Reconstruction of Finite Rate of Innovation Signals with Model-Fitting Approach

Finite rate of innovation (FRI) is a recent framework for sampling and reconstruction of a large class of parametric signals that are characterized by finite number of innovations (parameters) per unit interval. In the absence of noise, exact recovery of FRI signals has been demonstrated. In the noi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 63; no. 22; pp. 6024 - 6036
Main Authors Dogan, Zafer, Gilliam, Christopher, Blu, Thierry, Van De Ville, Dimitri
Format Journal Article
LanguageEnglish
Published IEEE 15.11.2015
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2015.2461513

Cover

Loading…
Abstract Finite rate of innovation (FRI) is a recent framework for sampling and reconstruction of a large class of parametric signals that are characterized by finite number of innovations (parameters) per unit interval. In the absence of noise, exact recovery of FRI signals has been demonstrated. In the noisy scenario, there exist techniques to deal with non-ideal measurements. Yet, the accuracy and resiliency to noise and model mismatch are still challenging problems for real-world applications. We address the reconstruction of FRI signals, specifically a stream of Diracs, from few signal samples degraded by noise and we propose a new FRI reconstruction method that is based on a model-fitting approach related to the structured-TLS problem. The model-fitting method is based on minimizing the training error, that is, the error between the computed and the recovered moments (i.e., the FRI-samples of the signal), subject to an annihilation system. We present our framework for three different constraints of the annihilation system. Moreover, we propose a model order selection framework to determine the innovation rate of the signal; i.e., the number of Diracs by estimating the noise level through the training error curve. We compare the performance of the model-fitting approach with known FRI reconstruction algorithms and Cramér-Rao's lower bound (CRLB) to validate these contributions.
AbstractList Finite rate of innovation (FRI) is a recent framework for sampling and reconstruction of a large class of parametric signals that are characterized by finite number of innovations (parameters) per unit interval. In the absence of noise, exact recovery of FRI signals has been demonstrated. In the noisy scenario, there exist techniques to deal with non-ideal measurements. Yet, the accuracy and resiliency to noise and model mismatch are still challenging problems for real-world applications. We address the reconstruction of FRI signals, specifically a stream of Diracs, from few signal samples degraded by noise and we propose a new FRI reconstruction method that is based on a model-fitting approach related to the structured-TLS problem. The model-fitting method is based on minimizing the training error, that is, the error between the computed and the recovered moments (i.e., the FRI-samples of the signal), subject to an annihilation system. We present our framework for three different constraints of the annihilation system. Moreover, we propose a model order selection framework to determine the innovation rate of the signal; i.e., the number of Diracs by estimating the noise level through the training error curve. We compare the performance of the model-fitting approach with known FRI reconstruction algorithms and Cramér-Rao's lower bound (CRLB) to validate these contributions.
Finite rate of innovation (FRI) is a recent framework for sampling and reconstruction of a large class of parametric signals that are characterized by finite number of innovations (parameters) per unit interval. In the absence of noise, exact recovery of FRI signals has been demonstrated. In the noisy scenario, there exist techniques to deal with non-ideal measurements. Yet, the accuracy and resiliency to noise and model mismatch are still challenging problems for real-world applications. We address the reconstruction of FRI signals, specifically a stream of Diracs, from few signal samples degraded by noise and we propose a new FRI reconstruction method that is based on a model-fitting approach related to the structured-TLS problem. The model-fitting method is based on minimizing the training error, that is, the error between the computed and the recovered moments (i.e., the FRI-samples of the signal), subject to an annihilation system. We present our framework for three different constraints of the annihilation system. Moreover, we propose a model order selection framework to determine the innovation rate of the signal; i.e., the number of Diracs by estimating the noise level through the training error curve. We compare the performance of the model-fitting approach with known FRI reconstruction algorithms and Cramer-Rao's lower bound (CRLB) to validate these contributions.
Author Van De Ville, Dimitri
Dogan, Zafer
Blu, Thierry
Gilliam, Christopher
Author_xml – sequence: 1
  givenname: Zafer
  surname: Dogan
  fullname: Dogan, Zafer
  email: zafer.dogan@epfl.ch
  organization: Inst. of Bioeng., Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland
– sequence: 2
  givenname: Christopher
  surname: Gilliam
  fullname: Gilliam, Christopher
  email: cgilliam@ee.cuhk.edu.hk
  organization: Dept. of Electron. Eng., Chinese Univ. of Hong Kong, Hong Kong, China
– sequence: 3
  givenname: Thierry
  surname: Blu
  fullname: Blu, Thierry
  email: thierry.blu@m4x.org
  organization: Dept. of Electron. Eng., Chinese Univ. of Hong Kong, Hong Kong, China
– sequence: 4
  givenname: Dimitri
  surname: Van De Ville
  fullname: Van De Ville, Dimitri
  email: dimitri.vandeville@epfl.ch
  organization: Inst. of Bioeng., Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland
BookMark eNp9UMtOAjEUbYwmAro3cTNLN4O908dMl4SIkmAwgIm7ppSO1gwtTovGv7c84sKFm_s85z5OF5067wxCV4D7AFjcLuZP_QID6xeUAwNygjogKOSYlvw0xZiRnFXlyznqhvCOMVAqeAdNZ0Z7F2K71dF6l_k6G1lno8lmKpmUjp3zn2rfnNtXp5qQfdn4lj36lWnykY3RutdssNm0Xum3C3RWJ4i5PPoeeh7dLYYP-WR6Px4OJrkmpIo5EboynBHQNWEcOBcrUVEhuBCpUEGdvDJCUaUEW5a6gNJQTFhRLDXXS0566OYwN6392JoQ5doGbZpGOeO3QUJZVphhTnZQfoDq1ofQmlpqG_cPxVbZRgKWOwVlUlDuFJRHBRMR_yFuWrtW7fd_lOsDxRpjfuElcMHTLT_UsX1P
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TSP_2016_2625274
crossref_primary_10_1109_TSP_2017_2733484
crossref_primary_10_1007_s10444_019_09692_y
crossref_primary_10_1109_TIM_2022_3144213
crossref_primary_10_1109_TMI_2019_2942765
crossref_primary_10_1016_j_sigpro_2018_07_001
crossref_primary_10_1016_j_sigpro_2021_108061
crossref_primary_10_1109_TIM_2023_3320730
crossref_primary_10_1109_ACCESS_2018_2828799
crossref_primary_10_1109_TSP_2018_2876328
crossref_primary_10_1016_j_sigpro_2023_109231
crossref_primary_10_1109_TCI_2020_3000086
crossref_primary_10_1109_TSP_2019_2928982
Cites_doi 10.1109/TIP.2007.891064
10.1109/29.32276
10.1109/TASSP.1986.1164949
10.1109/TSP.2013.2276411
10.1007/978-3-642-10984-3_7
10.1109/78.143451
10.1109/LSP.2015.2411154
10.1017/CBO9780511815850
10.1109/29.56027
10.1109/TSP.2002.807000
10.1109/TSP.2003.819984
10.1109/TSP.2013.2292033
10.1109/TSP.2009.2031717
10.1109/JRPROC.1949.232969
10.1109/ICASSP.2014.6853556
10.1109/TSP.2005.850321
10.1109/TSP.2005.843700
10.1109/TSP.2007.894259
10.1007/BF03549583
10.1088/1741-2560/10/4/046017
10.1016/S0165-1684(01)00093-7
10.1109/ICASSP.2014.6853909
10.1109/79.799930
10.1109/PROC.1982.12428
10.1109/TSP.2011.2105480
10.1109/TSP.2006.890907
10.1109/29.1488
10.1016/j.sigpro.2009.05.022
10.1016/j.sigpro.2011.01.015
10.1109/5.123298
10.1109/5.843002
10.1109/ISBI.2014.6868053
10.1109/TSP.2013.2278152
10.1109/78.330370
10.1109/78.317875
10.1109/TSP.2011.2105481
10.1109/TSP.2002.1003065
10.1109/MSP.2007.914998
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2015.2461513
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 6036
ExternalDocumentID 10_1109_TSP_2015_2461513
7169606
Genre orig-research
GrantInformation_xml – fundername: EPFL
  grantid: CUHK14200114
– fundername: Center for Biomedical Imaging (CIBM)
– fundername: Swiss National Science Foundation; Swiss National Science Foundation
  grantid: PP00P2-146318; 2053530
  funderid: 10.13039/501100001711
– fundername: Hong Kong Research Grant Council
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AJQPL
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
53G
5VS
AAYOK
AAYXX
ABFSI
ACKIV
AETIX
AI.
AIBXA
AKJIK
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
RIG
VH1
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-39c8e6531cf3561669d98499699f3581f99fae9a4aa95b7c217e403522bc6cb63
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Fri Jul 11 11:01:39 EDT 2025
Tue Jul 01 02:53:09 EDT 2025
Thu Apr 24 23:04:47 EDT 2025
Tue Aug 26 16:40:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-39c8e6531cf3561669d98499699f3581f99fae9a4aa95b7c217e403522bc6cb63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://infoscience.epfl.ch/handle/20.500.14299/124086
PQID 1778050636
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1778050636
ieee_primary_7169606
crossref_citationtrail_10_1109_TSP_2015_2461513
crossref_primary_10_1109_TSP_2015_2461513
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-15
PublicationDateYYYYMMDD 2015-11-15
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-15
  day: 15
PublicationDecade 2010
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref34
ref12
ref37
ref36
ref14
ref31
dogan (ref15) 2014; 13
ref30
ref11
ref32
ref10
blu (ref41) 2009
stoica (ref17) 1997
ref2
ref1
ref39
ref38
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
kay (ref33) 1999
ref6
ref5
ref40
References_xml – ident: ref40
  doi: 10.1109/TIP.2007.891064
– year: 1997
  ident: ref17
  publication-title: Introduction to Spectral Analysis
– ident: ref22
  doi: 10.1109/29.32276
– ident: ref35
  doi: 10.1109/TASSP.1986.1164949
– ident: ref27
  doi: 10.1109/TSP.2013.2276411
– ident: ref31
  doi: 10.1007/978-3-642-10984-3_7
– ident: ref37
  doi: 10.1109/78.143451
– ident: ref24
  doi: 10.1109/LSP.2015.2411154
– ident: ref29
  doi: 10.1017/CBO9780511815850
– ident: ref20
  doi: 10.1109/29.56027
– ident: ref4
  doi: 10.1109/TSP.2002.807000
– ident: ref12
  doi: 10.1109/TSP.2003.819984
– ident: ref14
  doi: 10.1109/TSP.2013.2292033
– ident: ref11
  doi: 10.1109/TSP.2009.2031717
– ident: ref1
  doi: 10.1109/JRPROC.1949.232969
– ident: ref25
  doi: 10.1109/ICASSP.2014.6853556
– ident: ref18
  doi: 10.1109/TSP.2005.850321
– ident: ref32
  doi: 10.1109/TSP.2005.843700
– ident: ref13
  doi: 10.1109/TSP.2007.894259
– volume: 13
  start-page: 271
  year: 2014
  ident: ref15
  article-title: Finite-rate-of-innovation for the inverse source problem of radiating fields
  publication-title: Sampl Theory Signal Image Process
  doi: 10.1007/BF03549583
– ident: ref8
  doi: 10.1088/1741-2560/10/4/046017
– ident: ref34
  doi: 10.1016/S0165-1684(01)00093-7
– ident: ref28
  doi: 10.1109/ICASSP.2014.6853909
– ident: ref3
  doi: 10.1109/79.799930
– year: 2009
  ident: ref41
  article-title: The SURE-LET methodology?A prior-free approach to signal and image denoising
  publication-title: Int Workshop on Sampling Theory and Appl (SAMPTA)
– ident: ref38
  doi: 10.1109/PROC.1982.12428
– ident: ref7
  doi: 10.1109/TSP.2011.2105480
– ident: ref9
  doi: 10.1109/TSP.2006.890907
– ident: ref23
  doi: 10.1109/29.1488
– ident: ref26
  doi: 10.1016/j.sigpro.2009.05.022
– ident: ref10
  doi: 10.1016/j.sigpro.2011.01.015
– ident: ref21
  doi: 10.1109/5.123298
– year: 1999
  ident: ref33
