TSP.2007.894259 10.1007/BF03549583 10.1088/1741-2560/10/4/046017 10.1016/S0165-1684(01)00093-7 10.1109/ICASSP.2014.6853909 10.1109/79.799930 10.1109/PROC.1982.12428 10.1109/TSP.2011.2105480 10.1109/TSP.2006.890907 10.1109/29.1488 10.1016/j.sigpro.2009.05.022 10.1016/j.sigpro.2011.01.015 10.1109/5.123298 10.1109/5.843002 10.1109/ISBI.2014.6868053 10.1109/TSP.2013.2278152 10.1109/78.330370 10.1109/78.317875 10.1109/TSP.2011.2105481 10.1109/TSP.2002.1003065 10.1109/MSP.2007.914998 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TSP.2015.2461513 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0476 |
EndPage | 6036 |
ExternalDocumentID | 10_1109_TSP_2015_2461513 7169606 |
Genre | orig-research |
GrantInformation_xml | – fundername: EPFL grantid: CUHK14200114 – fundername: Center for Biomedical Imaging (CIBM) – fundername: Swiss National Science Foundation; Swiss National Science Foundation grantid: PP00P2-146318; 2053530 funderid: 10.13039/501100001711 – fundername: Hong Kong Research Grant Council |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AGSQL AHBIQ AJQPL AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 3EH 53G 5VS AAYOK AAYXX ABFSI ACKIV AETIX AI. AIBXA AKJIK ALLEH CITATION E.L H~9 ICLAB IFJZH RIG VH1 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c338t-39c8e6531cf3561669d98499699f3581f99fae9a4aa95b7c217e403522bc6cb63 |
IEDL.DBID | RIE |
ISSN | 1053-587X |
IngestDate | Fri Jul 11 11:01:39 EDT 2025 Tue Jul 01 02:53:09 EDT 2025 Thu Apr 24 23:04:47 EDT 2025 Tue Aug 26 16:40:39 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c338t-39c8e6531cf3561669d98499699f3581f99fae9a4aa95b7c217e403522bc6cb63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://infoscience.epfl.ch/handle/20.500.14299/124086 |
PQID | 1778050636 |
PQPubID | 23500 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1778050636 ieee_primary_7169606 crossref_citationtrail_10_1109_TSP_2015_2461513 crossref_primary_10_1109_TSP_2015_2461513 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-15 |
PublicationDateYYYYMMDD | 2015-11-15 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | IEEE transactions on signal processing |
PublicationTitleAbbrev | TSP |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref35 ref13 ref34 ref12 ref37 ref36 ref14 ref31 dogan (ref15) 2014; 13 ref30 ref11 ref32 ref10 blu (ref41) 2009 stoica (ref17) 1997 ref2 ref1 ref39 ref38 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 kay (ref33) 1999 ref6 ref5 ref40 |
References_xml | – ident: ref40 doi: 10.1109/TIP.2007.891064 – year: 1997 ident: ref17 publication-title: Introduction to Spectral Analysis – ident: ref22 doi: 10.1109/29.32276 – ident: ref35 doi: 10.1109/TASSP.1986.1164949 – ident: ref27 doi: 10.1109/TSP.2013.2276411 – ident: ref31 doi: 10.1007/978-3-642-10984-3_7 – ident: ref37 doi: 10.1109/78.143451 – ident: ref24 doi: 10.1109/LSP.2015.2411154 – ident: ref29 doi: 10.1017/CBO9780511815850 – ident: ref20 doi: 10.1109/29.56027 – ident: ref4 doi: 10.1109/TSP.2002.807000 – ident: ref12 doi: 10.1109/TSP.2003.819984 – ident: ref14 doi: 10.1109/TSP.2013.2292033 – ident: ref11 doi: 10.1109/TSP.2009.2031717 – ident: ref1 doi: 10.1109/JRPROC.1949.232969 – ident: ref25 doi: 10.1109/ICASSP.2014.6853556 – ident: ref18 doi: 10.1109/TSP.2005.850321 – ident: ref32 doi: 10.1109/TSP.2005.843700 – ident: ref13 doi: 10.1109/TSP.2007.894259 – volume: 13 start-page: 271 year: 2014 ident: ref15 article-title: Finite-rate-of-innovation for the inverse source problem of radiating fields publication-title: Sampl Theory Signal Image Process doi: 10.1007/BF03549583 – ident: ref8 doi: 10.1088/1741-2560/10/4/046017 – ident: ref34 doi: 10.1016/S0165-1684(01)00093-7 – ident: ref28 doi: 10.1109/ICASSP.2014.6853909 – ident: ref3 doi: 10.1109/79.799930 – year: 2009 ident: ref41 article-title: The SURE-LET methodology?A prior-free approach to signal and image denoising publication-title: Int Workshop on Sampling Theory and Appl (SAMPTA) – ident: ref38 doi: 10.1109/PROC.1982.12428 – ident: ref7 doi: 10.1109/TSP.2011.2105480 – ident: ref9 doi: 10.1109/TSP.2006.890907 – ident: ref23 doi: 10.1109/29.1488 – ident: ref26 doi: 10.1016/j.sigpro.2009.05.022 – ident: ref10 doi: 10.1016/j.sigpro.2011.01.015 – ident: ref21 doi: 10.1109/5.123298 – year: 1999 ident: ref33 publication-title: Modern Spectral Estimation Theory and Application – ident: ref2 doi: 10.1109/5.843002 – ident: ref39 doi: 10.1109/ISBI.2014.6868053 – ident: ref16 doi: 10.1109/TSP.2013.2278152 – ident: ref30 doi: 10.1109/78.330370 – ident: ref36 doi: 10.1109/78.317875 – ident: ref19 doi: 10.1109/TSP.2011.2105481 – ident: ref5 doi: 10.1109/TSP.2002.1003065 – ident: ref6 doi: 10.1109/MSP.2007.914998 |
SSID | ssj0014496 |
Score | 2.2871242 |
Snippet | Finite rate of innovation (FRI) is a recent framework for sampling and reconstruction of a large class of parametric signals that are characterized by finite... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6024 |
SubjectTerms | Algorithms Annihilating Filter Biological system modeling Cadzow Computational modeling Cramér-Rao's lower bound (CRLB) Errors Estimation finite-rate-of-innovation Innovation iterative quadratic maximum likelihood (IQML) Kernel Kumaresan-Tufts Mathematical analysis Mathematical models matrix pencil model fitting Noise Reconstruction Reconstruction algorithms sampling structured total least squares (STLS) Technological innovation total least squares (TLS) Training |
Title | Reconstruction of Finite Rate of Innovation Signals with Model-Fitting Approach |
URI | https://ieeexplore.ieee.org/document/7169606 https://www.proquest.com/docview/1778050636 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5zT_rgbYrzRgRfBNtdkqbN4xDLFKbiNthbSdNUhqMV3F789Z6TXrwiPjWFhIacpPm-nJPvEHIuGEuNVsBOeJA4nANBUbAxOzyQqdJ9FhsrxzC6E8Mpv515swa5rO_CGGNs8JlxsWh9-UmuV3hU1kFlF4H62mtA3Iq7WrXHgHObiwvgAnO8wJ9VLsmu7EzGDxjD5bmoneb12JctyOZU-fEjtrtLuEVGVb-KoJJnd7WMXf32TbLxvx3fJpslzKSDYl7skIbJdsnGJ_HBFrlH5vmhH0vzlIZzRKD0EfAnvt7UGVPpeP6EQssUj20p5k9bOOHchkzTQalKvkem4fXkauiU6RUcDbx06TCpAyNgDeqUAYoSQiYyAAIkpExRFS2FpzJScaWkF_sayIvhKJ_aj7XQsWD7pJnlmTkg1PNTWPgA1jUPeJwaJUXSk0YZaMWCmLVJpxrxSJfa45gCYxFZDtKVEdgoQhtFpY3a5KJu8VLobvxRt4VDXtcrR7tNziqjRrBm0BGiMpOvXqOej5kcAJyJw9-bHpF1_ADeOex5x6QJpjAnAD6W8amdde-AodUY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6KHtSDryrWZwQvgttXsunmWMTSalvFttDbks1mpVhawfbir3cm3a5PxNPuQsIumWTzTWbm-wAuJOeJNRq9ExHEnhDooGjcmD0RqESbKo-so2PodGVzIG6H_jAHV1ktjLXWJZ_ZIt26WH48NXM6KisRs4skfu1Vn4pxF9VaWcxACKfGhYCBe35QGy6DkmVV6vceKIvLLxJ7ml_hXzYhp6ry41fs9pfGFnSWX7ZIK3kuzmdR0bx9I23876dvw2YKNFl9MTN2IGcnu7DxiX4wD_fke34wyLJpwhojwqDsEREoPbYyzVTWGz0R1TKjg1tGCmpjrzFySdOsnvKS78GgcdO_bnqpwIJn0DOdeVyZwEpchSbhiKOkVLEK0AWSSiXEi5bgVVulhdbKj2oG3RcriEC1GhlpIsn3YWUyndgDYH4twaWPcN2IQESJ1UrGFWW1xV48iHgBSssRD03KPk4iGOPQeSFlFaKNQrJRmNqoAJdZj5cF88YfbfM05Fm7dLQLcL40aoirhkIhemKn89ewUiMtB4Rn8vD3rmew1ux32mG71b07gnV6GVUgVvxjWEGz2BOEIrPo1M3Ad8aR2GA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+Finite+Rate+of+Innovation+Signals+with+Model-Fitting+Approach&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Dogan%2C+Zafer&rft.au=Gilliam%2C+Christopher&rft.au=Blu%2C+Thierry&rft.au=Van+De+Ville%2C+Dimitri&rft.date=2015-11-15&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=63&rft.issue=22&rft.spage=6024&rft.epage=6036&rft_id=info:doi/10.1109%2FTSP.2015.2461513&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2015_2461513 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |