A Role for the Autophagic Receptor, SQSTM1/p62, in Trafficking NF-κB/RelA to Nucleolar Aggresomes

Elevated NF-κB activity is a contributory factor in many hematologic and solid malignancies. Nucleolar sequestration of NF-κB/RelA represses this elevated activity and mediates apoptosis of cancer cells. Here, we set out to understand the mechanisms that control the nuclear/nucleolar distribution of...

Full description

Saved in:
Bibliographic Details
Published inMolecular cancer research Vol. 19; no. 2; pp. 274 - 287
Main Authors Lobb, Ian T, Morin, Pierre, Martin, Kirsty, Thoms, Hazel C, Wills, Jimi C, Lleshi, Xhordi, Olsen, Karl C F, Duncan, Rory R, Stark, Lesley A
Format Journal Article
LanguageEnglish
Published United States 01.02.2021
Online AccessGet full text

Cover

Loading…
More Information
Summary:Elevated NF-κB activity is a contributory factor in many hematologic and solid malignancies. Nucleolar sequestration of NF-κB/RelA represses this elevated activity and mediates apoptosis of cancer cells. Here, we set out to understand the mechanisms that control the nuclear/nucleolar distribution of RelA and other regulatory proteins, so that agents can be developed that specifically target these proteins to the organelle. We demonstrate that RelA accumulates in intranucleolar aggresomes in response to specific stresses. We also demonstrate that the autophagy receptor, SQSTM1/p62, accumulates alongside RelA in these nucleolar aggresomes. This accumulation is not a consequence of inhibited autophagy. Indeed, our data suggest nucleolar and autophagosomal accumulation of p62 are in active competition. We identify a conserved motif at the N-terminus of p62 that is essential for nucleoplasmic-to-nucleolar transport of the protein. Furthermore, using a dominant-negative mutant deleted for this nucleolar localization signal (NoLS), we demonstrate a role for p62 in trafficking RelA and other aggresome-related proteins to nucleoli, to induce apoptosis. Together, these data identify a novel role for p62 in trafficking nuclear proteins to nucleolar aggresomes under conditions of cell stress, thus maintaining cellular homeostasis. They also provide invaluable information on the mechanisms that regulate the nuclear/nucleolar distribution of RelA that could be exploited for therapeutic purpose. IMPLICATIONS: The data open up avenues for the development of a unique class of therapeutic agents that act by targeting RelA and other aberrantly active proteins to nucleoli, thus killing cancer cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1541-7786
1557-3125
DOI:10.1158/1541-7786.MCR-20-0336