  publication-title: Modern Spectral Estimation Theory and Application
– ident: ref2
  doi: 10.1109/5.843002
– ident: ref39
  doi: 10.1109/ISBI.2014.6868053
– ident: ref16
  doi: 10.1109/TSP.2013.2278152
– ident: ref30
  doi: 10.1109/78.330370
– ident: ref36
  doi: 10.1109/78.317875
– ident: ref19
  doi: 10.1109/TSP.2011.2105481
– ident: ref5
  doi: 10.1109/TSP.2002.1003065
– ident: ref6
  doi: 10.1109/MSP.2007.914998
SSID ssj0014496
Score 2.2871242
Snippet Finite rate of innovation (FRI) is a recent framework for sampling and reconstruction of a large class of parametric signals that are characterized by finite...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6024
SubjectTerms Algorithms
Annihilating Filter
Biological system modeling
Cadzow
Computational modeling
Cramér-Rao's lower bound (CRLB)
Errors
Estimation
finite-rate-of-innovation
Innovation
iterative quadratic maximum likelihood (IQML)
Kernel
Kumaresan-Tufts
Mathematical analysis
Mathematical models
matrix pencil
model fitting
Noise
Reconstruction
Reconstruction algorithms
sampling
structured total least squares (STLS)
Technological innovation
total least squares (TLS)
Training
Title Reconstruction of Finite Rate of Innovation Signals with Model-Fitting Approach
URI https://ieeexplore.ieee.org/document/7169606
https://www.proquest.com/docview/1778050636
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5zT_rgbYrzRgRfBNtdkqbN4xDLFKbiNthbSdNUhqMV3F789Z6TXrwiPjWFhIacpPm-nJPvEHIuGEuNVsBOeJA4nANBUbAxOzyQqdJ9FhsrxzC6E8Mpv515swa5rO_CGGNs8JlxsWh9-UmuV3hU1kFlF4H62mtA3Iq7WrXHgHObiwvgAnO8wJ9VLsmu7EzGDxjD5bmoneb12JctyOZU-fEjtrtLuEVGVb-KoJJnd7WMXf32TbLxvx3fJpslzKSDYl7skIbJdsnGJ_HBFrlH5vmhH0vzlIZzRKD0EfAnvt7UGVPpeP6EQssUj20p5k9bOOHchkzTQalKvkem4fXkauiU6RUcDbx06TCpAyNgDeqUAYoSQiYyAAIkpExRFS2FpzJScaWkF_sayIvhKJ_aj7XQsWD7pJnlmTkg1PNTWPgA1jUPeJwaJUXSk0YZaMWCmLVJpxrxSJfa45gCYxFZDtKVEdgoQhtFpY3a5KJu8VLobvxRt4VDXtcrR7tNziqjRrBm0BGiMpOvXqOej5kcAJyJw9-bHpF1_ADeOex5x6QJpjAnAD6W8amdde-AodUY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6KHtSDryrWZwQvgttXsunmWMTSalvFttDbks1mpVhawfbir3cm3a5PxNPuQsIumWTzTWbm-wAuJOeJNRq9ExHEnhDooGjcmD0RqESbKo-so2PodGVzIG6H_jAHV1ktjLXWJZ_ZIt26WH48NXM6KisRs4skfu1Vn4pxF9VaWcxACKfGhYCBe35QGy6DkmVV6vceKIvLLxJ7ml_hXzYhp6ry41fs9pfGFnSWX7ZIK3kuzmdR0bx9I23876dvw2YKNFl9MTN2IGcnu7DxiX4wD_fke34wyLJpwhojwqDsEREoPbYyzVTWGz0R1TKjg1tGCmpjrzFySdOsnvKS78GgcdO_bnqpwIJn0DOdeVyZwEpchSbhiKOkVLEK0AWSSiXEi5bgVVulhdbKj2oG3RcriEC1GhlpIsn3YWUyndgDYH4twaWPcN2IQESJ1UrGFWW1xV48iHgBSssRD03KPk4iGOPQeSFlFaKNQrJRmNqoAJdZj5cF88YfbfM05Fm7dLQLcL40aoirhkIhemKn89ewUiMtB4Rn8vD3rmew1ux32mG71b07gnV6GVUgVvxjWEGz2BOEIrPo1M3Ad8aR2GA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+Finite+Rate+of+Innovation+Signals+with+Model-Fitting+Approach&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Dogan%2C+Zafer&rft.au=Gilliam%2C+Christopher&rft.au=Blu%2C+Thierry&rft.au=Van+De+Ville%2C+Dimitri&rft.date=2015-11-15&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=63&rft.issue=22&rft.spage=6024&rft.epage=6036&rft_id=info:doi/10.1109%2FTSP.2015.2461513&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2015_2461513
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon